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Introduction to
Performance

Modeling



Why Use Performance Models or Tools?
§ Identify performance bottlenecks

§ Motivate software optimizations

§ Determine when we’re done optimizing
• Assess performance relative to machine capabilities

• Motivate need for algorithmic changes

§ Predict performance on future machines / architectures

• Sets realistic expectations on performance for future procurements

• Used for HW/SW Co-Design to ensure future architectures are well-suited for the 

computational needs of today’s applications.
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Computational Complexity
§ Assume run time is correlated 

with the number of operations 
(e.g. FP ops)

§ Users define parameterize their 
algorithms, solvers, kernels

§ Count the number of operations 
as a function of those parameters

§ Demonstrate run time is 
correlated with those parameters
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = alpha*X[i] + Y[i];
}

DAXPY: O(N) complexity where 
N is the number of elements

#pragma omp parallel for
for(i=0;i<N;i++){
for(j=0;j<N;j++){

double Cij=0;
for(k=0;k<N;k++){

Cij += A[i][k] * B[k][j];
}
C[i][j] = sum;

}}

DGEMM: O(N3) complexity 
where N is the number of rows 
(equations)

FFTs: O(NlogN) in the number of elements

CG: O(N1.33) in the number of elements (equations)

MG: O(N) in the number of elements (equations)

N-body: O(N2) in the number of particles (per time step)

?What are the 
scaling 

constants?

?Why did we 
depart from ideal 

scaling?



Data Movement Complexity
§ Assume run time is correlated 

with the amount of data accessed 
(or moved)

§ Easy to calculate amount of data 
accessed… count array accesses
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DAXPY

DGEMV

DGEMM

FFTs

CG
MG

N-body

Operation
O(N)

O(N2)

O(N3)

O(NlogN)

O(N1.33)
O(N)

O(N2)

Flop’s
O(N)

O(N2)

O(N2)

O(N)

O(N1.33)
O(N)

O(N)

Data

1Hill et al, “Evaluating Associativity in CPU Caches”, IEEE 
Trans. Comput., 1989.

§ Data moved is more complex as it 
requires understanding cache 
behavior…
• Compulsory1 data movement (array 

sizes) is a good initial guess…
• … but needs refinement for the effects of 

finite cache capacities

?Which is more 
expensive…

Performing Flop’s, or
Moving words from memory



Machine Balance and Arithmetic Intensity
§ Data movement and computation 

can operate at different rates

7

DAXPY
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Data
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O(logN)

O(1)
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AI (ideal)

Peak DP Flop/s
Peak BandwidthBalance = 

§ We define machine balance as 
the ratio of…

Flop’s Performed
Data MovedAI = 

§ …and arithmetic intensity as the 
ratio of…

!Kernels with AI

greater than machine 

balance are ultim
ately 

compute lim
ited



Computational Depth
§ Sequential CPUs incur latencies 

and overheads on memory 
discontinuities and function calls

§ Parallel machines incur similar 
overheads on synchronization 
(shared memory), point-to-point 
communication, reductions, and 
broadcasts.

§ Thus, we can classify algorithms 
by depth (max depth of the 
algorithm’s dependency chain)
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!Overheads can 

dominate at high 

concurrency or small 

problems



Distributed Memory Performance Modeling
§ In distributed memory, one communicates by sending messages 

between processors.
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§ Messaging time can be constrained by several components…
• Overhead (CPU time to send/receive a message)
• Latency (time message is in the network; can be hidden)
• Message throughput (rate at which one can send small messages… messages/second)
• Bandwidth (rate one can send large messages… GBytes/s)

§ Distributed memory versions of our algorithms can be differently 
stressed by these components depending on N and P (#processors)

§ Bandwidths and latencies are further constrained by the interplay of 
network architecture and contention



Performance Models
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#FP operations

Cache data movement

DRAM data movement

PCIe data movement

Depth

MPI Message Size

MPI Send:Wait ratio

#MPI Wait’s

Flop/s

Cache GB/s

DRAM GB/s

PCIe bandwidth

OMP Overhead

Network Bandwidth

Network Gap

Network Latency

§ Many different components can contribute to kernel run time.

§ Some are characteristics of the application, some are characteristics of 

the machine, and some are both (memory access pattern + caches).



Performance Models
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§ Can’t think about all these terms all the time for every application…

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Computational
Complexity



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Roofline
Model

Williams et al, "Roofline: An Insightful Visual Performance Model For Multicore Architectures", 
CACM, 2009.



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogP

Culler, et al, "LogP: a practical model of parallel computation", CACM, 1996.



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogGP

Alexandrov, et al, "LogGP: incorporating long messages into the LogP model - one step closer 
towards a realistic model for parallel computation", SPAA, 1995.



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogCA

Bin Altaf et al, "LogCA: A High-Level Performance Model for Hardware Accelerators", ISCA, 
2017.

!Think about which

model to use



Introduction to the
Roofline Model



Performance Models / Simulators
§ Historically, many performance models and simulators tracked latencies 

to predict performance (i.e. counting cycles)

§ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)
• HW stream prefetching (hardware speculatively loads data)
• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

§ Effective latency hiding has resulted in a shift from a latency-limited 
computing regime to a throughput-limited computing regime
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Roofline Model
§ Roofline Model is a throughput-

oriented performance model…
• Tracks rates not times
• Augmented with Little’s Law

(concurrency = latency*bandwidth) 
• Independent of ISA and architecture (applies 

to CPUs, GPUs, Google TPUs1, etc…)

181Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

19

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

#FP ops / Peak GFlop/s
Time = max

#Bytes / Peak GB/s



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)
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CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

1 / Peak GFlop/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)
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CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFlop/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)
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CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFlop/s
GFlop/s = min

AI * Peak GB/s
Note, Arithmetic Intensity (AI) = Flops / Bytes (as presented to DRAM )



(DRAM) Roofline
§ Plot Roofline bound using 

Arithmetic Intensity as the x-axis
§ Log-log scale makes it easy to 

doodle, extrapolate performance 
along Moore’s Law, etc…

§ Kernels with AI less than machine 
balance are ultimately DRAM 
bound (we’ll refine this later…)
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Roofline Example #1
§ Typical machine balance is 5-10 

flops per byte…
• 40-80 flops per double to exploit compute capability
• Artifact of technology and money
• Unlikely to improve

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.083 flops per byte == Memory bound
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At
ta

in
ab

le
 F

lo
p/

s

DRAM G
B/s

Arithmetic Intensity (Flop:Byte)

TRIAD

Gflop/s ≤ AI * DRAM GB/s

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

0.083

Peak Flop/s



Roofline Example #2
§ Conversely, 7-point constant 

coefficient stencil…
• 7 flops

• 8 memory references (7 reads, 1 store) per point

• Cache can filter all but 1 read and 1 write per point

• AI = 0.44 flops per byte == memory bound,
but 5x the flop rate
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A
tta

in
ab

le
 F

lo
p/

s

DRAM G
B/s

7-point
Stencil

Gflop/s ≤ AI * DRAM GB/s

TRIAD

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
 new[ijk] = -6.0*old[ijk        ]

            + old[ijk-1      ]
              + old[ijk+1      ]
              + old[ijk-jStride]
              + old[ijk+jStride]
              + old[ijk-kStride]
              + old[ijk+kStride];

}}}

Arithmetic Intensity (Flop:Byte)
0.083 0.44

Peak Flop/s



Hierarchical Roofline
§ Real processors have multiple levels of 

memory
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications can have locality in each 
level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have a unique 

bandwidth
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DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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e G
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Arithmetic Intensity (Flop:Byte)

L2
 G

B/s

DDR bottleneck 
pulls performance 
below MCDRAM 

Roofline

Peak Flop/s



DDR G
B/sMCDRAM ca
ch

e G
B/s

MCDRAM bound
MCDRAM AI*BW <

DDR AI*BW 

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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DDR G
B/s

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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NUMA Effects
§ Cori’s Haswell nodes are built 

from 2 Xeon processors (sockets)
• Memory attached to each socket (fast)
• Interconnect that allows remote memory 

access (slow == NUMA)
• Improper memory allocation can result in 

more than a 2x performance penalty
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Peak Flop/s

No FMA
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Arithmetic Intensity (Flop:Byte)

CPU0
cores 0-15

DRAM
~50GB/s

CPU1
cores 16-31

DRAM
~50GB/s



Modeling In-Core 
Performance Effects



Data, Instruction, Thread-Level Parallelism…
§ Modern CPUs use several techniques to increase per core Flop/s
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Fused Multiply Add
• w = x*y + z is a common 

idiom in linear algebra
• Rather than having 

separate multiple and 
add instructions, 
processors can use a 
fused multiply add (FMA)

• The FPU chains the 
multiply and add in a 
single pipeline so that it 
can complete FMA/cycle

Vector Instructions
• Many HPC codes apply 

the same operation to a 
vector of elements

• Vendors provide vector 
instructions that apply 
the same operation to 2, 
4, 8, 16 elements…
x [0:7] *y [0:7] + z [0:7]

• Vector FPUs complete 8 
vector operations/cycle

Deep pipelines
• The hardware for a FMA 

is substantial.  
• Breaking a single FMA 

up into several smaller 
operations and pipelining 
them allows vendors to 
increase GHz

• Little’s Law applies… 
need FP_Latency * 
FP_bandwidth
independent instructions

!Resurgence… 

Tensor Cores, 

QFMA, etc…



Data, Instruction, Thread-Level Parallelism…
§ If every instruction were an ADD 

(instead of FMA), performance 
would drop by 2x on KNL or 4x 
on Haswell 

§ Similarly, if one had no vector 
instructions, performance would 
drop by another 8x on KNL and 
4x on Haswell

§ FP Divides can be even worse.
§ Lack of threading will reduce 

performance by 64x on KNL.
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Peak Flop/s

Add-only (No FMA)

No vectorization
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Poor vectorization 
pulls performance 

below DDR 
Roofline



Superscalar vs. instruction mix
§ Define in-core ceilings based on 

instruction mix…
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12% FP

≥50% FP§ e.g. Haswell
• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP 
to get peak performance



Superscalar vs. instruction mix
§ Define in-core ceilings based on 

instruction mix…
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25% FP

100% FP§ e.g. Haswell
• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP 
to get peak performance

§ e.g. KNL
• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be 
FP to get peak performance



Superscalar vs. instruction mix
§ Define in-core ceilings based on 

instruction mix…
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25% FP

100% FP§ e.g. Haswell
• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP 
to get peak performance

§ e.g. KNL
• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be 
FP to get peak performance

non-FP instructions 
can sap instruction 

issue bandwidth and 
pull performance 
below Roofline



Modeling Cache Effects



Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
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Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses

§ However, write allocate caches 
can lower AI
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Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
§ However, write allocate caches 

can lower AI
§ Cache capacity misses can have 

a huge penalty
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Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
§ However, write allocate caches 

can lower AI
§ Cache capacity misses can have 

a huge penalty
Ø Compute bound became 

memory bound
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!Know the theoretical

bounds on your AI.



General Strategy Guide



General Strategy Guide
§ Broadly speaking, there are three 

approaches to improving 
performance:
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General Strategy Guide
§ Broadly speaking, there are three 

approaches to improving 
performance:

§ Maximize in-core performance 
(e.g. get compiler to vectorize)
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General Strategy Guide
§ Broadly speaking, there are three 

approaches to improving 
performance:

§ Maximize in-core performance 
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth 
(e.g. NUMA-aware allocation)
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General Strategy Guide
§ Broadly speaking, there are three 

approaches to improving 
performance:

§ Maximize in-core performance 
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth 
(e.g. NUMA-aware allocation)

§ Minimize data movement 
(increase AI)
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Constructing a Roofline Model 
requires answering some 

questions…



Questions can overwhelm users…
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?What is my 
machine’s 

peak flop/s?

?What is my 
machine’s 
DDR GB/s?

L2 GB/s?

?How much 
data did my 

kernel actually 
move?

?What is my kernel’s 
compulsory AI?

(communication lower 
bounds)

?How many 
flop’s did my 

kernel actually 
do?

?How important is 
vectorization or 

FMA on my 
machine?

?Did my kernel 
vectorize?

?Can my kernel 
ever be 

vectorized??How much did 
that divide 

hurt?

Properties of the 
target machine

(Benchmarking)

Properties of an 
application’s execution

(Instrumentation)

Fundamental 
properties of the 

kernel constrained 
by hardware

(Theory)



To answer these 
questions, we need 

tools…



Node Characterization?

§ “Marketing Numbers” can be 
deceptive…
• Pin BW vs. real bandwidth

• TurboMode / Underclock for AVX

• compiler failings on high-AI loops.
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https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

§ LBL developed the Empirical 
Roofline Toolkit (ERT)…
• Characterize CPU/GPU systems

• Peak Flop rates

• Bandwidths for each level of memory

• MPI+OpenMP/CUDA == multiple GPUs

 10

 100

 1000

 10000

 0.01  0.1  1  10  100

G
FL

O
Ps

 / 
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.quadflat.2t/Run.002)

2450.0 GFLOPs/sec (Maximum)

L1
 - 6

44
2.9

 G
B/s

L2
 - 1

96
5.4

 G
B/s

DRAM - 4
12

.9 
GB/s

Cori / KNL

 10

 100

 1000

 10000

 100000

 0.01  0.1  1  10  100

G
FL

O
Ps

 / 
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.summitdev.ccs.ornl.gov.02.MPI4/Run.001)

17904.6 GFLOPs/sec (Maximum)

L1
 - 6

50
6.5

 G
B/s

DRAM - 1
92

9.7
 G

B/s

SummitDev / 4GPUs



Instrumentation with Performance Counters?
§ Characterizing applications with performance counters can be 

problematic…
x Flop Counters can be broken/missing in production processors

x Vectorization/Masking can complicate counting Flop’s

x Counting Loads and Stores doesn’t capture cache reuse while counting 

cache misses doesn’t account for prefetchers.

x DRAM counters (Uncore PMU) might be accurate, but…

x are privileged and thus nominally inaccessible in user mode

x may need vendor (e.g. Cray) and center (e.g. NERSC) approved 

OS/kernel changes
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Forced to Cobble Together Tools…
§ Use tools known/observed to work on NERSC’s 

Cori (KNL, HSW)…
• Used Intel SDE (Pin binary instrumentation + 

emulation) to create software Flop counters
• Used Intel VTune performance tool (NERSC/Cray 

approved) to access uncore counters

Ø Accurate measurement of Flop’s (HSW) and 
DRAM data movement (HSW and KNL)

Ø Used by NESAP (NERSC KNL application 
readiness project) to characterize apps on Cori…

53

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
NERSC is LBL’s production computing division
CRD is LBL’s Computational Research Division
NESAP is NERSC’s KNL application readiness project
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)



Initial Roofline Analysis of NESAP Codes
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Evaluation of LIKWID
§ LIKWID provides easy to use wrappers 

for measuring performance counters…
ü Works on NERSC production systems
ü Minimal overhead (<1%)

ü Scalable in distributed memory (MPI-friendly)

ü Fast, high-level characterization

x No detailed timing breakdown or optimization advice
x Limited by quality of hardware performance counter 

implementation (garbage in/garbage out)

Ø Useful tool that complements other 
tools
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Need an integrated solution…
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§ LIKWID was…
ü fast and easy to use
x Suffered from the same limitations as VTune/SDE

§ ERT…
ü Characterized flops, and bandwidths (cache, DRAM)
ü Interoperable with MPI, OpenMP, and CUDA
x Required users to manually parse/incorporate the output

§ Having to compose VTune, SDE, and plotting tools…
ü worked correctly and benefited NESAP’s application readiness
x forced users to learn/run multiple tools and manually parse/graph the output
x forced users to instrument routines of interest in their application
x lacked integration with compiler/debugger/disassembly



Intel Advisor
§ Includes Roofline Automation…

ü Automatically instruments applications
(one dot per loop nest/function)

ü Computes FLOPS and AI for each 
function (CARM)

ü AVX-512 support that incorporates masks
ü Integrated Cache Simulator1

(hierarchical roofline / multiple AI’s)
ü Automatically benchmarks target system 

(calculates ceilings)
ü Full integration with existing Advisor 

capabilities
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Memory-bound, invest into 
cache blocking etc

Compute bound: invest 
into SIMD,..

1Technology Preview, not in official product roadmap so far.

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017



Hierarchical Roofline vs.
Cache-Aware Roofline

…understanding different Roofline 
formulations in Advisor



There are two Major Roofline Formulations:
§ Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, …)…

• Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009 
• Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
• Defines multiple bandwidth ceilings and multiple AI’s per kernel

• Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

§ Cache-Aware Roofline
• Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
• Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes)

• As one looses cache locality (capacity, conflict, …) performance falls from one BW ceiling to a lower one at constant AI
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§ Why Does this matter?
• Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
• Cache-Aware Roofline model was integrated into production Intel Advisor

• Evaluation version of Hierarchical Roofline1 (cache simulator) has also been integrated into Intel Advisor

1Technology Preview, not in official product roadmap so far.
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Cache-Aware RooflineHierarchical Roofline
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size
(capacity misses reduce AI)

§ AI is Flop:Bytes as presented to the L1 
cache (plus non-temporal stores)

§ AI is Flop:Bytes after being filtered by 
lower cache levels

§ Memory/Cache/Locality effects are 
observed as decreased performance

§ Memory/Cache/Locality effects are 
observed as decreased AI

§ Requires static analysis or binary 
instrumentation to measure AI

§ Requires performance counters or 
cache simulator to correctly measure AI



Example: STREAM
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ L1 AI…
• 2 flops
• 2 x 8B load (old)
• 1 x 8B store (new)
• = 0.08 flops per byte

§ No cache reuse…
• Iteration i doesn’t touch any data associated with 

iteration i+delta for any delta. 

§ … leads to a DRAM AI equal to 
the L1 AI



Example: STREAM
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Small Problem)
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
 new[ijk] = -6.0*old[ijk        ]

            + old[ijk-1      ]
              + old[ijk+1      ]
              + old[ijk-jStride]
              + old[ijk+jStride]
              + old[ijk-kStride]
              + old[ijk+kStride];

}}}

§ L1 AI…
• 7 flops
• 7 x 8B load (old)
• 1 x 8B store (new)
• = 0.11 flops per byte
• some compilers may do register shuffles to reduce the 

number of loads.

§ Moderate cache reuse…
• old[ijk] is reused on subsequent iterations of i,j,k
• old[ijk-1] is reused on subsequent iterations of i.
• old[ijk-jStride] is reused on subsequent iterations of j.
• old[ijk-kStride] is reused on subsequent iterations of k.

§ … leads to DRAM AI larger than 
the L1 AI



Example: 7-point Stencil (Small Problem)
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Small Problem)
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Large Problem)
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Observed Perf.)
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Observed Perf.)
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Cache-Aware RooflineHierarchical Roofline
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Example of Roofline 
in Practice



Sparse Matrix Vector Multiplication
• What’s a Sparse Matrix ?

• Most entries are 0.0

• Performance advantage in only storing/operating on the nonzeros

• Requires significant meta data to reconstruct the matrix structure

• What’s SpMV ?
• Evaluate y=Ax where A is a sparse matrix, x & y are dense vectors

• Challenges
• Very low arithmetic intensity  (often <0.166 flops/byte)
• Difficult to exploit ILP (bad for pipelined or superscalar),

• Difficult to exploit DLP (bad for SIMD)
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(a)
algebra conceptualization

(c)
CSR reference code

for (r=0; r<A.rows; r++) {
double y0 = 0.0;
for (i=A.rowStart[r]; i<A.rowStart[r+1]; i++){

y0 += A.val[i] * x[A.col[i]];
}
y[r] = y0;

}

A x y

(b)
CSR data structure

A.val[ ]

A.rowStart[ ]

...

...

A.col[ ]
...



Roofline model for SpMV
• Double precision roofline models
• In-core optimizations 1..i
• DRAM optimizations 1..j

• FMA is inherent in SpMV (place 
at bottom)
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Roofline model for SpMV
(overlay arithmetic intensity)

• Two unit stride streams
• Inherent FMA
• No ILP
• No DLP
• FP is 12-25%
• Naïve compulsory flop:byte < 

0.166
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Roofline model for SpMV
(out-of-the-box parallel)

• Two unit stride streams
• Inherent FMA
• No ILP
• No DLP
• FP is 12-25%
• Naïve compulsory flop:byte < 

0.166
• For simplicity: dense matrix in 

sparse format
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Roofline model for SpMV
(NUMA & SW prefetch)

• compulsory flop:byte ~ 0.166
• utilize all memory channels
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Roofline model for SpMV
(matrix compression)

• Inherent FMA
• Register blocking improves ILP, 

DLP, flop:byte ratio, and FP% of 
instructions
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Roofline on CPUs and GPUs
§ In 2010, we began to use Roofline to compare CPU and GPU 

performance for a variety of double-precision kernels

• Flop/s were theoretical book values;

• Memory bandwidth from STREAM or SHOC

• AI was based on compulsory data movement

• Optimized kernel performance

was well-correlated with Roofline

for both platforms.

• Some irregular applications (PIC)

underperformed and motivated

Further study.
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Intel Advisor:
Introduction and General Usage

*DRAM Roofline and OS/X Advisor GUI: These are preview features that may or may not be
included in mainline product releases. They may not be stable as they are prototypes incorporating
very new functionality. Intel provides preview features in order to collect user feedback and plans
further development and productization steps based on the feedback.

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017



Intel Advisor
§ Integrated Performance Analysis Tool

• Performance information including timings, flops, and trip counts

• Vectorization Tips

• Memory footprint analysis

• Originally used the Cache-Aware Roofline Model
• All connected back to source code

§ CRD/NERSC began a collaboration with Intel
• Ensure Advisor runs on Cori in user-mode

• Push for Hierarchical (Integrated) Roofline
• Make it functional/scalable to many MPI processes across multiple nodes

• Validate results on NESAP, SciDAC, and ECP codes
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NESAP is NERSC’s KNL application readiness project
SciDAC is the DOE Office of Science’s Scientific Discovery thru Advanced Computing program
ECP is the DOE’s Exascale Computing Project



Intel Advisor (Useful Links)
Background
§ https://software.intel.com/en-us/intel-advisor-xe
§ https://software.intel.com/en-us/articles/getting-started-with-

intel-advisor-roofline-feature
§ https://www.youtube.com/watch?v=h2QEM1HpFgg

Running Advisor on NERSC Systems
§ http://www.nersc.gov/users/software/performance-and-

debugging-tools/advisor/
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Using Intel Advisor at NERSC
§ Compile…

use ‘-g’ when compiling

§ Submit Job…
% salloc –perf=vtune <<< interactive sessions; --perf only needed for DRAM Roofline

–or-

#SBATCH –perf=vtune <<< batch submissions; --perf only needed for DRAM Roofline

Benchmark…
% module load advisor

% export ADVIXE_EXPERIMENTAL=roofline_ex <<< only needed for DRAM Roofline

% srun [args] advixe-cl -collect survey -no-stack-stitching -project-dir $DIR -- ./a.out [args]

% srun [args] advixe-cl -collect tripcounts -flops-and-masks -callstack-flops -project-dir $DIR -- ./a.out [args]

§ Use Advisor GUI…
% module load advisor

% export ADVIXE_EXPERIMENTAL=roofline_ex <<< only needed for DRAM Roofline

% advixe-gui $DIR
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Intel Advisor:
Stencil Roofline Demo*

*DRAM Roofline and OS/X Advisor GUI: These are preview features that may or may not be
included in mainline product releases. They may not be stable as they are prototypes incorporating
very new functionality. Intel provides preview features in order to collect user feedback and plans
further development and productization steps based on the feedback.



7-point, Constant-Coefficient Stencil
§ Apply to a 5123 domain on a single NUMA node (single HSW socket)

§ Create 5 code variants to highlight effects (as seen in advisor)
ver0. Baseline: thread over outer loop (k), but prevent vectorization

#pragma novector // prevent simd

int ijk = i*iStride + j*jStride + k*kStride; // variable iStride to confuse the compiler

ver1. Enable vectorization

int ijk = i + j*jStride + k*kStride; // unit-stride inner loop

ver2. Eliminate capacity misses

2D tiling of j-k iteration space // working set had been O(6MB) per thread
ver3. Improve vectorization

Provide aligned pointers and strides
ver4. Force vectorization / cache bypass

__assume(jstride%8 == 0); // stride by variable is still aligned

#pragma omp simd, vector nontemportal // force simd; force cache bypass
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Cache-Aware Roofline
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Cache-Aware Roofline
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Cache-Aware Roofline
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Cache-Aware Roofline
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Cache-Aware Roofline
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DRAM Roofline*
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DRAM Roofline*
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DRAM Roofline*
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DRAM Roofline*
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DRAM Roofline*



Little’s Law
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§ consider a CPU with 2 FPU’s each with a 
4-cycle latency.  

§ Little’s law states that we must express 8-
way ILP to fully utilize the machine.

§ Solution #1: rely on OOO to find 
parallelism across loop iterations.

§ Solution #2: unroll/jam the code to 
express 8 independent FP operations.

§ Note, simply unrolling dependent 
operations (e.g. reduction) does not 
increase ILP.  It simply amortizes loop 
overhead.

Applied to FPUsApplied to Memory
§ Consider a CPU with 100GB/s of 

bandwidth and 100ns memory latency.
§ Little’s law states that we must express 

10KB of concurrency (independent 
memory operations) to the memory 
subsystem to attain peak performance

§ Solution #1: use multiple cores or threads 
to satisfy the requisite MLP.

§ Solution #2: express the memory access 
pattern in a streaming fashion in order to 
engage the prefetchers.


