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Introduction



Why Use Performance Models or Tools?
§ Identify performance bottlenecks

§ Motivate software optimizations

§ Determine when we’re done optimizing
• Assess performance relative to machine capabilities

• Motivate need for algorithmic changes

§ Predict performance on future machines / architectures

• Sets realistic expectations on performance for future procurements

• Used for HW/SW Co-Design to ensure future architectures are well-suited for the 

computational needs of today’s applications.
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Performance Models
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#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

§ Many different components can contribute to kernel run time.
§ Some are characteristics of the application, some are characteristics of 

the machine, and some are both (memory access pattern + caches).



Performance Models
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§ Can’t think about all these terms all the time for every application…

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Computational
Complexity



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Roofline
Model

Williams et al, "Roofline: An Insightful Visual Performance Model For Multicore Architectures", 
CACM, 2009.
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogP

Culler, et al, "LogP: a practical model of parallel computation", CACM, 1996.
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogGP

Alexandrov, et al, "LogGP: incorporating long messages into the LogP model - one step closer 

towards a realistic model for parallel computation", SPAA, 1995.
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogCA

Bin Altaf et al, "LogCA: A High-Level Performance Model for Hardware Accelerators", ISCA, 
2017.



Introduction to the
Roofline Model



Performance Models / Simulators
§ Historically, many performance models and simulators tracked latencies 

to predict performance (i.e. counting cycles)

§ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)
• HW stream prefetching (hardware speculatively loads data)
• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

§ Effective latency hiding has resulted in a shift from a latency-limited 
computing regime to a throughput-limited computing regime
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Roofline Model
§ Roofline Model is a throughput-

oriented performance model…
• Tracks rates not times
• Augmented with Little’s Law

(concurrency = latency*bandwidth) 
• Independent of ISA and architecture (applies 

to CPUs, GPUs, Google TPUs1, etc…)

131Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/


(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)
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CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

#FP ops / Peak GFlop/s
Time = max

#Bytes / Peak GB/s



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)
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CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

1 / Peak GFlop/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)
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CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFlop/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)
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CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFlop/s
GFlop/s = min

AI * Peak GB/s
Note, Arithmetic Intensity (AI) = Flops / Bytes (as presented to DRAM )



(DRAM) Roofline
§ Plot Roofline bound using 

Arithmetic Intensity as the x-axis
§ Log-log scale makes it easy to 

doodle, extrapolate performance 
along Moore’s Law, etc…

§ Kernels with AI less than machine 
balance are ultimately DRAM 
bound (we’ll refine this later…)
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Roofline Example #1
§ Typical machine balance is 5-10 

flops per byte…
• 40-80 flops per double to exploit compute capability
• Artifact of technology and money
• Unlikely to improve

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.083 flops per byte == Memory bound
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Arithmetic Intensity (Flop:Byte)

TRIAD

Gflop/s ≤ AI * DRAM GB/s

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

0.083

Peak Flop/s



Roofline Example #2
§ Conversely, 7-point constant 

coefficient stencil…
• 7 flops

• 8 memory references (7 reads, 1 store) per point

• Cache can filter all but 1 read and 1 write per point

• AI = 0.44 flops per byte == memory bound,
but 5x the flop rate
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7-point
Stencil

Gflop/s ≤ AI * DRAM GB/s

TRIAD

#pragma omp parallel for

for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){

for(i=1;i<dim+1;i++){
int ijk = i + j*jStride + k*kStride;
new[ijk] = -6.0*old[ijk ]

+ old[ijk-1      ]
+ old[ijk+1      ]

+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]

+ old[ijk+kStride];
}}}

Arithmetic Intensity (Flop:Byte)
0.083 0.44

Peak Flop/s



General Guidelines
§ Imagine a mix of loop nests (or 

applications)
§ Flop/s alone may not be useful for 

understanding performance

21
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Kernel (or apps)



General Guidelines
§ We can sort kernels (or apps) by 

AI …

22

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)



General Guidelines
§ We can sort kernels (or apps) by 

AI …
§ … and compare performance 

relative to machine capabilities
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General Guidelines
§ Applications near the roofline are 

making good use of 
computational resources
o Kernels can have low performance 

(Gflop/s), but make good use of a 
machine

o Kernels can have high performance 
(Gflop/s), but make poor use of a 
machine
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Roofline Model:
Cache Effects



Hierarchical Roofline
§ Real processors have multiple levels of 

memory
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications can have locality in each 
level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have a unique 

bandwidth
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DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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DDR G
B/s

MCDRAM ca
ch

e G
B/s

MCDRAM bound
MCDRAM AI*BW <

DDR AI*BW 

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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DDR G
B/s

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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Roofline Model:
In-Core Effects



Data, Instruction, Thread-Level Parallelism…
§ Modern CPUs use several techniques to increase per core Flop/s
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Fused Multiply Add
• w = x*y + z is a common 

idiom in linear algebra
• Rather than having 

separate multiple and 
add instructions, 
processors can use a 
fused multiply add (FMA)

• The FPU chains the 
multiply and add in a 
single pipeline so that it 
can complete FMA/cycle

Vector Instructions
• Many HPC codes apply 

the same operation to a 
vector of elements

• Vendors provide vector 
instructions that apply 
the same operation to 2, 
4, 8, 16 elements…
x [0:7] *y [0:7] + z [0:7]

• Vector FPUs complete 8 
vector operations/cycle

Deep Pipelines
• The hardware for a FMA 

is substantial.  
• Breaking a single FMA 

up into several smaller 
operations and pipelining 
them allows vendors to 
increase GHz

• Little’s Law applies… 
need FP_Latency * 
FP_bandwidth
independent instructions

!Return of CISC… 

Tensor Cores, 

QFMA, VNNI, etc…



Data, Instruction, Thread-Level Parallelism…
§ If every instruction were an ADD 

(instead of FMA), performance 
would drop by 2x on KNL or 4x 
on Haswell 

§ Similarly, if one had no vector 
instructions, performance would 
drop by another 8x on KNL and 
4x on Haswell

§ FP Divides can be even worse.
§ Lack of threading will reduce 

performance by 64x on KNL.
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Peak Flop/s

Add-only (No FMA)

No vectorization
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pulls performance 
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Superscalar vs. instruction mix
§ Define in-core ceilings based on 

instruction mix…
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Peak Flop/s

50% FP
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25% FP

100% FP§ e.g. Haswell
• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP 
to get peak performance

§ e.g. KNL
• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be 
FP to get peak performance

non-FP instructions 
can sap instruction 

issue bandwidth and 
pull performance 
below Roofline



Node 
Characterization



Node Characterization
§ “Marketing Numbers” can be 

deceptive…
• Pin BW vs. real bandwidth

• TurboMode / Underclock for AVX

• compiler failings on high-AI loops.

36
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

§ LBL developed the Empirical 
Roofline Toolkit (ERT)…
• Characterize CPU/GPU systems

• Peak Flop rates

• Bandwidths for each level of memory

• MPI+OpenMP/CUDA == multiple GPUs
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Application 
Characterization



Measuring AI
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§ To characterize application execution with Roofline we need…
o Time
o Flops (=> flop’s / time)
o Data movement between each level of memory (=> Flop’s / GB’s)

§ We can look at the full application…
o Coarse grained, 30-min average
o Misses many details and bottlenecks

§ … or we can look at individual loop nests
o Requires auto-instrumentation on a loop by loop basis
o Moreover, we should probably differentiate data movement or flops on a core-by-core basis.



Measuring Data Movement
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Manual Counting
§ Go thru each loop nest and 

estimate how many bytes 
will be moved

§ Use a mental model of 
caches

ü Works best for simple loops 
that stream from DRAM 
(stencils, FFTs, spare, …)

✘ N/A for complex caches

✘ Not scalable

Perf. Counters
§ Read counter before/after
ü Applies to full hierarchy (L2, 

DRAM, 
ü Accurate
ü Low overhead (<%) == can 

run full MPI applications
ü Can detect load imbalance
✘ Requires privileged access
✘ Requires manual 

instrumentation (+overhead) 
or full-app characterization 

Cache Simulation
§ Build a full cache simulator 

driven by memory 
addresses

ü Applies to full hierarchy and 
multicore

ü Can detect load imbalance
ü Automated application to 

multiple loop nests
✘ Ignores prefetchers
✘ >10x overhead (limited to 

short runs / single node)



Measuring Flop’s
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Manual Counting
§ Go thru each loop nest and 

count the number of FP 
operations

ü Works best for deterministic 
loop bounds

ü or parameterize by the 
number of iterations 
(recorded at run time)

✘ Not scalable

Perf. Counters
§ Read counter before/after
ü Accurate
ü Low overhead (<%) == can 

run full MPI applications
ü Can detect load imbalance
✘ Requires privileged access
✘ Requires manual 

instrumentation (+overhead) 
or full-app characterization 

✘ Broken counters = garbage
✘ May not differentiate FMA 

from add
✘ No insight into special 

pipelines

Binary Instrumentation
§ Automated inspection of 

assembly at run time
ü Can count instructions by 

class/type
ü FMA-, VL-, and mask-aware
ü Can detect load imbalance
ü Can include effects from 

non-FP instructions
ü Automated application to 

multiple loop nests
✘ >10x overhead (limited to 

short runs / single node)



LIKWID
§ LIKWID provides easy to use wrappers for measuring performance 

counters...
ü Works on NERSC production systems
ü Distills counters into user-friendly metrics (e.g. MCDRAM Bandwidth)
ü Minimal overhead (<1%)
ü Scalable in distributed memory (MPI-friendly)
ü Fast, high-level characterization
✘ No timing breakdowns
✘ Suffers from Garbage-in/Garbage Out (e.g. broken Haswell FP counters)
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https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid


Intel Advisor
§ Includes Roofline Automation…

ü Automatically instruments applications
(one dot per loop nest/function)

ü Computes FLOPS and AI for each 
function (CARM)

ü AVX-512 support that incorporates masks
ü Integrated Cache Simulator1

(hierarchical roofline / multiple AI’s)
ü Automatically benchmarks target system 

(calculates ceilings)
ü Full integration with existing Advisor 

capabilities

42

Memory-bound, invest into 
cache blocking etc

Compute bound: invest 
into SIMD,..

1Technology Preview, not in official product roadmap so far.

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017


Example Use Cases



LIKWID on AMReX apps
§ Used LIKWID to characterize AMReX

applications
§ Measured cache and DRAM bytes.

o Averaged over 30min executions and 32 processes

o Only 2 applications (not counting HPGMG proxy) used 
>50% of memory bandwidth on average

o Used this data to estimate average AI for each level of 
the memory hierarchy

o Used this data to infer requisite cache tapering
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Using Intel Advisor at NERSC

45

§ Used Advisor to analyze 
cache/MCDRAM/DDR behavior of 
multiple apps on KNL
o Some loops bound by L2
o Some by MCDRAM
o Some loops had no clear memory or flop 

bound

Tuomas Koskela, Zakhar Matveev, Charlene Yang, Adetokunbo Adedoyin, Roman Belenov, Philippe Thierry, Zhengji Zhao, Rahulkumar
Gayatri, Hongzhang Shan, Leonid Oliker, Jack Deslippe, Ron Green, and Samuel Williams,  "A Novel Multi-Level Integrated Roofline Model 
Approach for Performance Characterization", ISC, June 2018.

o %FMA?
o %Vectorized?
o Non-FP vector instructions?
o Non-vector instructions?
o Unpipelined instructions (e.g. divide)?



Roofline Scaling Trajectories

46

§ Often, one plots performance as a 
function of thread concurrency
o Carries no insight or analysis
o Provides no actionable information.

threads

G
flo

p/
s

§ Khaled Ibrahim developed a new 
way of using Roofline to analyze 
thread (or process) scalability
o Create a 2D scatter plot of performance 

as a function of AI and thread 
concurrency

o Can identify loss in performance due to 
increased cache pressure

Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A Method 
for Parallel Application and Architectural Performance Analysis", HPCS Special Session on 
High Performance Computing Benchmarking and Optimization (HPBench), July 2018.
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Roofline on GPUs

47

§ We can similarly use NVProf to 
record HBM data movement on 
GPUs. 

§ We used this technique to 
evaluate performance of 
autotuning stencil library 
developed under an ECP ST 
project.

Tuowen Zhao, Mary Hall, Protonu Basu, Samuel Williams, Hans Johansen, ” Performance 
Portability for Stencils across CPUs and GPUs Using Bricks", (submitted to) Supercomputing, 
2018.

P100 GPU

private 32KB L1 data cache, implements 4-way multithread-
ing, and has two AVX-512 vector processing units (VPUs).
Although each core has a nominal frequency of 1.4GHz,
under AVX-heavy computations, the cores will downclock to
1.2GHz. With 64 cores, the theoretical peak performance is
4915 GFLOP/s for single-precision fused multiply-and-add
(half that for double, half that again for add or multiply
instructions). Each chip has both standard DDR4 DRAM
memory and high-bandwidth MCDRAMmemory. MCDRAM
can be configured as either a last level cache, or as a separate
addressable memory (exposed to programmers as a second
NUMA node). We preserve our target machine’s (NERSC’s
Cori) nominal configuration of the MCDRAM as a last level
cache (quadcache) to reflect typical user models. This yields
a STREAM bandwidth of 332 GB/s.

As the autotuning search space is small, we used an exhaus-
tive search to find the best solution in less than 30 minutes.
After one warm-up timestep, the stencil driver reports the
average stencil throughput over 100 timesteps (10 for CNS)
on a 5123 domain in GStencil/s.
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Fig. 10: Roofline figure for the KNL 7250. Note, each dot rep-
resents our optimized stencil performance in single-precision.

Figure 10 presents a roofline figure for our attained perfor-
mance and AI collected using Intel VTune Amplifier compared
with STREAM bandwidth and machine peak. We only ex-
amined single-precision as the brick library doesn’t currently
support AVX-512 in double-precision; double-precision AVX-
512 results will be included in the final paper. We use 4⇥4⇥16
bricks for all stencils except CNS which uses 4⇥4⇥4 bricks to
reduce cache pressure. As we use uniquely weighted synthetic
stencils, no redundant computation exists, and the FLOP/s
rates are exact. For many computations our brick library attains
performance near the machine’s capabilities. However, as AVX
valign instructions consume vector unit (VPU) cycles and
displace useful computation, the performance for the most

compute intensive operations can be diminished.
Higher order stencils have increased work per point and

usually require more time per point. For CPUs, this causes
the tuner to favor dynamic scheduling of thread groups on
smaller subdomains of bricks — the 13pt stencil’s thread
group subdomain size is twice of that for 25pt, while the
27pt stencil’s thread group subdomain size is four times of
125pt’s. In affect, the overhead of dynamic scheduling is
better amortized while the increased flexibility of dynamic
scheduling can reduce random imbalances. However, L2 cache
capacity and MCDRAM bandwidth heavily constrain CNS
performance — there is only a 8% difference in performance
across the existing tuning space. Ultimately, a richer tuning
space must be developed in order to improve the performance
of CNS-like computations.

The brick library can generate CUDA code for the NVIDIA
Tesla P100 GPU. The P100 GPU has 56 streaming multipro-
cessors. Each streaming multiprocessor has 64 single-precision
and 32 double-precision CUDA cores and use a warp size of
32. The P100 has a theoretical peak single-precision perfor-
mance of 9.3 TFLOP/s, peak double-precision performance
of 4.7 TFLOP/s, and a GPU-STREAM[37] bandwidth of
586 GB/s. For GPU tuning, it is based on GStencil/s returned
by stencil driver for each kernel code. Each tuning iteration
takes up to one minute to complete.

We ran each tuning experiments for no more than 6 hours
or until the global best value didn’t change for 1000 iterations.
We use 4 ⇥ 4 ⇥ 32 bricks for all stencils except CNS which
uses 4 ⇥ 4 ⇥ 8 bricks for single-precision and 4 ⇥ 4 ⇥ 4
bricks for double-precision to reduce cache pressure. After
one warm-up timestep, the stencil driver reports the average
stencil throughput over 100 timesteps on a 5123 domain (3843
for CNS) in GStencil/s.
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Fig. 11: Roofline figure for benchmarks running on the P100.
Note, each dot represents a different stencil benchmark.
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Future Directions



Understanding/Visualizing Load Imbalance

49

§ Generally, Roofline presumes computation and data movement is 
balanced
o Obviously, a single core cannot hit full-socket flop/s
o More subtly, a single core cannot come anywhere close to socket GB/s
o We are investigating how to visualize this in Roofline (e.g. load imbalance ceiling)

§ On Heterogeneous systems, the issue is more subtle
o Nominally, Roofline treats heterogeneous systems as two homoegeneous (sub)systems
o Examining work partitioning in accelerated applications and visualization



New Architectures

50

§ End of Dennard Scaling + End of Moore’s Law

o Exponential growth in transistors will slow (end)

o Can’t simply increase system size due to power & energy

o Extract exponential performance from a ~fixed number transistors

o The emergence of specialization

§ Emergence of Specialization and Multimodal Heterogeneity

o Return to CISC (tensor cores, QFMA, VNNI, …)

o (multiple) specialized cores/accelerators (big/little, but we can think more profound)

o (multiple) specialized discrete accelerators / node types

o Multiple memory types (can’t get capacity, bandwidth, and energy in a single type)



Extending Roofline to New Architectures

51

§ Requirements…
o Bandwidth (vertical, horizontal, and asymmetry)
o Measuring Data movement (vertical and horizontal)
o Special in-core ceilings (presence and exploitation)
o Overheads

§ Targets…
o AI ISA extensions
o NNPs and TPUs
o FPGAs (interesting tradeoffs)
o NVM / HBM



Consumers?
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§ Those wanting to understand performance on new architectures

§ Those building runtimes/mappers/compilers that need accurate cost 
models

§ Those wanting to develop new algorithms/discretizations appropriate for 
exascale systems.



Bottlenecks: 
End of the Road or New Opportunities?
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Latency/Overhead (2021-?)
§ Conventional Wisdom:

o Limits on performance (can’t get 90% of peak on any 
CUDA kernel that does less than 1.4B FP ops

o Numerical methods and applications limited by 
Computational Depth (20us * #synchronization points)

Memory (2004-?)
§ Conventional Wisdom:  

o Computation is limited by how fast we can move data 
(flops are free)

o We must minimize data movement

o We must have more bandwidth

§ New Conventional Wisdom:  
o Flop-heavy methods that were cost prohibitive are now 

attractive if they reduce (net) data movement

Ø If Flop/s are free, use them (there’s no penalty).  
o Recompute terms on the fly (rather than storing in 

memory)

o Use high-order discretizations (equal error for reduced 
total data movement)

o Communication-Avoiding Algorithms

§ New Conventional Wisdom: 
o You can do anything you want (locally) every 20us

o Flop- and Bandwidth-heavy methods that were cost 
prohibitive are now attractive if they reduce (net) 
synchronization… 

Ø If Flop/s and GB/s are free, use them
o No penalty for redundant computation (or redundant 

data movement) if it reduces synchronization

o Synchronization-Avoiding Algorithms

o Speculative Execution



We’re Hiring…
jobs.lbl.gov

search for #85373



Questions



Backup



Load Balancing
§ Unfortunately, some loop 

iterations may be more 
expensive, or some threads may 
run slower (e.g. cache effects)
o As a result, we can observe load 

imbalance where run time is limited by the 
slowest thread

o We can assess the degree of load 
imbalance by measuring max/average

o A slow outlier may substantially hurt 
performance, but… 
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Load Balancing
§ Unfortunately, some loop 

iterations may be more 
expensive, or some threads may 
run slower (e.g. cache effects)
o As a result, we can observe load 

imbalance where run time is limited by the 
slowest thread

o We can assess the degree of load 
imbalance by measuring max/average…

o A slow outlier may substantially hurt 
performance, but… 

o …a fast thread may not help or hurt much
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Lack of Parallelism
§ Trends in architecture have enabled >>1000-way parallelism on a 

chip (#FPUs * FPU latency)
§ Not all loop nests support 1000-way parallelization
§ Loop nests with <1000-way parallelism underutilize HW resources

§ Often codes must be restructured to enable more parallelism
o Loops are reordered/fused (OMP collapse(3))
o Variables(arrays) are privatized and reduced
o Nominally sequential functions/solvers on independent variables are performed 

concurrently  (MPI sub communicators or OMP Tasks)
o Workflows/multiphysics are parallelized at launch (SLURM MPMD)
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Performance
Models



Computational Complexity
§ Assume run time is correlated 

with the number of operations 
(e.g. FP ops)

§ Users define parameterize their 
algorithms, solvers, kernels

§ Count the number of operations 
as a function of those parameters

§ Demonstrate run time is 
correlated with those parameters
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = alpha*X[i] + Y[i];
}

DAXPY: O(N) complexity where 
N is the number of elements

#pragma omp parallel for
for(i=0;i<N;i++){
for(j=0;j<N;j++){

double Cij=0;
for(k=0;k<N;k++){

Cij += A[i][k] * B[k][j];
}
C[i][j] = sum;

}}

DGEMM: O(N3) complexity 
where N is the number of rows 
(equations)

FFTs: O(NlogN) in the number of elements

CG: O(N1.33) in the number of elements (equations)

MG: O(N) in the number of elements (equations)

N-body: O(N2) in the number of particles (per time step)

?What are the 
scaling 

constants?

?Why did we 
depart from ideal 

scaling?



Data Movement Complexity
§ Assume run time is correlated 

with the amount of data accessed 
(or moved)

§ Easy to calculate amount of data 
accessed… count array accesses
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DAXPY
DGEMV
DGEMM

FFTs
CG

MG
N-body

Operation
O(N)
O(N2)
O(N3)

O(NlogN)
O(N1.33)

O(N)
O(N2)

Flop’s
O(N)
O(N2)
O(N2)
O(N)

O(N1.33)

O(N)
O(N)

Data

1Hill et al, “Evaluating Associativity in CPU Caches”, IEEE 
Trans. Comput., 1989.

§ Data moved is more complex as it 
requires understanding cache 
behavior…
• Compulsory1 data movement (array 

sizes) is a good initial guess…
• … but needs refinement for the effects of 

finite cache capacities

?Which is more 
expensive…

Performing Flop’s, or
Moving words from memory



Machine Balance and Arithmetic Intensity
§ Data movement and computation 

can operate at different rates
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DAXPY

DGEMV

DGEMM

FFTs

CG

MG

N-body

Operation
O(N)

O(N2)

O(N3)

O(NlogN)

O(N1.33)

O(N)

O(N2)

Flop’s
O(N)

O(N2)

O(N2)

O(N)

O(N1.33)

O(N)

O(N)

Data
O(1)

O(1)

O(N)

O(logN)

O(1)

O(1)

O(N)

AI (ideal)

Peak DP Flop/s
Peak BandwidthBalance = 

§ We define machine balance as 
the ratio of…

Flop’s Performed
Data MovedAI = 

§ …and arithmetic intensity as the 
ratio of…

!Kernels with AI

less than machine 

balance are ultim
ately 

bandwidth-lim
ited



Distributed Memory Performance Modeling
§ In distributed memory, one communicates by sending messages 

between processors.
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§ Messaging time can be constrained by several components…
• Overhead (CPU time to send/receive a message)
• Latency (time message is in the network; can be hidden)
• Message throughput (rate at which one can send small messages… messages/second)
• Bandwidth (rate one can send large messages… GBytes/s)

§ Distributed memory versions of our algorithms can be differently 
stressed by these components depending on N and P (#processors)

§ Bandwidths and latencies are further constrained by the interplay of 
network architecture and contention



Computational Depth
§ Imagine a world of infinite 

parallelism & bandwidth, but finite 
latencies

§ We can classify algorithms by 
depth (max depth of the 
algorithm’s dependency chain)

§ For iterative algorithms, this is 
product of iterations and depth 
per iteration
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DAXPY
DGEMV
DGEMM

FFTs
CG

MG
N-body

Operation
O(N)
O(N2)
O(N3)

O(NlogN)
O(N1.33)

O(N)
O(N2)

Flop’s
O(N)
O(N2)
O(N2)
O(N)

O(N1.33)

O(N)
O(N)

Data
O(1)
O(1)
O(N)

O(logN)
O(1)

O(1)
O(N)

AI (ideal)
O(1)

O(logN)
O(logN)
O(logN)

O(N0.33 logN)

O(logN)
O(logN)

Depth

!Overheads can 

dominate at high 

concurrency or small 

problems



Roofline Model:
In-Core Effects



Superscalar vs. instruction mix
§ Define in-core ceilings based on 

instruction mix…
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Superscalar vs. instruction mix
§ Define in-core ceilings based on 

instruction mix…
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§ e.g. KNL
• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be 
FP to get peak performance



Superscalar vs. instruction mix
§ Define in-core ceilings based on 

instruction mix…
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• Requires 50% of the instructions to be FP 
to get peak performance

§ e.g. KNL
• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be 
FP to get peak performance

non-FP instructions 
can sap instruction 

issue bandwidth and 
pull performance 
below Roofline



Roofline Model:
Cache Effects



Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
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Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses

§ However, write allocate caches 
can lower AI

72

Peak Flop/s

No FMA

No vectorization

A
tt
a
in

a
b
le

 F
lo

p
/s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
o
m

p
u
ls

o
ry

 A
I

#Flop’s
Compulsory Misses + Write Allocates

AI = 

+
W

ri
te

 A
llo

ca
te



Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
§ However, write allocate caches 

can lower AI
§ Cache capacity misses can have 

a huge penalty
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Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
§ However, write allocate caches 

can lower AI
§ Cache capacity misses can have 

a huge penalty
Ø Compute bound became 

memory bound
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!Know the theoretical

bounds on your AI.



Hierarchical Roofline vs.
Cache-Aware Roofline

…understanding different Roofline 
formulations in Advisor



There are two Major Roofline Formulations:
§ Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, …)…

• Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009 
• Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
• Defines multiple bandwidth ceilings and multiple AI’s per kernel

• Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

§ Cache-Aware Roofline
• Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
• Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes)

• As one looses cache locality (capacity, conflict, …) performance falls from one BW ceiling to a lower one at constant AI
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§ Why Does this matter?
• Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
• Cache-Aware Roofline model was integrated into production Intel Advisor

• Evaluation version of Hierarchical Roofline1 (cache simulator) has also been integrated into Intel Advisor

1Technology Preview, not in official product roadmap so far.
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Cache-Aware RooflineHierarchical Roofline
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size
(capacity misses reduce AI)

§ AI is Flop:Bytes as presented to the L1 
cache (plus non-temporal stores)

§ AI is Flop:Bytes after being filtered by 
lower cache levels

§ Memory/Cache/Locality effects are 
observed as decreased performance

§ Memory/Cache/Locality effects are 
observed as decreased AI

§ Requires static analysis or binary 
instrumentation to measure AI

§ Requires performance counters or 
cache simulator to correctly measure AI



Example: STREAM
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ L1 AI…
• 2 flops
• 2 x 8B load (old)
• 1 x 8B store (new)
• = 0.08 flops per byte

§ No cache reuse…
• Iteration i doesn’t touch any data associated with 

iteration i+delta for any delta. 

§ … leads to a DRAM AI equal to 
the L1 AI



Example: STREAM
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Small Problem)
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
new[ijk] = -6.0*old[ijk ]

+ old[ijk-1      ]
+ old[ijk+1      ]
+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]
+ old[ijk+kStride];

}}}

§ L1 AI…
• 7 flops
• 7 x 8B load (old)
• 1 x 8B store (new)
• = 0.11 flops per byte
• some compilers may do register shuffles to reduce the 

number of loads.

§ Moderate cache reuse…
• old[ijk] is reused on subsequent iterations of i,j,k
• old[ijk-1] is reused on subsequent iterations of i.
• old[ijk-jStride] is reused on subsequent iterations of j.
• old[ijk-kStride] is reused on subsequent iterations of k.

§ … leads to DRAM AI larger than 
the L1 AI



Example: 7-point Stencil (Small Problem)
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Example: 7-point Stencil (Small Problem)
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Large Problem)
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Observed Perf.)

84

Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Observed Perf.)
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Little’s Law Redux



Little’s Law Redux…
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§ Recast latency-bandwidth product for OMP/CUDA overheads & flop/s...

§ Volta GPU:

o 800 GB/s, 7 Tflop/s, ~20us CUDA launch overhead

o Can’t hit peak bandwidth on any kernel that moves less than 16MB
o Can’t hit peak flops on any kernel that does less than 140M FP operations

§ KNL (Xeon Phi Manycore):

o 400 GB/s, 2.5 Tflop/s, ~5us OMP overhead

o Can’t hit peak bandwidth on any kernel that moves less than 2MB
o Can’t hit peak flops on any kernel that does less than 13M FP operations

§ Haswell (Xeon CPU):

o 100 GB/s, 1.3 Tflop/s, ~1us OMP overhead

o Can’t hit peak bandwidth on any kernel that moves less than 100KB
o Can’t hit peak flops on any kernel that does less than 1M FP operations


