Skip to navigation Skip to content
Careers | Phone Book | A - Z Index
Performance and Algorithms Research

SciDAC-4

Researchers from PAR are engaged in a number of activities in the Scientific Discovery through Advanced Computing (SciDAC) initiative. The SciDAC program was initiated in 2001 in order to develop the Scientific Computing Software and Hardware Infrastructure needed to advance scientific discovery using supercomputers. As supercomputers continuously evolve, direct engagement of computer scientists and applied mathematicians with the scientists of targeted application domains becomes ever more necessary for taking full advantage of these new systems. In this regard, SciDAC is a partnership involving all of the Department of Energy (DOE) Office of Science (SC) programs - Advanced Scientific Computing Research (ASCR), Basic Energy Sciences (BES), Biological and Environmental Research (BER), Fusion Energy Sciences (FES), High-Energy Physics (HEP) and Nuclear Physics (NP) - to dramatically accelerate progress in scientific computing that delivers breakthrough scientific results through partnerships comprised of applied mathematicians, computer scientists, and scientists from other disciplines.

Researchers within PAR engage in computer science research covering Performance Modeling, Machine Learning, Communication Runtimes as well as performance optimization of various SciDAC applications. 

Researchers

 

Projects

 

Publications

2022

K. Ibrahim, L. Oliker,, "Preprocessing Pipeline Optimization for Scientific Deep-Learning Workloads", IPDPS 22, June 3, 2022,

2021

Nan Ding, Yang Liu, Samuel Williams, Xiaoye S. Li, "A Message-Driven, Multi-GPU Parallel Sparse Triangular Solver", SIAM Conference on Applied and Computational Discrete Algorithms (ACDA21), July 19, 2021,

Charlene Yang, Yunsong Wang, Thorsten Kurth, Steven Farrell, Samuel Williams, "Hierarchical Roofline Performance Analysis for Deep Learning Applications", Intelligent Computing, LNNS, July 15, 2021, doi: 10.1007/978-3-030-80126-7

Khaled Ibrahim, Roofline on GPUs (advanced topics), ECP Annual Meeting, April 2021,

Samuel Williams, Roofline Analysis on NVIDIA GPUs, ECP Annual Meeting, April 2021,

Samuel Williams, Introduction to the Roofline Model, ECP Annual Meeting, April 2021,

2020

Yunsong Wang, Charlene Yang, Steven Farrell, Yan Zhang, Thorsten Kurth, Samuel Williams, "Time-Based Roofline for Deep Learning Performance Analysis", Deep Learning on Supercomputing (DLonSC), November 2020,

Samuel Williams, Introduction to the Roofline Model, Supercomputing (SC), November 2020,

Samuel Williams, The Roofline Model: A Bridge between Computer Science, Applied Math, and Computational Science, SciDAC Meeting, July 2020,

Samuel Williams, Introduction to the Roofline Model, NERSC NVIDIA Roofline Hackathon, July 2020,

Jonathan R Madsen, Muaaz G Awan, Hugo Brunie, Jack Deslippe, Rahul Gayatri, Leonid Oliker, Yunsong Wang, Charlene Yang, Samuel Williams, "TiMemory: Modular Performance Analysis for HPC", International Supercomputing Conference (ISC), June 2020, doi: 10.1007/978-3-030-50743-5_22

Samuel Williams, Charlene Yang, Yunsong Wang, Roofline Performance Modeling for HPC and Deep Learning Applications, NVIDIA GPU Technology Conference (GTC), March 2020,

Nan Ding, Samuel Williams, Yang Liu, Xiaoye S. Li, "Leveraging One-Sided Communication for Sparse Triangular Solvers", 2020 SIAM Conference on Parallel Processing for Scientific Computing, February 14, 2020,

Jack Deslippe, Guiding Optimization with the Roofline Model, ECP Annual Meeting, February 2020,

Charlene Yang, Hierarchical Roofline Analysis on CPUs, ECP Annual Meeting, February 2020,

Samuel Williams, Roofline on GPUs (Advanced Topics), ECP Annual Meeting, February 2020,

Charlene Yang, Hierarchical Roofline Analysis on GPUs, ECP Annual Meeting, February 2020,

Samuel Williams, Introduction to the Roofline Model, ECP Annual Meeting, February 2020,

2019

Nan Ding, Samuel Williams, "An Instruction Roofline Model for GPUs", Performance Modeling, Benchmarking, and Simulation (PMBS), BEST PAPER AWARD, November 18, 2019,

Nan Ding, Samuel Williams, An Instruction Roofline Model for GPUs, Performance Modeling, Benchmarking, and Simulation (PMBS), BEST PAPER AWARD, November 18, 2019,

Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Performance Analysis of GPU Programming Models using the Roofline Scaling Trajectories", International Symposium on Benchmarking, Measuring and Optimizing (Bench), BEST PAPER AWARD, November 2019,

Nan Ding, Samuel Williams, Sherry Li, Yang Liu, "Leveraging One-Sided Communication for Sparse Triangular Solvers", SciDAC19, July 18, 2019,

Samuel Williams, Charlene Yang, Khaled Ibrahim, Thorsten Kurth, Nan Ding, Jack Deslippe, Leonid Oliker, "Performance Analysis using the Roofline Model", SciDAC PI Meeting, July 2019,

Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter System", Cray User Group (CUG), May 2019,

Charlene Yang, Samuel Williams, Performance Analysis of GPU-Accelerated Applications using the Roofline Model, GPU Technology Conference (GTC), March 2019,

Samuel Williams, Performance Modeling and Analysis, CS267 Lecture, University of California at Berkeley, February 14, 2019,

Charlene Yang, Performance Analysis with Roofline on GPUs, Roofline Tutorial, ECP Annual Meeting, January 2019,

Samuel Williams, Roofline on CPU-based Systems, Roofline Tutorial, ECP Annual Meeting, January 2019,

Samuel Williams, Introduction to the Roofline Model, Roofline Tutorial, ECP Annual Meeting, January 2019,

2018

Charlene Yang, Rahulkumar Gayatri, Thorsten Kurth, Protonu Basu, Zahra Ronaghi, Adedoyin Adetokunbo, Brian Friesen, Brandon Cook, Douglas Doerfler, Leonid Oliker, Jack Deslippe, Samuel Williams, "An Empirical Roofline Methodology for Quantitatively Assessing Performance Portability", International Workshop on Performance, Portability and Productivity in HPC (P3HPC), November 2018,

Samuel Williams, Introduction to the Roofline Model, Supercomputing, November 2018,

Hongzhang Shan, Samuel Williams, Calvin W. Johnson, "Improving MPI Reduction Performance for Manycore Architectures with OpenMP and Data Compression", Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS), November 2018,

Samuel Williams, Roofline on Manycore and Accelerated Systems, ModSim, August 2018,

Samuel Williams, Parallelism and Performance, MolSSI Summer School, August 2018,

Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A Method for Parallel Application and Architectural Performance Analysis", HPCS Special Session on High Performance Computing Benchmarking and Optimization (HPBench), July 2018,

Tuomas Koskela, Zakhar Matveev, Charlene Yang, Adetokunbo Adedoyin, Roman Belenov, Philippe Thierry, Zhengji Zhao, Rahulkumar Gayatri, Hongzhang Shan, Leonid Oliker, Jack Deslippe, Ron Green, and Samuel Williams, "A Novel Multi-Level Integrated Roofline Model Approach for Performance Characterization", ISC, June 2018,

Charlene Yang, Brian Friesen, Thorsten Kurth, Brandon Cook, Samuel Williams, "Toward Automated Application Profiling on Cray Systems", Cray User Group (CUG), May 2018,

Samuel Williams, Introduction to the Roofline Model, ECP Annual Meeting, February 8, 2018,

Protonu Basu, Using Empirical Roofline Toolkit and Nvidia nvprof, ECP Annual Meeting, February 8, 2018,

Samuel Williams, Advisor Hand-On: Stencil Example, ECP Annual Meeting, February 8, 2018,

Charlene Yang, Intel Advisor on Cori, ECP Annual Meeting, February 8, 2018,

Charlene Yang, LIKWID at NERSC, ECP Annual Meeting, February 8, 2018,

Jack Deslippe, Guiding Optimization on KNL with the Roofline Model, ECP Annual Meeting, February 8, 2018,

Samuel Williams, Performance Modeling and Analysis, CS267 lecture, University of California at Berkeley, January 30, 2018,