
Performance Modeling
and Analysis

Samuel Williams
Computational Research Division
Lawrence Berkeley National Lab

SWWilliams@lbl.gov

§ This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

§ This material is based upon work supported by the DOE RAPIDS SciDAC Institute.
§ This research used resources of the National Energy Research Scientific Computing Center (NERSC),

which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

§ This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

§ Tuomas Koskela for his creation of the Roofline Advisor demo slides

Acknowledgements

Introduction to
Performance

Modeling

Why Use Performance Models or Tools?
§ Identify performance bottlenecks

§ Motivate software optimizations

§ Determine when we’re done optimizing
• Assess performance relative to machine capabilities

• Motivate need for algorithmic changes

§ Predict performance on future machines / architectures

• Sets realistic expectations on performance for future procurements

• Used for HW/SW Co-Design to ensure future architectures are well-suited for the

computational needs of today’s applications.

4

Computational Complexity
§ Assume run time is correlated

with the number of operations
(e.g. FP ops)

§ Users define parameterize their
algorithms, solvers, kernels

§ Count the number of operations
as a function of those parameters

§ Demonstrate run time is
correlated with those parameters

5

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = alpha*X[i] + Y[i];
}

DAXPY: O(N) complexity where
N is the number of elements

#pragma omp parallel for
for(i=0;i<N;i++){
for(j=0;j<N;j++){

double Cij=0;
for(k=0;k<N;k++){

Cij += A[i][k] * B[k][j];
}
C[i][j] = sum;

}}

DGEMM: O(N3) complexity
where N is the number of rows
(equations)

FFTs: O(NlogN) in the number of elements

CG: O(N1.33) in the number of elements (equations)

MG: O(N) in the number of elements (equations)

N-body: O(N2) in the number of particles (per time step)

?What are the
scaling

constants?

?Why did we
depart from ideal

scaling?

Data Movement Complexity
§ Assume run time is correlated

with the amount of data accessed
(or moved)

§ Easy to calculate amount of data
accessed… count array accesses

6

DAXPY

DGEMV

DGEMM

FFTs

CG
MG

N-body

Operation
O(N)

O(N2)

O(N3)

O(NlogN)

O(N1.33)
O(N)

O(N2)

Flop’s
O(N)

O(N2)

O(N2)

O(N)

O(N1.33)
O(N)

O(N)

Data

1Hill et al, “Evaluating Associativity in CPU Caches”, IEEE
Trans. Comput., 1989.

§ Data moved is more complex as it
requires understanding cache
behavior…
• Compulsory1 data movement (array

sizes) is a good initial guess…
• … but needs refinement for the effects of

finite cache capacities

?Which is more
expensive…

Performing Flop’s, or
Moving words from memory

Machine Balance and Arithmetic Intensity
§ Data movement and computation

can operate at different rates

7

DAXPY

DGEMV

DGEMM

FFTs

CG

MG

N-body

Operation
O(N)

O(N2)

O(N3)

O(NlogN)

O(N1.33)

O(N)

O(N2)

Flop’s
O(N)

O(N2)

O(N2)

O(N)

O(N1.33)

O(N)

O(N)

Data
O(1)

O(1)

O(N)

O(logN)

O(1)

O(1)

O(N)

AI (ideal)

Peak DP Flop/s
Peak BandwidthBalance =

§ We define machine balance as
the ratio of…

Flop’s Performed
Data MovedAI =

§ …and arithmetic intensity as the
ratio of…

!Kernels with AI

greater than machine

balance are ultim
ately

compute lim
ited

Computational Depth
§ Sequential CPUs incur latencies

and overheads on memory
discontinuities and function calls

§ Parallel machines incur similar
overheads on synchronization
(shared memory), point-to-point
communication, reductions, and
broadcasts.

§ Thus, we can classify algorithms
by depth (max depth of the
algorithm’s dependency chain)

8

DAXPY

DGEMV

DGEMM

FFTs

CG
MG

N-body

Operation
O(N)

O(N2)

O(N3)

O(NlogN)

O(N1.33)
O(N)

O(N2)

Flop’s
O(N)

O(N2)

O(N2)

O(N)

O(N1.33)
O(N)

O(N)

Data
O(1)

O(1)

O(N)

O(logN)

O(1)
O(1)

O(N)

AI (ideal)
O(1)

O(logN)

O(logN)

O(logN)

O(N0.33)
O(logN)

O(logN)

Depth

!Overheads can

dominate at high

concurrency or small

problems

Distributed Memory Performance Modeling
§ In distributed memory, one communicates by sending messages

between processors.

9

§ Messaging time can be constrained by several components…
• Overhead (CPU time to send/receive a message)
• Latency (time message is in the network; can be hidden)
• Message throughput (rate at which one can send small messages… messages/second)
• Bandwidth (rate one can send large messages… GBytes/s)

§ Distributed memory versions of our algorithms can be differently
stressed by these components depending on N and P (#processors)

§ Bandwidths and latencies are further constrained by the interplay of
network architecture and contention

Performance Models

10

#FP operations

Cache data movement

DRAM data movement

PCIe data movement

Depth

MPI Message Size

MPI Send:Wait ratio

#MPI Wait’s

Flop/s

Cache GB/s

DRAM GB/s

PCIe bandwidth

OMP Overhead

Network Bandwidth

Network Gap

Network Latency

§ Many different components can contribute to kernel run time.

§ Some are characteristics of the application, some are characteristics of

the machine, and some are both (memory access pattern + caches).

Performance Models

11

§ Can’t think about all these terms all the time for every application…

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Computational
Complexity

Performance Models

12

§ Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Roofline
Model

Williams et al, "Roofline: An Insightful Visual Performance Model For Multicore Architectures",
CACM, 2009.

Performance Models

13

§ Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogP

Culler, et al, "LogP: a practical model of parallel computation", CACM, 1996.

Performance Models

14

§ Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogGP

Alexandrov, et al, "LogGP: incorporating long messages into the LogP model - one step closer
towards a realistic model for parallel computation", SPAA, 1995.

Performance Models

15

§ Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogCA

Bin Altaf et al, "LogCA: A High-Level Performance Model for Hardware Accelerators", ISCA,
2017.

!Think about which

model to use

Introduction to the
Roofline Model

Performance Models / Simulators
§ Historically, many performance models and simulators tracked latencies

to predict performance (i.e. counting cycles)

§ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)
• HW stream prefetching (hardware speculatively loads data)
• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

§ Effective latency hiding has resulted in a shift from a latency-limited
computing regime to a throughput-limited computing regime

17

Roofline Model
§ Roofline Model is a throughput-

oriented performance model…
• Tracks rates not times
• Augmented with Little’s Law

(concurrency = latency*bandwidth)
• Independent of ISA and architecture (applies

to CPUs, GPUs, Google TPUs1, etc…)

181Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

(DRAM) Roofline
§ One could hope to always attain

peak performance (Flop/s)
§ However, finite locality (reuse) and

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

19

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

#FP ops / Peak GFlop/s
Time = max

#Bytes / Peak GB/s

(DRAM) Roofline
§ One could hope to always attain

peak performance (Flop/s)
§ However, finite locality (reuse) and

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

20

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

1 / Peak GFlop/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max

(DRAM) Roofline
§ One could hope to always attain

peak performance (Flop/s)
§ However, finite locality (reuse) and

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

21

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFlop/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min

(DRAM) Roofline
§ One could hope to always attain

peak performance (Flop/s)
§ However, finite locality (reuse) and

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

22

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFlop/s
GFlop/s = min

AI * Peak GB/s
Note, Arithmetic Intensity (AI) = Flops / Bytes (as presented to DRAM)

(DRAM) Roofline
§ Plot Roofline bound using

Arithmetic Intensity as the x-axis
§ Log-log scale makes it easy to

doodle, extrapolate performance
along Moore’s Law, etc…

§ Kernels with AI less than machine
balance are ultimately DRAM
bound (we’ll refine this later…)

23

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

DRAM G
B/s

Arithmetic Intensity (Flop:Byte)

DRAM-bound Compute-bound

Roofline Example #1
§ Typical machine balance is 5-10

flops per byte…
• 40-80 flops per double to exploit compute capability
• Artifact of technology and money
• Unlikely to improve

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.083 flops per byte == Memory bound

24

At
ta

in
ab

le
 F

lo
p/

s

DRAM G
B/s

Arithmetic Intensity (Flop:Byte)

TRIAD

Gflop/s ≤ AI * DRAM GB/s

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

0.083

Peak Flop/s

Roofline Example #2
§ Conversely, 7-point constant

coefficient stencil…
• 7 flops

• 8 memory references (7 reads, 1 store) per point

• Cache can filter all but 1 read and 1 write per point

• AI = 0.44 flops per byte == memory bound,
but 5x the flop rate

25

A
tta

in
ab

le
 F

lo
p/

s

DRAM G
B/s

7-point
Stencil

Gflop/s ≤ AI * DRAM GB/s

TRIAD

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
 new[ijk] = -6.0*old[ijk]

 + old[ijk-1]
 + old[ijk+1]
 + old[ijk-jStride]
 + old[ijk+jStride]
 + old[ijk-kStride]
 + old[ijk+kStride];

}}}

Arithmetic Intensity (Flop:Byte)
0.083 0.44

Peak Flop/s

Hierarchical Roofline
§ Real processors have multiple levels of

memory
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications can have locality in each
level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have a unique

bandwidth

26

DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline
§ Construct superposition of

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the
minimum

27

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/sMCDRAM ca
ch

e G
B/s

Arithmetic Intensity (Flop:Byte)

L2
 G

B/s

Peak Flop/s

Hierarchical Roofline
§ Construct superposition of

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the
minimum

28

At
ta

in
ab

le
 F

lo
p/

s

MCDRAM ca
ch

e G
B/s

Arithmetic Intensity (Flop:Byte)

L2
 G

B/s

DDR bottleneck
pulls performance
below MCDRAM

Roofline

Peak Flop/s

DDR G
B/sMCDRAM ca
ch

e G
B/s

MCDRAM bound
MCDRAM AI*BW <

DDR AI*BW

Hierarchical Roofline
§ Construct superposition of

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the
minimum

29

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

L2
 G

B/s

Peak Flop/s

DDR G
B/s

Hierarchical Roofline
§ Construct superposition of

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the
minimum

30

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

MCDRAM
bottleneck pulls

performance below
DDR Roofline

NUMA Effects
§ Cori’s Haswell nodes are built

from 2 Xeon processors (sockets)
• Memory attached to each socket (fast)
• Interconnect that allows remote memory

access (slow == NUMA)
• Improper memory allocation can result in

more than a 2x performance penalty

31

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

DDR G
B/s

(N
UMA)

Arithmetic Intensity (Flop:Byte)

CPU0
cores 0-15

DRAM
~50GB/s

CPU1
cores 16-31

DRAM
~50GB/s

Modeling In-Core
Performance Effects

Data, Instruction, Thread-Level Parallelism…
§ Modern CPUs use several techniques to increase per core Flop/s

33

Fused Multiply Add
• w = x*y + z is a common

idiom in linear algebra
• Rather than having

separate multiple and
add instructions,
processors can use a
fused multiply add (FMA)

• The FPU chains the
multiply and add in a
single pipeline so that it
can complete FMA/cycle

Vector Instructions
• Many HPC codes apply

the same operation to a
vector of elements

• Vendors provide vector
instructions that apply
the same operation to 2,
4, 8, 16 elements…
x [0:7] *y [0:7] + z [0:7]

• Vector FPUs complete 8
vector operations/cycle

Deep pipelines
• The hardware for a FMA

is substantial.
• Breaking a single FMA

up into several smaller
operations and pipelining
them allows vendors to
increase GHz

• Little’s Law applies…
need FP_Latency *
FP_bandwidth
independent instructions

!Resurgence…

Tensor Cores,

QFMA, etc…

Data, Instruction, Thread-Level Parallelism…
§ If every instruction were an ADD

(instead of FMA), performance
would drop by 2x on KNL or 4x
on Haswell

§ Similarly, if one had no vector
instructions, performance would
drop by another 8x on KNL and
4x on Haswell

§ FP Divides can be even worse.
§ Lack of threading will reduce

performance by 64x on KNL.

34

Peak Flop/s

Add-only (No FMA)

No vectorization

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

Poor vectorization
pulls performance

below DDR
Roofline

Superscalar vs. instruction mix
§ Define in-core ceilings based on

instruction mix…

35

Peak Flop/s

25% FP

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

12% FP

≥50% FP§ e.g. Haswell
• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP
to get peak performance

Superscalar vs. instruction mix
§ Define in-core ceilings based on

instruction mix…

36

Peak Flop/s

50% FP

A
tt
a
in

a
b
le

 F
lo

p
/s

D
D
R
 G

B/s

Arithmetic Intensity (Flop:Byte)

25% FP

100% FP§ e.g. Haswell
• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP
to get peak performance

§ e.g. KNL
• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be
FP to get peak performance

Superscalar vs. instruction mix
§ Define in-core ceilings based on

instruction mix…

37

Peak Flop/s

50% FP

A
tt
a
in

a
b
le

 F
lo

p
/s

D
D
R
 G

B/s

Arithmetic Intensity (Flop:Byte)

25% FP

100% FP§ e.g. Haswell
• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP
to get peak performance

§ e.g. KNL
• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be
FP to get peak performance

non-FP instructions
can sap instruction

issue bandwidth and
pull performance
below Roofline

Modeling Cache Effects

Locality Walls
§ Naively, we can bound AI using

only compulsory cache misses

39

Peak Flop/s

No FMA

No vectorization

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
om

pu
ls

or
y

AI

#Flop’s
Compulsory MissesAI =

Locality Walls
§ Naively, we can bound AI using

only compulsory cache misses

§ However, write allocate caches
can lower AI

40

Peak Flop/s

No FMA

No vectorization

A
tt
a
in

a
b
le

 F
lo

p
/s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
o
m

p
u
ls

o
ry

 A
I

#Flop’s
Compulsory Misses + Write Allocates

AI =

+
W

ri
te

 A
llo

ca
te

Locality Walls
§ Naively, we can bound AI using

only compulsory cache misses
§ However, write allocate caches

can lower AI
§ Cache capacity misses can have

a huge penalty

41

Peak Flop/s

No FMA

No vectorization

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
om

pu
ls

or
y

A
I

#Flop’s
Compulsory Misses + Write Allocates + Capacity MissesAI =

+W
rit

e
A

llo
ca

te

+C
ap

ac
ity

 M
is

se
s

Locality Walls
§ Naively, we can bound AI using

only compulsory cache misses
§ However, write allocate caches

can lower AI
§ Cache capacity misses can have

a huge penalty
Ø Compute bound became

memory bound

42

Peak Flop/s

No FMA

No vectorization

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
om

pu
ls

or
y

A
I

#Flop’s
Compulsory Misses + Write Allocates + Capacity MissesAI =

+W
rit

e
A

llo
ca

te

+C
ap

ac
ity

 M
is

se
s

!Know the theoretical

bounds on your AI.

General Strategy Guide

General Strategy Guide
§ Broadly speaking, there are three

approaches to improving
performance:

44

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

General Strategy Guide
§ Broadly speaking, there are three

approaches to improving
performance:

§ Maximize in-core performance
(e.g. get compiler to vectorize)

45

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

General Strategy Guide
§ Broadly speaking, there are three

approaches to improving
performance:

§ Maximize in-core performance
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth
(e.g. NUMA-aware allocation)

46

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

General Strategy Guide
§ Broadly speaking, there are three

approaches to improving
performance:

§ Maximize in-core performance
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth
(e.g. NUMA-aware allocation)

§ Minimize data movement
(increase AI)

47

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
om

pu
ls

or
y

AI

C
ur

re
nt

 A
I

Constructing a Roofline Model
requires answering some

questions…

Questions can overwhelm users…

49

?What is my
machine’s

peak flop/s?

?What is my
machine’s
DDR GB/s?

L2 GB/s?

?How much
data did my

kernel actually
move?

?What is my kernel’s
compulsory AI?

(communication lower
bounds)

?How many
flop’s did my

kernel actually
do?

?How important is
vectorization or

FMA on my
machine?

?Did my kernel
vectorize?

?Can my kernel
ever be

vectorized??How much did
that divide

hurt?

Properties of the
target machine

(Benchmarking)

Properties of an
application’s execution

(Instrumentation)

Fundamental
properties of the

kernel constrained
by hardware

(Theory)

To answer these
questions, we need

tools…

Node Characterization?

§ “Marketing Numbers” can be
deceptive…
• Pin BW vs. real bandwidth

• TurboMode / Underclock for AVX

• compiler failings on high-AI loops.

51
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

§ LBL developed the Empirical
Roofline Toolkit (ERT)…
• Characterize CPU/GPU systems

• Peak Flop rates

• Bandwidths for each level of memory

• MPI+OpenMP/CUDA == multiple GPUs

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.quadflat.2t/Run.002)

2450.0 GFLOPs/sec (Maximum)

L1
 - 6

44
2.9

 G
B/s

L2
 - 1

96
5.4

 G
B/s

DRAM - 4
12

.9
GB/s

Cori / KNL

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.summitdev.ccs.ornl.gov.02.MPI4/Run.001)

17904.6 GFLOPs/sec (Maximum)

L1
 - 6

50
6.5

 G
B/s

DRAM - 1
92

9.7
 G

B/s

SummitDev / 4GPUs

Instrumentation with Performance Counters?
§ Characterizing applications with performance counters can be

problematic…
x Flop Counters can be broken/missing in production processors

x Vectorization/Masking can complicate counting Flop’s

x Counting Loads and Stores doesn’t capture cache reuse while counting

cache misses doesn’t account for prefetchers.

x DRAM counters (Uncore PMU) might be accurate, but…

x are privileged and thus nominally inaccessible in user mode

x may need vendor (e.g. Cray) and center (e.g. NERSC) approved

OS/kernel changes

52

Forced to Cobble Together Tools…
§ Use tools known/observed to work on NERSC’s

Cori (KNL, HSW)…
• Used Intel SDE (Pin binary instrumentation +

emulation) to create software Flop counters
• Used Intel VTune performance tool (NERSC/Cray

approved) to access uncore counters

Ø Accurate measurement of Flop’s (HSW) and
DRAM data movement (HSW and KNL)

Ø Used by NESAP (NERSC KNL application
readiness project) to characterize apps on Cori…

53

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
NERSC is LBL’s production computing division
CRD is LBL’s Computational Research Division
NESAP is NERSC’s KNL application readiness project
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)

Initial Roofline Analysis of NESAP Codes

54

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

w/Tiling"

w/Tiling+Vect"

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

w/Tiling"

w/Tiling+Vect"
1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

SELL"

SB"

SELL+SB"

nRHS+SELL+SB"

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

SELL"

SB"

SELL+SB"

nRHS+SELL+SB"

1"

10"

100"

1000"

10000"

0.01" 0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

1"RHS"

4"RHS"

8"RHS"

1"

10"

100"

1000"

10000"

0.01" 0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

1"RHS"

4"RHS"

8"RHS"2P
 H

SW
K

N
L

MFDn PICSAREMGeo

DRAM-only Roofline

was insufficient for

PICSAR

Evaluation of LIKWID
§ LIKWID provides easy to use wrappers

for measuring performance counters…
ü Works on NERSC production systems
ü Minimal overhead (<1%)

ü Scalable in distributed memory (MPI-friendly)

ü Fast, high-level characterization

x No detailed timing breakdown or optimization advice
x Limited by quality of hardware performance counter

implementation (garbage in/garbage out)

Ø Useful tool that complements other
tools

55

8

16

32

64

128

256

512

1024

H
P

G
M

G
 (

3
2

P
x1

T
)

H
P

G
M

G
 (

4
P

x8
T

)

C
o

m
b

u
st

o
r (

3
2

P
x1

T
)

C
o

m
b

u
st

o
r (

4
P

x8
T

)

M
F

IX
 (

3
2

P
x1

T
)

N
yx

 (
3

2
P

x1
T

)

N
yx

 (
4

P
x8

T
)

P
e

le
L

M
 (3

2
P

x1
T

)

W
a

rp
X

 (
3

2
P

x1
T

)

W
a

rp
X

 (
4

P
x8

T
)

B
a
n
d
w

id
th

(G
B

/s
)

AMReX Application Characterization
(2Px16c HSW == Cori Phase 1)

L2
L3
DRAM
Roofline

https://github.com/RRZE-HPC/likwid

Need an integrated solution…

56

§ LIKWID was…
ü fast and easy to use
x Suffered from the same limitations as VTune/SDE

§ ERT…
ü Characterized flops, and bandwidths (cache, DRAM)
ü Interoperable with MPI, OpenMP, and CUDA
x Required users to manually parse/incorporate the output

§ Having to compose VTune, SDE, and plotting tools…
ü worked correctly and benefited NESAP’s application readiness
x forced users to learn/run multiple tools and manually parse/graph the output
x forced users to instrument routines of interest in their application
x lacked integration with compiler/debugger/disassembly

Intel Advisor
§ Includes Roofline Automation…

ü Automatically instruments applications
(one dot per loop nest/function)

ü Computes FLOPS and AI for each
function (CARM)

ü AVX-512 support that incorporates masks
ü Integrated Cache Simulator1

(hierarchical roofline / multiple AI’s)
ü Automatically benchmarks target system

(calculates ceilings)
ü Full integration with existing Advisor

capabilities

57

Memory-bound, invest into
cache blocking etc

Compute bound: invest
into SIMD,..

1Technology Preview, not in official product roadmap so far.

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

Hierarchical Roofline vs.
Cache-Aware Roofline

…understanding different Roofline
formulations in Advisor

There are two Major Roofline Formulations:
§ Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, …)…

• Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009
• Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
• Defines multiple bandwidth ceilings and multiple AI’s per kernel

• Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

§ Cache-Aware Roofline
• Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
• Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes)

• As one looses cache locality (capacity, conflict, …) performance falls from one BW ceiling to a lower one at constant AI

59

§ Why Does this matter?
• Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
• Cache-Aware Roofline model was integrated into production Intel Advisor

• Evaluation version of Hierarchical Roofline1 (cache simulator) has also been integrated into Intel Advisor

1Technology Preview, not in official product roadmap so far.

60

Cache-Aware RooflineHierarchical Roofline
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size
(capacity misses reduce AI)

§ AI is Flop:Bytes as presented to the L1
cache (plus non-temporal stores)

§ AI is Flop:Bytes after being filtered by
lower cache levels

§ Memory/Cache/Locality effects are
observed as decreased performance

§ Memory/Cache/Locality effects are
observed as decreased AI

§ Requires static analysis or binary
instrumentation to measure AI

§ Requires performance counters or
cache simulator to correctly measure AI

Example: STREAM

61

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ L1 AI…
• 2 flops
• 2 x 8B load (old)
• 1 x 8B store (new)
• = 0.08 flops per byte

§ No cache reuse…
• Iteration i doesn’t touch any data associated with

iteration i+delta for any delta.

§ … leads to a DRAM AI equal to
the L1 AI

Example: STREAM

62

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

DRAM G
B/s

A
tta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)
0.083

L1
 G

B/s

Multiple AI’s….
1) Flop:DRAM bytes
2) Flop:L1 bytes (same)

Peak Flop/s

DRAM G
B/s

A
tta

in
ab

le
 F

lo
p/

s

0.083
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Single AI based on flop:L1 bytes

Observed performance
is correlated with DRAM
bandwidth

Performance is bound to
the minimum of the two
Intercepts…

AIL1 * L1 GB/s
AIDRAM * DRAM GB/s

Example: 7-point Stencil (Small Problem)

63

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
 new[ijk] = -6.0*old[ijk]

 + old[ijk-1]
 + old[ijk+1]
 + old[ijk-jStride]
 + old[ijk+jStride]
 + old[ijk-kStride]
 + old[ijk+kStride];

}}}

§ L1 AI…
• 7 flops
• 7 x 8B load (old)
• 1 x 8B store (new)
• = 0.11 flops per byte
• some compilers may do register shuffles to reduce the

number of loads.

§ Moderate cache reuse…
• old[ijk] is reused on subsequent iterations of i,j,k
• old[ijk-1] is reused on subsequent iterations of i.
• old[ijk-jStride] is reused on subsequent iterations of j.
• old[ijk-kStride] is reused on subsequent iterations of k.

§ … leads to DRAM AI larger than
the L1 AI

Example: 7-point Stencil (Small Problem)

64

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.44

L1
 G

B/s

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Multiple AI’s….
1) flop:DRAM ~ 0.44
2) flop:L1 ~ 0.11

Performance bound is
the minimum of the two

Example: 7-point Stencil (Small Problem)

65

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.44

L1
 G

B/s

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Single AI based on flop:L1 bytes
Multiple AI’s….
1) flop:DRAM ~ 0.44
2) flop:L1 ~ 0.11

Observed performance
is between L1 and DRAM lines
(== some cache locality)

Performance bound is
the minimum of the two

Example: 7-point Stencil (Large Problem)

66

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

DRAM G
B/s

A
tta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.20

L1
 G

B/s

Peak Flop/s

DRAM G
B/s

A
tta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Single AI based on flop:L1 bytes

Multiple AI’s….
1) flop:DRAM ~ 0.20
2) flop:L1 ~ 0.11

Capacity misses reduce
DRAM AI and performance

Observed performance
is closer to DRAM line
(== less cache locality)

Example: 7-point Stencil (Observed Perf.)

67

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.20

L1
 G

B/s

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Single AI based on flop:L1 bytes

Actual observed performance
is tied to the bottlenecked resource
and can be well below a cache
Roofline (e.g. L1).

Observed performance
is closer to DRAM line
(== less cache locality)

Example: 7-point Stencil (Observed Perf.)

68

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.20

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)
0.11

L1
 G

B/s

Single AI based on flop:L1 bytes

Actual observed performance
is tied to the bottlenecked resource
and can be well below a cache
Roofline (e.g. L1).

Observed performance
is closer to DRAM line
(== less cache locality)

DRAM G
B/s

Example of Roofline
in Practice

Sparse Matrix Vector Multiplication
• What’s a Sparse Matrix ?

• Most entries are 0.0

• Performance advantage in only storing/operating on the nonzeros

• Requires significant meta data to reconstruct the matrix structure

• What’s SpMV ?
• Evaluate y=Ax where A is a sparse matrix, x & y are dense vectors

• Challenges
• Very low arithmetic intensity (often <0.166 flops/byte)
• Difficult to exploit ILP (bad for pipelined or superscalar),

• Difficult to exploit DLP (bad for SIMD)

70

(a)
algebra conceptualization

(c)
CSR reference code

for (r=0; r<A.rows; r++) {
double y0 = 0.0;
for (i=A.rowStart[r]; i<A.rowStart[r+1]; i++){

y0 += A.val[i] * x[A.col[i]];
}
y[r] = y0;

}

A x y

(b)
CSR data structure

A.val[]

A.rowStart[]

...

...

A.col[]
...

Roofline model for SpMV
• Double precision roofline models
• In-core optimizations 1..i
• DRAM optimizations 1..j

• FMA is inherent in SpMV (place
at bottom)

71

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

w/out SIMD

peak DP

w/out ILP

w/out FMA

w/ou
t N

UMA
ba

nk
 co

nfl
ict

s

25% FP

peak DP

12% FP

w/ou
t S

W
 pr

efe
tch

w/ou
t N

UMA

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

w/ou
t S

W
 pr

efe
tch

w/ou
t N

UMA

IBM QS20
Cell Blade

Opteron 2356
(Barcelona)

Intel Xeon E5345
(Clovertown)

Sun T2+ T5140
(Victoria Falls)

da
tas

et
da

tas
et

fits
 in

 sn
oo

p f
ilte

r

GFlopsi,j(AI) = min InCoreGFlopsi
StreamBWj * AI

Roofline model for SpMV
(overlay arithmetic intensity)

• Two unit stride streams
• Inherent FMA
• No ILP
• No DLP
• FP is 12-25%
• Naïve compulsory flop:byte <

0.166

72

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

w/out SIMD

peak DP

w/out ILP

w/out FMA

w/ou
t N

UMA
ba

nk
 co

nfl
ict

s

25% FP

peak DP

12% FP

w/ou
t S

W pr
efe

tch

w/ou
t N

UMA

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

w/ou
t S

W pr
efe

tch

w/ou
t N

UMA

No naïve SPE
implementation

IBM QS20
Cell Blade

Opteron 2356
(Barcelona)

Intel Xeon E5345
(Clovertown)

Sun T2+ T5140
(Victoria Falls)

da
tas

et
da

tas
et

fits
 in

 sn
oo

p f
ilte

r

Roofline model for SpMV
(out-of-the-box parallel)

• Two unit stride streams
• Inherent FMA
• No ILP
• No DLP
• FP is 12-25%
• Naïve compulsory flop:byte <

0.166
• For simplicity: dense matrix in

sparse format

73

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

w/out SIMD

peak DP

w/out ILP

w/out FMA

w/ou
t N

UMA
ba

nk
 co

nfl
ict

s

25% FP

peak DP

12% FP

w/ou
t S

W pr
efe

tch

w/ou
t N

UMA

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

w/ou
t S

W pr
efe

tch

w/ou
t N

UMA

No naïve SPE
implementation

IBM QS20
Cell Blade

Opteron 2356
(Barcelona)

Intel Xeon E5345
(Clovertown)

Sun T2+ T5140
(Victoria Falls)

da
tas

et
da

tas
et

fits
 in

 sn
oo

p f
ilte

r

Roofline model for SpMV
(NUMA & SW prefetch)

• compulsory flop:byte ~ 0.166
• utilize all memory channels

74

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

w/out SIMD

peak DP

w/out ILP

w/out FMA

w/ou
t N

UMA
ba

nk
 co

nfl
ict

s

25% FP

peak DP

12% FP

w/ou
t S

W pr
efe

tch

w/ou
t N

UMA

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

w/ou
t S

W pr
efe

tch

w/ou
t N

UMA

No naïve SPE
implementation

IBM QS20
Cell Blade

Opteron 2356
(Barcelona)

Intel Xeon E5345
(Clovertown)

Sun T2+ T5140
(Victoria Falls)

da
tas

et
da

tas
et

fits
 in

 sn
oo

p f
ilte

r

Roofline model for SpMV
(matrix compression)

• Inherent FMA
• Register blocking improves ILP,

DLP, flop:byte ratio, and FP% of
instructions

75

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

w/out SIMD

peak DP

w/out ILP

w/out FMA

w/ou
t N

UMA
ba

nk
 co

nfl
ict

s

25% FP

peak DP

12% FP

w/ou
t S

W pr
efe

tch

w/ou
t N

UMA

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

da
tas

et
da

tas
et

fits
 in

 sn
oo

p f
ilte

r

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

w/ou
t S

W pr
efe

tch

w/ou
t N

UMA

IBM QS20
Cell Blade

Opteron 2356
(Barcelona)

Intel Xeon E5345
(Clovertown)

Sun T2+ T5140
(Victoria Falls)

Roofline on CPUs and GPUs
§ In 2010, we began to use Roofline to compare CPU and GPU

performance for a variety of double-precision kernels

• Flop/s were theoretical book values;

• Memory bandwidth from STREAM or SHOC

• AI was based on compulsory data movement

• Optimized kernel performance

was well-correlated with Roofline

for both platforms.

• Some irregular applications (PIC)

underperformed and motivated

Further study.

76

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 321/8
1/4

1/2
1/32

RTM/wave eqn.

7pt Stencil
27pt Stencil

Xeon X5550 (Nehalem)

SpMV

DGEMM

GTC/chargei

GTC/pushi

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 321/8
1/4

1/2
1/32

RTM/wave eqn.

NVIDIA C2050 (Fermi)

SpMV

7pt Stencil

27pt Stencil

DGEMM

GTC/chargei

GTC/pushi

Questions?

Backup

Intel Advisor:
Introduction and General Usage

*DRAM Roofline and OS/X Advisor GUI: These are preview features that may or may not be
included in mainline product releases. They may not be stable as they are prototypes incorporating
very new functionality. Intel provides preview features in order to collect user feedback and plans
further development and productization steps based on the feedback.

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

Intel Advisor
§ Integrated Performance Analysis Tool

• Performance information including timings, flops, and trip counts

• Vectorization Tips

• Memory footprint analysis

• Originally used the Cache-Aware Roofline Model
• All connected back to source code

§ CRD/NERSC began a collaboration with Intel
• Ensure Advisor runs on Cori in user-mode

• Push for Hierarchical (Integrated) Roofline
• Make it functional/scalable to many MPI processes across multiple nodes

• Validate results on NESAP, SciDAC, and ECP codes

80
NESAP is NERSC’s KNL application readiness project
SciDAC is the DOE Office of Science’s Scientific Discovery thru Advanced Computing program
ECP is the DOE’s Exascale Computing Project

Intel Advisor (Useful Links)
Background
§ https://software.intel.com/en-us/intel-advisor-xe
§ https://software.intel.com/en-us/articles/getting-started-with-

intel-advisor-roofline-feature
§ https://www.youtube.com/watch?v=h2QEM1HpFgg

Running Advisor on NERSC Systems
§ http://www.nersc.gov/users/software/performance-and-

debugging-tools/advisor/

81

Using Intel Advisor at NERSC
§ Compile…

use ‘-g’ when compiling

§ Submit Job…
% salloc –perf=vtune <<< interactive sessions; --perf only needed for DRAM Roofline

–or-

#SBATCH –perf=vtune <<< batch submissions; --perf only needed for DRAM Roofline

Benchmark…
% module load advisor

% export ADVIXE_EXPERIMENTAL=roofline_ex <<< only needed for DRAM Roofline

% srun [args] advixe-cl -collect survey -no-stack-stitching -project-dir $DIR -- ./a.out [args]

% srun [args] advixe-cl -collect tripcounts -flops-and-masks -callstack-flops -project-dir $DIR -- ./a.out [args]

§ Use Advisor GUI…
% module load advisor

% export ADVIXE_EXPERIMENTAL=roofline_ex <<< only needed for DRAM Roofline

% advixe-gui $DIR

82

83

84

85

86

87

88

89

Intel Advisor:
Stencil Roofline Demo*

*DRAM Roofline and OS/X Advisor GUI: These are preview features that may or may not be
included in mainline product releases. They may not be stable as they are prototypes incorporating
very new functionality. Intel provides preview features in order to collect user feedback and plans
further development and productization steps based on the feedback.

7-point, Constant-Coefficient Stencil
§ Apply to a 5123 domain on a single NUMA node (single HSW socket)

§ Create 5 code variants to highlight effects (as seen in advisor)
ver0. Baseline: thread over outer loop (k), but prevent vectorization

#pragma novector // prevent simd

int ijk = i*iStride + j*jStride + k*kStride; // variable iStride to confuse the compiler

ver1. Enable vectorization

int ijk = i + j*jStride + k*kStride; // unit-stride inner loop

ver2. Eliminate capacity misses

2D tiling of j-k iteration space // working set had been O(6MB) per thread
ver3. Improve vectorization

Provide aligned pointers and strides
ver4. Force vectorization / cache bypass

__assume(jstride%8 == 0); // stride by variable is still aligned

#pragma omp simd, vector nontemportal // force simd; force cache bypass

91

92

93

Cache-Aware Roofline

94

Cache-Aware Roofline

95

Cache-Aware Roofline

96

Cache-Aware Roofline

97

Cache-Aware Roofline

98

DRAM Roofline*

99

DRAM Roofline*

100

DRAM Roofline*

101

DRAM Roofline*

102

DRAM Roofline*

Little’s Law

103

§ consider a CPU with 2 FPU’s each with a
4-cycle latency.

§ Little’s law states that we must express 8-
way ILP to fully utilize the machine.

§ Solution #1: rely on OOO to find
parallelism across loop iterations.

§ Solution #2: unroll/jam the code to
express 8 independent FP operations.

§ Note, simply unrolling dependent
operations (e.g. reduction) does not
increase ILP. It simply amortizes loop
overhead.

Applied to FPUsApplied to Memory
§ Consider a CPU with 100GB/s of

bandwidth and 100ns memory latency.
§ Little’s law states that we must express

10KB of concurrency (independent
memory operations) to the memory
subsystem to attain peak performance

§ Solution #1: use multiple cores or threads
to satisfy the requisite MLP.

§ Solution #2: express the memory access
pattern in a streaming fashion in order to
engage the prefetchers.

