| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

rrrrrrr

Performance Tuning of Scientific
Codes with the Roofline Model

1:30pm
2:00pm
2:20pm
2:40pm

3:00pm
3:30pm

3:50pm
4:45pm

Introduction to Roofline
Using Roofline in NESAP
Using LIKWID for Roofline
Using NVProf for Roofline

break / setup NERSC accounts
Introduction to Intel Advisor

Hands-on with Intel Advisor
closing remarks / Q&A

Samuel Williams
Jack Deslippe
Charlene Yang
Protonu Basu

Charlene Yang
Samuel Williams
all

~

rerererreer

BERKELEY LAB

Y BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

Introductions

Samuel Williams Jack Deslippe

Computational Research Division NERSC
Lawrence Berkeley National Lab Lawrence Berkeley National Lab
Charlene Yang Protonu Basu
NERSC Computational Research Division

Lawrence Berkeley National Lab Lawrence Berkeley National Lab

& U.S. DEPARTMENT OF

rrrrrrr

ENERGY

\
n

~>
r

rerererreer

BERKELEY LAB

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

Introduction to the
Roofline Model

Samuel Williams

Computational Research Division
Lawrence Berkeley National Lab

rrrrrrr

- A\ #5%, U.S. DEPARTMENT OF
> BERKELEY LAB @ ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Acknowledgements

» This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

» This material is based upon work supported by the DOE RAPIDS SciDAC Institute.

» This research used resources of the National Energy Research Scientific Computing Center (NERSC),

which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

= Special Thanks to:
« Zakhar Matveev, Intel Corporation
« Roman Belenov, Intel Corporation

| BERKELEY LAB) ENERGY

EEE

Introduction to
Performance Modeling

Why Use Performance Models or Tools?

= |dentify performance bottlenecks
= Motivate software optimizations

= Determine when we’re done optimizing

« Assess performance relative to machine capabilities
« Motivate need for algorithmic changes

= Predict performance on future machines / architectures

« Sets realistic expectations on performance for future procurements

« Used for HW/SW Co-Design to ensure future architectures are well-suited for the
computational needs of today’s applications.

= A
6 /\I |

BERKELEY LAB

Performance Models

= Many different components can contribute to kernel run time.

= Some are characteristics of the application, some are characteristics of
the machine, and some are both (memory access pattern + caches).

#FP operations Flop/s

Cache data movement Cache GB/s

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead

MPI| Message Size Network Bandwidth
MPI Send:Wait ratio Network Gap
___ #MPI Wait's Network Latency

Performance Models

= Can't think about all these terms all the time for every application...

Computational ______________ o ____._

Complexity I #FP operations Flop/s !

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead
MPI| Message Size Network Bandwidth
MPI Send:Wait ratio Network Gap
___ #MPI Wait's Network Latency

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

- - - O B B S EEE EEE EEE EEE EEE SEE SEE EEE S SEE EEE SEE SEE BEE SEE SEE BEm EEE SEE BEm EEm SEm BEe S BEe B S E

’ #FP operations Flop/s
' Cache data movement Cache GB/s
DRAM data movement DRAM GB/s |
PCle data movement PCie bandwidth
Depth OMP Overhead
MPI| Message Size Network Bandwidth
MPI Send:Wait ratio Network Gap

___ #MPI Wait's Network Latency

Williams et al, "Roofline: An Insightful Visual Performance Model For
Multicore Architectures", CACM, 2009.

) Roofline
: Model

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations Flop/s
Cache data movement Cache GB/s
DRAM data movement DRAM GB/s

LogcA~__! PCle data movement PCle bandwidth:
' Depth OMP Overhead

~ MPI Message Size Network Bandwidth
MPI Send:Wait ratio Network Gap

___ #MPI Wait's Network Latency

Bin Altaf et al, "LogCA: A High-Level Performance Model for Hardware 10
Accelerators", ISCA, 2017.

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations Flop/s
Cache data movement Cache GB/s
DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead

- . . S S S S RS S B B S B R S - s S S S S S S B B EEE B B B B B B B B B B ey

,' MPI| Message Size Network Bandwidth :/LogGP
' MPI Send:Wait ratio Network Gap
___ #MPIWaltsNetworkLatency

Alexandrov, et al, "LogGP: mcorporatmgTong'me'SS'agésmtb'th'etGgP ““““““““““““““

model - one step closer towards a realistic model for parallel 11
computation”, SPAA, 1995.

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these

components.
#FP operations Flop/s
Cache data movement Cache GB/s \
DRAM data movement DRAM GR 63099
PCle data movement PCle bano @\g 6‘5 BVA

Depth OMP O 008" ‘o\e“‘
MPI Message Size Network B “()\3
MPI| Send:Wait ratio Network“sas
__ #MPI| Wait's Network Lateacy ...

Culler, et al, "LogP: a practical model of parallel computation”, CACM, 19
1996.

| BERKELEY LAB

EEE

Roofline Model:

Arithmetic Intensity and Bandwidth

rrrrrrr

Performance Models / Simulators

= Historically, many performance models and simulators tracked latencies
to predict performance (i.e. counting cycles)

= The last two decades saw a number of latency-hiding techniques...

« Out-of-order execution (hardware discovers parallelism to hide latency)
« HW stream prefetching (hardware speculatively loads data)
« Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

= Effective latency hiding has resulted in a shift from a latency-limited
computing regime to a throughput-limited computing regime

— A
14 1::'>| |'“|

BERKELEY LAB

Roofline Model

= Roofline Model is a throughput- o
oriented performance model...
 Tracks rates not times

° Augmented with Little’s Law pearomance Roofline Performance Model
ALGORITHMS
: | [yt et topeeiegrerprerg oo
(concurrency = latency*bandwidth) T e e e e
« Independent of ISA and architecture (applies Do D e s s
Tores et 10 fpaco o & el ahccete coche cechre, B ek ok v oot BN . Ao, FFTY,
to CPUs, GPUs, Google TPUs', etc...) S e T e e g
arithmenc Grow very
:-ﬁm 01-10ﬂ:rpub,m TM<2:ouwbrh O(WJ&»:WM

'Jouppi et al, “In-Datacenter Performance Analysis of a Tensor /\I“
Processing Unit”, |SCA, 2017. BERKELEY LAB

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite locality (reuse) and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assume: " (GBIs)
|dealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)
/‘
#FP ops / Peak GFlop/s

Time = max <

_#Bytes /| Peak GB/s

16

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite locality (reuse) and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assume: | (GBS
|dealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)
Time _ 1/ Peak GFlop/s
= max =<
#FP ops _#Bytes | #FP ops / Peak GB/s

17

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite locality (reuse) and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assume: | &%
|dealized processor/caches DRAM
Cold start (data in DRAM) {data, GB)
~
#FP ops _ - Peak GFlop/s
Time _(#FP ops | #Bytes) * Peak GB/s

18

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite locality (reuse) and (COSUEE;,D,S)
bandwidth limit performance. | oram Banduwidh
= Assume: | &5
* |dealized processor/caches DRAM
+ Cold start (data in DRAM) {data, GB)
/‘
Peak GFlop/s

GFlop/s = min<

_Al * Peak GB/s

Note, Arithmetic Intensity (Al) = Flops / Bytes (as presented to DRAM)

— A
19 rr/r—r>| |“'|

BERKELEY LAB

(DRAM) Roofline

* Plot Roofline bound using
Arithmetic Intensity as the x-axis

= Log-log scale makes it easy to Peak Flop/s
doodle, extrapolate performance
along Moore’s Law, etc...

= Kernels with Al less than machine
balance are ultimately DRAM
bound (we’ll refine this later...)

Attainable Flop/s

DRAM-bound i Compute-bound
I

~ Arithmetic Intensity (Flop::Byte)

20

Roofline Example #1

= Typical machine balance is 5-10

flops per byte...
« 40-80 flops per double to exploit compute capability Peak Flop/s
« Artifact of technology and money o
* Unlikely to improve E‘
LL
Q@
®)
s
= Consider STREAM Triad... S
#pragma omp parallel for
for(i=0;1i<N;i++){
z[i] = x[i] + alpha*Y[i];
}
. _ 0.083
* 2flops per iteration Arithmetic Intensity (Flop:Byte)

« Transfer 24 bytes per iteration (read X|i], Y[i], write Z[i])
« Al =0.083 flops per byte == Memory bound

~
(l

21 cecee

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant

. . A
coefficient stencil...
« 7 flops Peak Flop/s
« 8 memory references (7 reads, 1 store) per point *
« Cache can filter all but 1 read and 1 write per point 3
« Al =0.44 flops per byte == memory bound, z . Gtlop/s < Al * DRAM GB/s
but 5x the flop rate 'cgs :
#pragma omp parallel for T :
for(k=1;k<dim+1;k++){ < | 7-point
for(j=1;j<dim+1;j++){ ! :
for(i=1;i<dim+1l;i++){ 1 Stencil
new[k][jI[i] = -6.0%o1d[k 1[j 1[i 1 |
w15 a0 = >
o] j 1+1
old[k J1[j-1]1[d | 0_.083 Q.44
old[k J[j+11[i Arithmetic Intensity (Flop:Byte)

old[k-11[7 1I[i
old[k+1][3 1I[1

-
(l

22 cecer

BERKELEY LAB

Hierarchical Roofline

= Real processors have multiple levels of
memaory
 Registers
« L1,L2, L3 cache
« MCDRAM/HBM (KNL/GPU device memory)
 DDR (main memory)
NVRAM (non-volatile memory)

= Applications can have locality in each
level
= Unique data movements imply unique Al’'s

= Moreover, each level will have a unique
bandwidth

— A
23 l::|>| |"'|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure a bandwidth Peak Flop/s

= Measure Al for each level of memory @
. o
« Although an loop nest may have multiple %
Al's and multiple bounds (flops, L1, L2, ... o
DRAM) .. -% DDR Bound
= DDR AI*"BW <
. ... performance is bound by the < MCDRAM AI'BW
minimum

= A
24 lﬁhl |'"|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...
= Measure a bandwidth . Peak Flop/s

= Measure Al for each level of memory @

* Although an loop nest may have multiple %
Al's and multiple bounds (flops, L1, L2, ... S
DRAM)... S

. ... performance is bound by the <
minimum DDR bottleneck

pulls performance
below MCDRAM
Roofline

etic Intensity (Flop:Byte)

= A
25 L

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure a bandwidth Peak Flop/s

= Measure Al for each level of memory @
* Although an loop nest may have multiple %
Al's and multiple bounds (flops, L1, L2, ... S MCDRAM bound
DRAM). . S oD e
. ... performance is bound by the <
minimum

= A
26 lﬁlhl |'"|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of

Rooflines... I
= Measure a bandwidth Peak Flop/s
= Measure Al for each level of memory @
. o
* Although an loop nest may have multiple %
Al's and multiple bounds (flops, L1, L2, ... S
DRAM)... g o
- ... performance is bound by the = S bottlenack pulls
minimum performance below
DDR Roofline
Arithmetic Intensity (FlopByte

— A
27 Y

BERKELEY LAB

| BERKELEY LAB) ENERGY

EEE

Roofline Model:

Modeling In-core Performance Effects

Data, Instruction, Thread-Level Parallelism...

= Modern CPUs use several techniques to increase per core Flop/s

Fused Multiply Add

« W=X'y+ZzisSgcommon
idiom in \ney” algebra

J shains the

muiply and add in a
single pipeline so that it
can complete FMA/cycle

=
b
rrrrrrr |" |

Vector Instructions

Many HPC codes apply
the same operation to a
vector of elements

Vendors provide vector
Instructions that apply
the same operation to 2,
4. 8, 16 elements...

x [0:7] *y [0:7] + z [0:7]

Vector FPUs complete 8
vector operations/cycle

29

Deep pipelines

The hardware for a FMA
IS substantial.

Breaking a single FMA
up into several smaller
operations and pipelining
them allows vendors to
increase GHz

Little’s Law applies...
need FP_Latency *

FP_bandwidth
Independent instructions

BERKELEY LAB

Data, Instruction, Thread-Level Parallelism...

= |f every instruction were an ADD

(instead of FMA), performance I
would dl‘op by 2X on KNL or 4x Peak Flop/s
on Haswell 2 Add-onlyfNo FMA)
[e)
= Similarly, if one failed to vectorize, P
performance would drop by < .
= Nd vectorization
another 8x on KNL and 4x on < O
H aswe | | Poor vectorization
pulls performance
» Lack of threading (or load Ahmetomensl . Reofine.

imbalance) will reduce

performance by another 64x on
................................ KNL

30

Superscalar vs. Instruction mix

= Define in-core ceilings based on

: : : 0
Instruction mix...
" e.qg. Haswell Peak Flop/s -

* 4-issue superscalar ?Zl 25% FP (75% int)
« Only 2 FP data paths ° 12% FP (88% int)
 Requires 50% of the instructions to be FP e

to get peak performance ;z“

Arithmetic Intensity (Flop:Byte)
3 o

BERKELEY LAB

Superscalar vs. Instruction mix

= Define in-core ceilings based on

: : : 0
Instruction mix...
= e.g. Haswell Peak Flop/s . 0o. Ep
* 4-issue superscalar ?Zl 50% FP (50% int)
« Only 2 FP data paths ° 25% FP (75% int)
 Requires 50% of the instructions to be FP e
to get peak performance ;:5
= e.g. KNL
* 2-issue superscalar Arithmetic Intensity (Flop:Byte)
« 2 FP data paths
* Requires 100% of the instructions to be
~___ FPtogetpeak periormance
32 o

BERKELEY LAB

Superscalar vs. instruction mix

= Define in-core ceilings based on

: : : 0
Instruction mix...
= e.g. Haswell Peak Flop/s . 0o. Ep
* 4-issue superscalar ?Zl 50% FP (50% int)
« Only 2 FP data paths ° 25% FP (75% int)
 Requires 50% of the instructions to be FP e
to get peak performance ;:5
= e.g. KNL
e 2-ISSue superscalar
« 2 FP data paths
* Requires 100% of the instructions to be
~___ FPtogetpeak periormance
33 o

BERKELEY LAB

Superscalar vs. instruction mix

= Define in-core ceilings based on

: : : 0
Instruction mix...
= e.g. Haswell Peak Flop/s
* 4-issue superscalar 3 .
- \ |
« Only 2 FP data paths ° & 25% FP (75% int)
 Requires 50% of the instructions to be FP e
to get peak performance ;:5
-FP instructi
= e.g. KNL can sap instruction
. issue bandwidth and
e 2-ISSue superscalar Arithmetic Intensity psgl g:vﬁ;;z?igce
« 2 FP data paths
* Requires 100% of the instructions to be
~___ FPtogetpeak periormance
34 o

BERKELEY LAB

Divides and other Slow FP instructions

= FP Divides (sqrt, rsqrt, ...) might
support only limited pipelining

= As such, their throughput is Peak Flop/s
substantially lower than FMA's

= |f divides constitute even if 3% of
the flop’s come from divides,
performance can be cut in half.

» Penalty varies substantially
between architectures and
generations (e.g. IVB, HSW,
KNL, ...)

6% VDIVPD

Attainable Flop/s

A divide in the inner
loop can easily cut
peak performance in
half

Arithmetic Intensity

35

| BERKELEY LAB

EEE

Roofline Model:

Modeling Cache Effects

rrrrrrr

Locality Walls

= Naively, we can bound Al using

: 1
only compulsory cache misses

Peak Flop/s

L

(OX

[

L

Q

O
= <
£ No vectorizajcZ
< 2
a
£
@)
O

Arithmetic Intensity (Flop:Byte)
Al = #Flop's
Compulsory Misses
37 eee

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using

: 1
only compulsory cache misses
= However, write allocate caches Peak Flop/s
can lower Al 2 ol
- &
Qo Q.O
s S g =
g No vectdrigajo
< R
ela
2|8
Z 18
Arithmetic Intensity (Flop:Byte)
Al = #Flop's
Compulsory Misses + Write Allocates
38 o

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using

: 1
only compulsory cache misses
= However, write allocate caches Peak Flop/s
can lower Al &) i
. . i)
= Cache capacity misses can have o 3
® £ Q —
a huge penalty E’ = No vectcrigatloé*
< —_..%—‘ <=E——§.
g £
g 7|3
Arithmetic Intensity (Flop:Byte)
Al = #Flop’s
Compulsory Misses + Write Allocates + Capacity Misses
39 o

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using
only compulsory cache misses

= However, write allocate caches Peak Flop/s
can lower Al o FMA

= Cache capacity misses can have
a huge penalty

» Compute bound became
memory bound

Attainable Flop/s

Al = #Flop’s
Compulsory Misses + Write Allocates + Capacity Misses

A

40

BERKELEY LAB

| BERKELEY LAB

EEE

Roofline Model:

General Strategy Guide

rrrrrrr

General Strategy Guide

= Broadly speaking, there are three

. . A
approaches to improving
perfOrmanCe: Peak Flop/s
g
L
L)
Z
Arithmetic Intensity (Flop:Byte)
42 Rl

BERKELEY LAB

General Strategy Guide

= Broadly speaking, there are three

. . 0
approaches to improving
perfOrmanCe: Peak Flop/s
= Maximize in-core performance g
(e.g. get compiler to vectorize) P
Z
Arithmetic Intensity (Flop:Byte)
43 woryf

BERKELEY LAB

General Strategy Guide

= Broadly speaking, there are three
approaches to improving
pe rformance: Peak Flop/s

= Maximize in-core performance
(e.g. get compiler to vectorize)

= Maximize memory bandwidth
(e.g. NUMA-aware allocation)

Attainable Flop/s

Arithmetic Intensity (Flop:Byte)

44

General Strategy Guide

= Broadly speaking, there are three

approaches to improving I

pe rformance: Peak Flop/s
= Maximize in-core performance g

(e.g. get compiler to vectorize) P
» Maximize memory bandwidth < <

(e.g. NUMA-aware allocation) < 2

. " &

= Minimize data movement M K

(increase Al) Arithmetic Intensity (Flop:Byte)

45

| BERKELEY LAB) ENERGY

EEE

Constructing a Roofline Model
requires answering some
questions...

Questions can overwhelm users...

Properties of the
target machine

Fundamental
properties of the
kernel constrained
by hardware

Properties of an
(Benchmarking) application’s execution

(Instrumentation)
(Theory)

47

~

| BERKELEY LAB O EiEREY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

We need tools...

Node Characterization?

Cori/ KNL

= “Marketing Numbers” can be

deceptive... o re

+ Pin BW vs. real bandwidth

« TurboMode / Underclock for AVX o s o | SUMmMItDev / 4GPUs

« compiler failings on high-Al loops. 046 6ELOP500 (V)
= LBL developed the Empirical

Roofline Toolkit (ERT)...

« Characterize CPU/GPU systems

 Peak Flop rates

« Bandwidths for each level of memory o

« MPI+OpenMP/CUDA == multiple GPUs

https://crd.Ibl.gov/departments/computer-science/PAR/research/roofline/

— A
49 ::hl |"'|

BERKELEY LAB

Instrumentation with Performance Counters?

= Characterizing applications with performance counters can be
problematic...

x Flop Counters can be broken/missing in production processors
x Vectorization/Masking can complicate counting Flop's

x Counting Loads and Stores doesn’t capture cache reuse while counting
cache misses doesn’t account for prefetchers.

x DRAM counters (Uncore PMU) might be accurate, but...
x are privileged and thus nominally inaccessible in user mode

x may need vendor (e.g. Cray) and center (e.g. NERSC) approved
OS/kernel changes

50

Forced to Cobble Together Tools...

= Use tools known/observed to work on NERSC’s -
Cori (KNL, HSW)... NERsC.

A s Qiw
- i -
Powering
WOME ASOUT SDIEMCEATNERSC SYSTEMS Qi Qi NEWSGPUBLCATIONS RGD EVENTS UMESTATUS TIMELINE
FOR USERS e

vory Since 1974

At MEASURING ARITHMETIC INTENSITY

 Used Intel SDE (Pin binary instrumentation +
emulation) to create software Flop counters

« Used Intel VTune performance tool (NERSC/Cray

rato (F/H). T sooicason note provides & methodokogy 4or determinng arifymetic rderaty Using iner's Software Deveicoment
Bmwiatar Toolkit [SOR) and YTene Ameiifier (VTene) 10k A tutoral on wsing SOF on Bciaon can be found hars, and a honal
00 wsng Viune can be found hare. This memod can a0 De Used 1o determing arthmete ety S use i the Aoofine
Performance Model

horcally, procesecs marscturers have peowided courters for FLOMS andior Bytes and profing oo 10 suppont e P8
calculaion. 5ome MOdem (IOCeSON sch & Inters iy Bridge (weed in Ecieon) and Haswsl fused in Cor Phase 1) do not

wiers for FLOPS. However, ¥ - e e g pont ™ " o el
mamory acoesses, and Vine can be weed ! data acomsses uncom (o#-chio DRMAM DIV
i rstrcton veceg partic ograen W, Caphures dynam e
ratrct i, Instruction categeny and xerwon roupIng Geveloped & methodoiogy Yo calculating FLOPY
With SOE. % genersl the Solowing uses e e] o
Ectucn and Con Prase |
rete provoes e by cachume races o vy soger
real apphcat pth SO and Vine that can use lge amounts of disk K580 oratied
few metes XAy e Vaoes ¢ ractatie a -

» Accurate measurement of Flop’s (HSW) and
DRAM data movement (HSW and KNL)

> Used by NESAP (NERSC KNL application e
readiness project) to characterize apps on Cori... | T [m—

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL's production computing division

CRD is LBL's Computational Research Division :}l b
NESAP is NERSC’s KNL application readiness project 51 | I
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute) SRS

Initial Roofline Analysis of NESAP Codes

MFDn

10000
1000
£ e==Roofline Model
m O 100 = wo/FMA
Ll _—
I G} i 1 RHS
- 10 A 4RHS
¢ 8RHS
N 1 T T 1
0.01 0.1 1 10
Arithmetic Intensity (FLOP/byte)
10000
1000
£ e==Roofline Model
J g 100 AN = *wo/FMA
(U) L
Z 0 L 1 RHS
\¢ A 4RHS
¢ 8RHS
1 T T 1
0.01 0.1 1 10

Arithmetic Intensity (FLOP/byte)

10000

1000

100

GFLOP/s

10

1

10000

1000

GFLOP/s
[
[=}
o

EMGeo

e==Roofline Model

= =wo/FMA

i Original
A SELL
& SB
=l SELL+SB
0.1 1 1'0 © nRHS+SELL+SB
Arithmetic Intensity (FLOP/byte)

e==Roofline Model

= =wo/FMA

i Original
A SELL
& SB
=l SELL+SB
0.1 1 1'0 © nRHS+SELL+SB
Arithmetic Intensity (FLOP/byte)

52

10000

1000

PICSAR

«e==Roofline Model

= *wo/FMA
A i Original
W A w/Tiling
| | ¢ w/Tiling+Vect
0.1 1 10

Arithmetic Intensity (FLOP/byte)

~

b
frreeeer |

BERKELEY LAB

Evaluation of LIKWID

= LIKWID provides easy to use wrappers - AR o S haractarization
for measuring performance counters... =0
512 EmDRAM ||
v Works on NERSC production systems _ ——Roofline
» 2
v Minimal overhead (<1%) g ”
. . . . = 128
v' Scalable in distributed memory (MPI-friendly) =
v' Fast, high-level characterization '§ o
x No detailed timing breakdown or optimization advice @
x Limited by quality of hardware performance counter 16
implementation (garbage in/garbage out) - .
» Useful tool that complements other S T
tools BEREEEEDRE
r T £ 3 o

https://github.com/RRZE-HPC/likwid)
53 o

BERKELEY LAB

* |ncludes Roofline Automation...
v Automatically instruments applications

(one dot per loop nest/function)

v CompUteS FLOPS and Al for each B o e g
funCthn (CARM) s ® 72 B @ O Start Survey Analysis |v| & @

Welcome | €000 X Start Survey Analysis
E] Start Trip Counts and FLOP Analysis o]
/ AVX-5 1 2 S u p po rt th at I n CO rpo rates m aS kS FILTER:E; Start Memory Access Patterns Analysis Threads v|| Loads an
mmary N Start Dependencies Analysis '
/ I t t d C h S] I t 1 - &‘P ‘ ® Su(r;:i:‘— Start Suitability Alnalysis . ‘ Use Single TthRoofs P
(4] erformance > ey - ¥ N
niegrate dacne simuiator o) pewy -) o e
N = N =) o O‘ @ t:’E‘“‘ifﬁ‘?,_’;?;'.} ’”3’
(hierarchical roofline / multiple Al’s) 4] .
0.14i
0.01- " - . : - : , -
. 0.001 0.01 0.1 1 10 100 1000 10000 1.0e+5 1
v Automatically benchmarks target system | setvnete e
(.y [Source ITopDown I Code Analytics | Assemnbly |9Recommendations & Why No Vectorization?
calculates ceilings)
Address | Line Assembly Total Time % Self Time
. |function) 0x4107d0 Block 1: 146029716
v Full integration with existing Advisor COOENER DI e 06
0x4107d4 492 sub $0x210, %rsp

capabilities
http.//www.nersc.gov/users/training/events/roofline-training-1182017-1192017

"Technology Preview, not in official product roadmap so far.

= A
5 4 rr/r-l>| L

BERKELEY LAB

Tools and Plati~=-=a for Roofline Modeling

scalable app-level
instrumentation
Intel Intel NVIDIA

Metric STREAM SDE Advisor NVProf
E Peak MFlops X X v/
%i’ y Use ERT to " § Use Advisor for
o benchmark X ~ loop-level
systems 7 mstrument_atlon
c and analysis on
= . X 4 Intel targets
o MIPS X V4 X
h DRAM BW X X 4 4
Cache BW X X V4 v/
Auto-Roofline X X V4 X
Intel CPUs v V4 v/ X
» IBM Power8 v X X X
E NVIDIAGPUs v/ X X /
5 AMD CPUs V4 X
* AMD GPUs X X X
ARM X X X

~
(l

55 cecee)f

BERKELEY LAB

~

A\ #%, U.S. DEPARTMENT OF
. BERKELEY LAB () ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Questions?

~

A\ #%, U.S. DEPARTMENT OF
. BERKELEY LAB () ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Backup

| BERKELEY LAB) ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY e

Complexity, Depth, ...

Why Use Performance Models or Tools?

= |dentify performance bottlenecks
= Motivate software optimizations

= Determine when we’re done optimizing

« Assess performance relative to machine capabilities
« Motivate need for algorithmic changes

= Predict performance on future machines / architectures

« Sets realistic expectations on performance for future procurements

« Used for HW/SW Co-Design to ensure future architectures are well-suited for the
computational needs of today’s applications.

— A
59 oo

BERKELEY LAB

Computational Complexity

" Assume run time Is correlated mamam e o l e e e
with the number of operations 2111 - s o (5=0;3<N; 3+

(e.g. FP ops)
= Users define parameterize their
algorithms, solvers, kernels

= Count the number of operations

DAX What are the [1] +i A[1;'][k] * BLk]1[j]1;
scaling |
constants?

as a function of those parameters Frrs: oiogh) in the number of Why did we
] . CG: O(N"33) in the number of d I‘t f d I
. DemonStrate run tlme 1S MG: O(N) in the number of ele epa rom iaea
correlated with those parameters N-body: O(N?) in the number o scaling?

/

S~
60 1:1:'>| |"'|

BERKELEY LAB

Data Movement Complexity

= Assume run time is correlated Operation | Flop’s Data
with the amount of data accessed DAXPY o) ON)
DGEMV O(N2) O(NZ)
(or moved) DGEMM O(N?) O(N2)
= Easy to calculate amount of data o
accessed... count array accesses MG
N-body Which is more

= Data moved is more complex as it
requires understanding cache
behavior...

« Compulsory! data movement (array
sizes) is a good initial guess...

... but needs refinement for the effects of
finite cache capacities

Hill et al, “Evaluating Associativity in CPU Caches”, IEEE 61 /\||$|
Trans. Comput., 19809.

BERKELEY LAB

expensive...

o Performing Flop’s, or \
Moving words from memory

N /

Machine Balance and Arithmetic Intensity

= Data movement and computation Operation | Flop’s pata A Al (ideal
can operate at different rates ;’(Q‘Exm OS;
= We define machine balance as DGEMM O(N)
the ratio of... FFTs O(logN)
5 _ Peak DP Flop/s o
alance =

Peak Bandwidth N-body

= ...and arithmetic intensity as the
ratio of...

Al

_ Flop’s Performed
Data Moved

62

Distributed Memory Performance Modeling

= |n distributed memory, one communicates by sending messages
between processors.

= Messaging time can be constrained by several components...

 Overhead (CPU time to send/receive a message)

« Latency (time message is in the network; can be hidden)

 Message throughput (rate at which one can send small messages... messages/second)
« Bandwidth (rate one can send large messages... GBytes/s)

= Bandwidths and latencies are further constrained by the interplay of
network architecture and contention

= Distributed memory versions of our algorithms can be differently
stressed by these components depending on N and P (#processors)

— A
63 :ml |'“|

BERKELEY LAB

Computational Depth

u Para”el maCh|neS InCur Operation Flop’s Data Al (i¢hal) Depth
substantial overheads on DAXPY 1 O() o) ot

_ _ DGEMV) (logN)
synchronization (shared memory), ocemm : O(logN)

point-to-point communication, FFTs
reductions, and broadcasts. ce

= We can classify algorithms by N-body
depth (max depth of the
algorithm’s dependency chain)

> If dependency chain crosses
process boundaries, we incur
substantial overheads.

64

~

| BERKELEY LAB O EiEREY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Modeling NUMA

NUMA Effects

= Cori's Haswell nodes are built
from 2 Xeon processors (sockets)

 Memory attached to each socket (fast) Peak Flop/s

* Interconnect that allows remote memory
access (slow == NUMA)

* Improper memory allocation can result in
more than a 2x performance penalty

Attainable Flop/s

CPUO = CPU1

cores 0-15 cores 16-31

~50GB/s ~50GB/s

DRAM| |DRAM

— A
66 rr/r—n\nl |"'|

BERKELEY LAB

| BERKELEY LAB) ENERGY

EE

Hierarchical Roofline vs.
Cache-Aware Roofline

...understanding different Roofline
formulations in Advisor

There are two Major Roofline Formulations:

= Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, ...)...

Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009
« Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
« Defines multiple bandwidth ceilings and multiple Al's per kernel

Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

= Cache-Aware Roofline

 llic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
 Defines multiple bandwidth ceilings, but uses a single Al (flop:L1 bytes)

« As one looses cache locality (capacity, conflict, ...) performance falls from one BW ceiling to a lower one at constant Al

= Why Does this matter?

. Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
« Cache-Aware Roofline model was integrated into production Intel Advisor

« Evaluation version of Hierarchical Roofline’ (cache simulator) has also been integrated into Intel Advisor

"Technology Preview, not in official product roadmap so far. ~

68 Rl

BERKELEY LAB

Hierarchical Roofline

"
b
rrrrrrr | I

Captures cache effects

Al is Flop:Bytes after being filtered by
lower cache levels

Multiple Arithmetic Intensities
(one per level of memory)

Al dependent on problem size
(capacity misses reduce Al)

Memory/Cache/Locality effects are
observed as decreased Al

Requires performance counters or
cache simulator to correctly measure Al

69

Cache-Aware Roofline

Captures cache effects

Al is Flop:Bytes as presented to the L1
cache (plus non-temporal stores)

Single Arithmetic Intensity

Al independent of problem size

Memory/Cache/Locality effects are
observed as decreased performance

Requires static analysis or binary
instrumentation to measure Al

BERKELEY LAB

Example: STREAM

= L1 AlI... #pragma omp parallel for
° 2ﬂ0ps 'FOI"('I=O;'I<N;'I++){
2 x 8B load (old) }

1 x 8B store (new)

z[1] = X[1] + alpha*Y[1];

= 0.08 flops per byte
= No cache reuse...

lteration i doesn’t touch any data associated with
iteration i+delta for any delta.

= ... leads to a DRAM Al equal to
the L1 Al

— A
70 Y

BERKELEY LAB

Example: STREAM

Hierarchical Roofline

,T

| Peak Flop/s

Performgnce IS bound to

the minimum of the two
v

Intg{rcepts. .

Al , *L1 GB/s

Alpram ¥ DRAM GB/s

Attainable Flop/s

«— Multiple Al’s....

: 1) Flop:DRAM bytes

. 2) Flop:L1 bytes (same)

' >
0.083

Arithmetic Intensity (Flop:Byte)

Cache-Aware Roofline

Attainable Flop/s

,T

| Peak Flop/s

Observed performance
IS gorrelated with DRAM
bandwidth

—— Single Al based on flop:L1 bytes

' >
0.083

Arithmetic Intensity (Flop:Byte)

~

b
rrrrrrr | |

BERKELEY LAB

Example: 7-point Stencil (Small Problem)

o |_1 Al #pragma omp parallel for

for(k=1; k<dim+1;k++){

* T7flops for(j=1;j<dim+1;j++){

7 x 8B load (old) for(i=1;i<dim+1;i++){
new[k][J][1] = -6.0%old[k J[J 1[1]
1 x 8B store (new) + old[k 103 J[i-1]
= 0.11 flops per byte old[k 1[j 1[i+1]
some compilers may do register shuffles to reduce the old[k J[j-11[1]
number of loads. old[k J[J+1][1]
old[k-1]1[J 1[1]

= Moderate cache reuse... old[k+11[3 1[i 1;

old[ijk] is reused on subsequent iterations of i,j,k
old[ijk-1] is reused on subsequent iterations of i.
old[ijk-jStride] is reused on subsequent iterations of |.
old[ijk-kStride] is reused on subsequent iterations of k.

= ... leads to DRAM Al larger than
the L1 Al

— A
72 Y

BERKELEY LAB

Example: 7-point Stencil (Small Problem)
Hierarchical Roofline Cache-Aware Roofline

! | Peak Flop/s Peak Flop/s

2] : ; 2]
a ! ! a
R | : O
e , e
Q : ! Q
'czu ! ' Performance bound is 'czu
© : | sthe minimum of the two ©
< |/ WL <

: Multiple Al’s....

«— 1) flop:DRAM ~ 0.44

& ' 2) flop:L1 ~0.11
0.11 0.44 g 0.11 g
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

— A
- Y

BERKELEY LAB

Example: 7-point Stencil (Small Problem)

Hierarchical Roofline Cache-Aware Roofline
A A

Peak Flop/s Peak Flop/s

ObsewedAnce

is betwéen L1 and DRAM lines
some cache locality)

Fjerformance bound is
the minimum of the two

Attainable Flop/s
Attainable Flop/s

: Multiple Al’s....
“— 1) flop:DRAM ~ 0.44
— 2) flop:L1 ~ 0.11

0.11 0.44
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

>

— A
74 oo

BERKELEY LAB

Example: 7-point Stencil (Large Problem)

Hierarchical Roofline Cache-Aware Roofline
A A

Peak Flop/s Peak Flop/s

ObsewedAnce

is closef to DRAM line
y .
less cache locality)

Capacity misses reduce
DRAM Al and performance

D Eg;\ Multiple Al's. ...

«— 1) flop:DRAM ~ 0.20
2) flop:L1~0.11

' >
0.11 0.20

Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

Attainable Flop/s
Attainable Flop/s

— A
75 l::|>| |"'|

BERKELEY LAB

Example: 7-point Stencil (Observed Perf.)

Hierarchical Roofline Cache-Aware Roofline
A A

Peak Flop/s Peak Flop/s

ObsewedAnce

is closef to DRAM line
y .
less cache locality)

Actual observed performance

£ . o is tied to the bottlenecked resource
| and can be well below a cache

i Roofline (e.g. L1).

Attainable Flop/s
Attainable Flop/s

0.11 0.20

— A
76 oo

BERKELEY LAB

Example: 7-point Stencil (Observed Perf.)

Hierarchical Roofline Cache-Aware Roofline
A A

| Peak Flop/s | Peak Flop/s
3 I 3 I
o) [s) I
TH : ™ I
2 | 2 Obsewe/d performance
© : © is closef to DRAM line
T . Actual observed performance © 1&ss cache locality)
< ./ is tied to the bottlenecked resource <

(_______
. and can be well below a cache
o Roofline (e.g. L1). '« Single Al based on flop:L1 bytes
O , > >
0.11 0.20
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

— A
77 ::hl |"'|

BERKELEY LAB

