
Roofline on GPUs
(advanced topics)

Khaled Ibrahim
Computational Research Division
Lawrence Berkeley National Lab

KZIbrahim@lbl.gov

mailto:SWWilliams@lbl.gov

Acknowledgements
§ Materials were provided by Samuel Williams, Nan Ding, Charlene Yang, Yunsong Wang, Khaled Ibrahim, and

Thorsten Kurth
§ This material is based upon work supported by the Advanced Scientific Computing Research Program in the U.S.

Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.
§ This material is based upon work supported by the DOE RAPIDS SciDAC Institute.
§ This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is

supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231.
§ This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National Laboratory, which is

supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Motivation - Why am I not hitting the Roofline?

3

At
ta

in
ab

le
 G

Fl
op

s

HBM G
B/s

L2
 ca

ch
e G

B/s

Arithmetic Intensity

Peak GFlops

Roofline Scaling Trajectories
Khaled Ibrahim, Samuel Williams, Leonid Oliker, “Performance
Analysis of GPU Programming Models using the Roofline Scaling
Trajectories”, Bench, November, 2019.

SM=2

SM=32

SM=80

Roofline Scaling Trajectory

Visualization Method
o Define compute and

bandwidth ceilings as a
function of #SMs

o Plot App scaling as a trendline
on the Roofline

Ideal Scaling
o �y = increase in

computational resources or
share of BW

o �x=0 (No change in
arithmetic intensity)

SM=2

SM=32
SM=80

Inefficiency at low SM
count is typically correlated
with low warp efficiency

AI degradation due to excessive HBM
data movement to the L2 cache

Potential
throughput
improvement
with AI
degradation

Measured throughput
improvement

Measured < Potential
indicates loss of
occupancy while
scaling

Typical Scaling Trajectory
6 Khaled Z. Ibrahim, Samuel Williams, and Leonid Oliker

tion arithmetic intensity as follows:

AI cannonical flop count

(dram read trans+ dram write trans)⇥ 32
(1)

The model could be easily extended to other levels of the hierarchy as presented
in [4]. We rely on the application canonical FLOP count, estimated by the ap-
plication developer rather than on relying on the profiling tool measurements.
This allows consistent performance comparison because the number of FLOPs
could change with the run configuration due to the use of data replication and
reduction operations within a thread block, especially in the CUDA version. This
method allows for a fair comparison across programming models.

SM=2

SM=32

SM=80

Inefficiency at low SM
count is typically correlated
with low warp efficiency

AI degradation due to excessive HBM
data movement to the L2 cache

Potential
throughput
improvement with
AI degradation

Measured throughput
improvement

Measured < Potential
indicates loss of
occupancy while
scaling

Fig. 2: The Roofline Scaling Trajectory on GPU architectures. Each point rep-
resents the throughput at a certain SM concurrency level. We use the Roofline
Scaling Trajectories to diagnose various performance scaling bottlenecks, includ-
ing warp execution ine�ciency, loss of occupancy while scaling, excessive data
movement to the cache hierarchy, etc.

Ideally, the performance should improve linearly with the increase of com-
putational resources without degrading the arithmetic intensity. On a Roofline
plot, this translates into a vertical change of throughput proportional to the
increase of computational resources while changing concurrency. In practice, an
application may experience a suboptimal change in throughput, or a change of
the arithmetic intensity while scaling, e.g., a scaling curve pending to the left.

The dominant bottleneck typically changes when strong scaling the appli-
cation. For instance, at low concurrency, it is typically di�cult to saturate the
bandwidth to shared levels of the memory hierarchy. In such case, the warp e�-
ciency becomes the main limiting factor for an application to reach the Roofline.
Although lower occupancy could result in a similar e↵ect at low concurrency,
for a kernel with non-trivial size, this is unlikely. Additionally, the lack of oc-
cupancy is easily distinguishable, as will be discussed later. As we strong-scale
the application run, observing a loss of arithmetic intensity implies some cache

Khaled Ibrahim, Samuel Williams, Leonid Oliker,
“Performance Analysis of GPU Programming Models using
the Roofline Scaling Trajectories”, Bench, November, 2019.

Understanding the Scaling Trends
§ Scaling plot vs. Roofline scaling trajectory

7

0
10

00
00

25
00

00

SM count

M
Fl

op
/s

02 04 08 16 32 48 64 80

●

●

●

●

●

●
● ●

●

CLASS A
CLASS B
CLASS C

0.01 0.02 0.05 0.10 0.20 0.50 1.00 2.00 5.00
1

5
50

50
0

50
00

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

ADD(SMs=80) (3536)

ADD(SMs=2) (88)

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●

●
●●

●

roofline_summary_Others_a_LU_c_CUDA

●

Class A
Class B
Class C

Khaled Ibrahim, Samuel Williams, Leonid Oliker,
“Performance Analysis of GPU Programming Models using
the Roofline Scaling Trajectories”, Bench, November, 2019.

NAS LU, Scaling Plot NAS LU, Roofline Trajectories

Understanding Different Programming Models

8

§ Is the performance issue related to occupancy or warp efficiency?
o Is the programming model influencing occupancy and warp

efficiency?
§ Different compilers/PM have different challenges.

0.01 0.02 0.05 0.10 0.20 0.50 1.00 2.00

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

HBM(SMs=80) (829)

HBM(SMs=2) (35)

●

●

●

●

●

●●●

roofline_summary_Total_a_BT_c_CUDA

●

Class A
Class B
Class C

0.01 0.02 0.05 0.10 0.20 0.50 1.00 2.00

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●
●●●●

roofline_summary_Total_a_BT_c_ACC

●

Class A
Class B

BT CUDA Implementation

C
U

D
A

AI

BT OpenACC Implementation

Khaled Ibrahim, Samuel Williams, Leonid Oliker,
“Performance Analysis of GPU Programming Models using
the Roofline Scaling Trajectories”, Bench, November, 2019.

Roofline Trajectories Takeaway

9

Roofline Scaling Roofline
§ Tells us about scaling bottenecks

§ Incremental scaling of resources (possibly changing
what resources are stressed)

§ Quantitative analysis of different implementations,
programming models, or compilers

§ Understand potential performance change while
migrating code to Perlmutter, Frontier, and Aurora

Traditional Roofline
§ Tells us about performance

(floating-point)

§ Performance under full utilization
of computational resources

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Instruction Roofline Model
“FLOP/s aren’t that important to me”

Nan Ding, Samuel Williams, "An Instruction Roofline Model for

GPUs", Performance Modeling, Benchmarking, and Simulation

(PMBS), November, 2019.

How to Analyze non-FLOP Application?

§ Think about classifying applications by instruction mix…
o Heavy floating-point (rare in DOE)
o Mix of integer and floating-point
o Integer-only (e.g. bioinformatics, graphs, etc…)
o Mixed precision

11

§ FLOP/s → IntOP/s → FLOP/s+IntOP/s
o Adopted by Intel Advisor
o Useful when wanting to understand ‘performance’ rather than bottlenecks
o What is an “Integer Op”?
o Instruction Fetch/Decode/Issue bottlenecks?
o Functional Unit Bottlenecks?

Ø Need to create a true instruction Roofline

NVIDIA GPU Instruction Roofline

12

§ What is an ‘Instruction’ on a GPU?
o Thread-level hides issue limits?
o Warp-level hides predication effects?
o Scale non-predicated threads down by the warp size (divide by 32)
o Show warp instructions per second

§ Conventionally, one would think instruction intensity should use ‘bytes’
o Matches well to existing Roofline; works with well-known bandwidths

§ GPUs access memory using ‘transactions’
o 32B for global/local/L2/HBM
o 128B for shared memory
Ø “Instructions/Transaction” preserves traditional Roofline,

but enables a new way of understanding memory access

Instruction Roofline

13

Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

L2
 ca

ch
e G

B/s

Arithmetic Intensity
(FLOP:Byte)

Peak GFLOP/s

Instruction Roofline

14

Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s

Peak GIPS
GIPS = min

IIDRAM * DRAM GB/s A
tt
a
in

a
b
le

 G
IP

S

H
B
M

 G
B
/s

L2
 c
ac

he
 G

B
/s

Instruction Intensity

(Instruction:Byte)

Peak GIPS

Instructions per Byte

Nan Ding, Samuel Williams, "An Instruction Roofline

Model for GPUs", PMBS, November, 2019.

Instruction Roofline on GPUs

15

Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s

Peak GIPS
GIPS = min

IIDRAM * DRAM GB/s A
tt
a
in

a
b
le

 G
IP

S

H
B
M

 G
B
/s

L2
 c
ac

he
 G

B
/s

Instruction Intensity

(Instruction:Byte)

Peak GIPS

Warp
Instructions

Nan Ding, Samuel Williams, "An Instruction Roofline

Model for GPUs", PMBS, November, 2019.

Instruction Roofline on GPUs

16

Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s

Peak GIPS
GIPS = min

IIDRAM * DRAM GB/s At
ta

in
ab

le
 G

IP
S

HBM G
TXN/s

L2
 ca

ch
e G

TXN/s

Instruction Intensity
(Instruction:Transaction)

Peak GIPS

Peak GIPS
GIPS = min

IIDRAM * DRAM GTXN/s IIx (Instruction Intensity at level “x”) =

Instructions / Transactions (to/from level “x”)

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

10-2 10-1 100 101 102

Instruction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

HBM 25.9 GTXN/s

L2 93.6 GTXN/s

L1 437.5 GTXN/s
Thoeretical Peak: 489.6 warp GIPS

Instruction Roofline on NVIDIA GPUs

§ Instruction Intensity (II)
o (Warp or equivalent) Instructions / Transaction
o Refine into L1 (global+local+shared), L2, HBM Instruction Intensities
o Further refine based on instruction type (LDST instructions / global transaction)

§ Peak Performance and Peak Bandwidths
o Instruction:

o 80 SMs * 4 warps * 1.53GHz ~ 490 GIPS (warp-level)

o Use ERT for memory (convert from GB/s)
o L1: 80 SMs * 4 transactions/cycle * 1.53 GHz ~ 490 GTXN/s
o L2: 94 GTXN/s (empirical)
o HBM: 26 GTXN/s (empirical)

17Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Efficiency of Global Memory Access

§ (Global)LDST Instruction Intensity has a special meaning / use…
o Global LDST instructions / Global transactions
o Numerator lower than nominal II
o Denominator can be lower than nominal L1 II (no local or shared transactions)

§ Denotes efficiency of memory access

18

10-2 10-1 100 101

Instuction Intensity (Warp Instructions per Transaction)

10-1

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

St
rid

e-
0

U
ni

t S
tri

de
 (i

nt
eg

er
)

St
rid

e>
=1

28
B

Thoeretical Peak: 489.6 warp GIPS

L1 = Global 437.5 GTXN/s

Unattainably
Low Intensity

Unattainably
High Intensity

§ 3 “Walls” of interest:
o ≥1 transaction per LDST instruction

(all threads access same location)
o ≤32 transactions per LDST instruction

(gather/scatter or stride>=128B)
o Unit Stride (Coalesced):

1 LDST per 8 transactions (double
precision)

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Efficiency of Shared Memory Access

§ (Shared)LDST Instruction Intensity also has a special meaning / use
o Shared LDST instructions / Shared transactions
o II is similarly loosely related to nominal II

§ Can be used to infer the number of bank conflicts

19

10-2 10-1 100 101 102

Instuction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

N
o

ba
nk

 c
on

fli
ct

32
-w

ay
 b

an
k

co
nf

lic
t

Thoeretical Peak: 489.6 warp GIPS

Shared 109.3 GTXN/s

Can never have less
than 0 bank conflicts

§ 2 “Walls” of interest:
o Minimum of 1 transaction per shared

LDST instruction (no bank conflicts)
o Maximum of 32 transactions per

shared LDST instruction
(all threads access different lines
in the same bank)

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Instruction Roofline for Smith-Waterman
§ Integer-only alignment code on NVIDIA GPU
§ No predication effects, but inefficient global memory access

20

N
ai

ve

Instruction Hierarchy & Thread Predication Global Memory Efficiency Shared Memory Efficiency

C
oa

le
sc

ed

Gather/Scatter
becomes

Unit Stride

!Near peak

GIPS

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Instruction Roofline for Matrix Transpose

21

Tr
an

sp
os

e
in

Sh
ar

ed
A

rr
ay

Pa
dd

in
g

N
ai

ve

Instruction Hierarchy & Thread Predication Global Memory Efficiency

not used

Shared Memory Efficiency

High Stride
becomes

Unit Stride

Bank conflicts
are eliminated

Bank conflict on
every access

High Stride
Access

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Instruction Roofline Takeaway

22

Instruction Roofline
§ Tells us about bottlenecks

(issue and memory)

§ Use of FMA, SIMD, vectors,
tensors decreases intensity and
may decrease “performance”

§ Presence of integer instructions
increases intensity and might
increase performance.

§ Reducing precision has no effect
on intensity

Memory Walls
§ Tells us about efficiency

(memory access)

§ Intensity based on LDST
instructions and transactions

§ Predication could affect intensity
(could have zero transactions for
a LDST instruction, but not all
LDST instructions)

§ Reducing precision shifts
intensity, and the unit-stride wall

Traditional Roofline
§ Tells us about performance

(floating-point)

§ Use of FMA, SIMD, vectors,
tensors has no effect on intensity,
but may increase performance…

§ Presence of integer instructions
has no affect on intensity, but may
decrease performance

§ Reducing precision (64b, 32b,
16b) increases arithmetic intensity

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Roofline for Performance Tuning
§ Performance tuning

o Is the application limited by a fundamental architectural limits (BW, flop rate)?

o If not, what are the likely causes for inefficiency?

§ Multiple techniques depending on the level of analysis

o Hierarchal Roofline

o Roofline Trajectories

o Instruction Roofline

§ Suggested recipe to leverage these techniques

o Hierarchal Roofline (are you utilizing resources efficiently? If no, use trajectories)

o Roofline Trajectories (is your problem warp efficiency or occupancy? If warp efficiency, do

instruction roofline. If occupancy issue, how to manage or extract more parallelism?)

o Instruction Roofline (What is the root cause for inefficient warp execution?)

23

Questions?

