
Hierarchical Roofline Analysis on CPUs

Charlene Yang
Lawrence Berkeley National Laboratory

ECP 2020, Houston

Outline

• Hierarchical Roofline on Intel CPUs
– L1, L2, L3, HBM, DRAM

• Methodology for Roofline Data Collection
– Machine characterization: peak bandwidth and peak GFLOP/s

• Empirical Roofline Toolkit (ERT)
– Application characterization: FLOPs, bytes, runtime

• LIKWID, SDE, VTune, Advisor

• A Stencil Example

2

This methodology
can be extended
to other CPUs,

and other
instruction types!

CPU Architecture: HSW

• Goal: Hierarchical Roofline
• Machine Characterization

– compute/bandwidth peaks
• Application Characterization

– Performance Throughput
• FLOPs / runtime

– Arithmetic Intensity
• AI_DRAM = FLOPS / Bytes_DRAM
• AI_MCDRAM = FLOPS / Bytes_MCDRAM
• AI_L2 = FLOPS / Bytes_L2
• AI_L1 = FLOPS / Bytes_L1

Courtesy of Zakhar Matveev

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

MCDRAM ca
ch

e G
B/s

Arithmetic Intensity

L2
 G

B/s
L1

 G
B/s

Machine Characterization

§ “Theoretical Performance” numbers
can be highly optimistic…
• Pin BW vs. sustained bandwidth
• TurboMode / Underclock for AVX
• compiler failings on high-AI loops.

§ LBL developed the Empirical Roofline
Toolkit (ERT)…
• Characterize CPU/GPU systems
• Peak Flop rates
• Bandwidths for each level of memory

4
https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.quadflat.2t/Run.002)

2450.0 GFLOPs/sec (Maximum)

L1
 - 6

44
2.9

 G
B/s

L2
 - 1

96
5.4

 G
B/s

DRAM - 4
12

.9
GB/s

Cori / KNL

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.summitdev.ccs.ornl.gov.02.MPI4/Run.001)

17904.6 GFLOPs/sec (Maximum)

L1
 - 6

50
6.5

 G
B/s

DRAM - 1
92

9.7
 G

B/s

SummitDev / 4GPUs

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Application Characterization

§ How to get runtime, FLOPs, Bytes ….
§ manual counting
§ performance counters
§ binary instrumentation

§ Tools we can use…
§ LIKWID: vops, low overhead, no breakdown info
§ SDE + VTune: more accurate, high overhead, manual scripting required
§ Advisor: automated, high overhead, information rich
§ …

5

How Do We Count Flop’s?
Manual Counting
§ Go thru each loop nest and

count the number of FP

operations

ü Works best for deterministic

loop bounds

ü or parameterize by the

number of iterations

(recorded at run time)

✘ Not scalable

Perf. Counters
§ Read counter before/after

ü More Accurate

ü Low overhead (<%) == can

run full MPI applications

ü Can detect load imbalance

✘ Requires privileged access

✘ Requires manual

instrumentation (+overhead)

or full-app characterization

✘ Broken counters = garbage

✘ May not differentiate

FMADD from FADD

✘ No insight into special

pipelines

Binary Instrumentation
§ Automated inspection of

assembly at run time

ü Most Accurate

ü FMA-, VL-, and mask-aware

ü Can count instructions by

class/type

ü Can detect load imbalance

ü Can include effects from

non-FP instructions

ü Automated application to

multiple loop nests

✘ >10x overhead (short runs /

reduced concurrency)

How Do We Measure Data Movement?
Manual Counting
§ Go thru each loop nest and

estimate how many bytes
will be moved

§ Use a mental model of
caches

ü Works best for simple loops
that stream from DRAM
(stencils, FFTs, spare, …)

✘ N/A for complex caches
✘ Not scalable

Perf. Counters
§ Read counter before/after
ü Applies to full hierarchy (L2,

DRAM,
ü Much more Accurate
ü Low overhead (<%) == can

run full MPI applications
ü Can detect load imbalance
✘ Requires privileged access
✘ Requires manual

instrumentation (+overhead)
or full-app characterization

Cache Simulation
§ Build a full cache simulator

driven by memory
addresses

ü Applies to full hierarchy and
multicore

ü Can detect load imbalance
ü Automated application to

multiple loop nests
✘ Ignores prefetchers
✘ >10x overhead (short runs /

reduced concurrency)

Roofline with LIKWID

LIKWID

§ LIKWID provides easy to use wrappers for measuring performance
counters...
ü Works on NERSC production systems
ü Distills counters into user-friendly metrics (e.g. MCDRAM Bandwidth)
ü Minimal overhead (<1%)
ü Scalable in distributed memory (MPI-friendly)
ü Fast, high-level characterization
✘ No timing breakdowns
✘ Suffers from Garbage-in/Garbage Out
• (i.e. hardware counter must be sufficient and correct)

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

LIKWID Utilities
likwid-topology node topology

likwid-pin process/thread affinity

likwid-memsweeper cleanup memory & LLC

likwid-powermeter power measurements

likwid-setFrequencies CPU/uncore frequency manipulation

likwid-perfctr hardware counter measurements

likwid-mpirun hardware counter + MPI

likwid-bench micro-benchmarking

likwid-agent system monitoring
likwid-genTopoCfg generate and store topology file

LIKWID Marker API

• By default, profiles whole program
• But Marker API allows regional profiling as well

#include <likwid.h>
……
LIKWID_MARKER_INIT;
#pragma omp parallel {

LIKWID_MARKER_THREADINIT;
}
#pragma omp parallel {

LIKWID_MARKER_START("foo");
#pragma omp for
for(i = 0; i < N; i++) {

data[i] = omp_get_thread_num();
}
LIKWID_MARKER_STOP("foo");

}
LIKWID_MARKER_CLOSE;

focus on specific code regions

Example: likwid-perfctr –a

Example GPP: GFLOP/s
§ GPP kernel on KNL: 171.960 GFLOPS/sec

o UOPS_RETIRED_PACKED_SIMD
o UOPS_RETIRED_SCALAR_SIMD

§ likwid-perfctr -C 0-63 -g FLOPS_DP ./gpp.knl.ex 512 2 32768 20
o 8*UOPS_RETIRED_PACKED_SIMD+UOPS_RETIRED_SCALAR_SIMD

Example GPP: MCDRAM + DDR GB/s

§ kernel on KNL: DDR 2.59GB/s + MCDRAM 63.71GB/s
o MC_CAS_READS/ MC_CAS_WRITES
o EDC_RPQ_INSERTS/ EDC_WPQ_INSERTS
o EDC_MISS_CLEAN/ EDC_MISS_DIRTY

§ likwid-perfctr -C 0-63 -g HBM_CACHE ./gpp.knl.ex 512 2 32768 20

Example GPP: L2 GB/s

§ kernel on KNL: L2 96.80GB/s
o L2_REQUESTS_REFERENCE
o OFFCORE_RESPONSE_0_OPTIONS

§ likwid-perfctr -C 0-63 -g L2 ./gpp.knl.ex 512 2 32768 20

Example GPP: L1 GB/s

§ kernel on KNL: L1 170.77GB/s
o MEM_UOPS_RETIRED_ALL_LOADS
o MEM_UOPS_RETIRED_ALL_STORES

§ likwid-perfctr -C 0-63 -g DATA ./gpp.knl.ex 512 2
32768 20
o (MEM_UOPS_RETIRED_ALL_LOADS +

MEM_UOPS_RETIRED_ALL_STORES)*64/runtime
o -g DATA is for load-to-store ratio, but can be used

to estimate L1 bandwidth (assume all loads are
vector loads)

16

2.7TFLOP/s

At
ta

in
ab

le
 F

lo
p/

s

DDR 77
.0G

B/s

MCDRAM 36
8.5

GB/s

Arithmetic Intensity

L2
 2.

0T
B/s

L1
 12

.2T
B/s

171.96GFLOP/s

1.01 1.78 2.70 66.39

§ AI (DRAM): 66.39
§ AI (MCDRAM): 2.70
§ AI (L2): 1.78
§ AI (L1): 1.01
§ Performance: 171.960 GFLOPS/s

Roofline with SDE and VTune

Intel Software Development Emulator (SDE)

§ Dynamic instruction tracing
ü Accounts for actual loop lengths and branches
ü Counts instruction types, lengths, etc…
ü Can mark individual regions
ü Support for MPI+OpenMP
ü Can be used to calculate FLOPs (VL-, FMA-, and precision-aware)
✘ Post processing can be expensive.
✘ No insights into cache behavior or DRAM data movement
✘ X86 only

https://software.intel.com/en-us/articles/intel-software-development-emulator

https://software.intel.com/en-us/articles/intel-software-development-emulator

Parsing the Output

§ When the job completes, you’ll have a
series of files prefixed with “sde_”.

§ Parse the output to summarize the
results…

./parse-sde.sh sde_2p16t*

§ Use the “Total FLOPs” line as the
numerator in all AI’s and performance

§ Use the “Total Bytes” line as the
denominator in the L1 AI

§ Can infer vectorization rates and
precision

$./parse-sde.sh sde_2p16t*
Search stanza is "EMIT_GLOBAL_DYNAMIC_STATS"
elements_fp_single_1 = 0
elements_fp_single_2 = 0
elements_fp_single_4 = 0
elements_fp_single_8 = 0
elements_fp_single_16 = 0
elements_fp_double_1 = 2960
elements_fp_double_2 = 0
elements_fp_double_4 = 999999360
elements_fp_double_8 = 0
--->Total single-precision FLOPs = 0
--->Total double-precision FLOPs = 4000000400
--->Total FLOPs = 4000000400
mem-read-1 = 8618384
mem-read-2 = 1232
mem-read-4 = 137276433
mem-read-8 = 149329207
mem-read-16 = 1999998720
mem-read-32 = 0
mem-read-64 = 0
mem-write-1 = 264992
mem-write-2 = 560
mem-write-4 = 285974
mem-write-8 = 14508338
mem-write-16 = 0
mem-write-32 = 499999680
mem-write-64 = 0
--->Total Bytes read = 33752339756
--->Total Bytes written = 16117466472
--->Total Bytes = 49869806228

LIKWID vs. SDE

§ Recall, LIKWID counts vector uops while SDE counts instructions
§ Why does this matter?

o VL-aware KNL has scalar but treats 128b, 256b, and 512b as
512b

o precision-aware User has to know which precision they use
o mask-aware KNL counters ignore masks
o FMA-aware LIKWID assumes 1 flop per element
o KNL counts vector integer, stores, NT stores, and gathers as vector uops

(and thus as potential flop/s)

Ø LIKWID’s and SDE’s counts of #FP ops and Gflop/s can be
different (very different for linear algebra).

LIKWID vs. SDE/VTune

§ SDE FLOPS:
o sde64 -knl -d -iform 1 -omix my_mix.out -global_region -- ./gpp.knl.ex 512 2 32768 20
o ./parse-sde.sh my_mix.out
o --->Total FLOPs = 2775769815463

§ VTune Bytes:
o amplxe-cl -collect memory-access -finalization-mode=deferred -r my_vtune/ -- ./gpp.knl.ex 512 2 32768

20
o amplxe-cl -report summary -r my_vtune/ > my_vtune.summary
o ./parse-vtune.sh my_vtune.summary
o DDR --->Total Bytes = 35983553088
o HBM --->Total Bytes = 963486016448

§ http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

LIKWID difference
2527.81 GFLOPS ~8.9%

LIKWID difference
DDR: 36.28 GB ~0.8%
HBM: 892.44 GB ~7.4%

Roofline with Advisor

The Roofline Feature in Intel® Advisor

• Automate data collection, one dot per kernel
• Hierarchical Roofline for multiple caches
• Automatically benchmarks target system
• Fully integrated with other Advisor features

2 31

A single button or CLI command runs the
Survey and FLOPS analyses to generate

the Roofline chart.

Courtesy of Zakhar Matveev

Intel Advisor: 2-pass Approach

Overhead

Step 1: Survey (-collect survey)
- Provide #Seconds
- Root access not needed
- User mode sampling, non-intrusive.

1x

Step 2: FLOPS (-collect tripcounts –flops)
- Provide #FLOP, #Bytes, AVX-512 Mask
- Root access not needed
- Precise, instrumentation based, count number of

instructions

5-10x

Roofline :
Axis X: AI = #FLOP / #Bytes
Axis Y: FLOP/S = #FLOP (mask aware) / #Seconds

Intel Advisor: Command Lines for Roofline

$ source advixe-vars.sh

1st method. Not compatible with MPI applications :
$ advixe-cl -collect roofline --project-dir ./dir -- ./app

2nd method (old, more flexible):
$ advixe-cl -collect survey --project-dir ./dir -- ./app

$ advixe-cl -collect tripcounts -flop --project-dir ./dir -- ./app

(optional) copy data to your UI desktop system
$ advixe-gui ./dir

IRM How-to:

https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor

https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor

Intel Advisor: A Stencil Example Iso3DFD

For (int iz=0; iz<n3; iz++)

For (int iy=0; iy<n2; iy++)

For (int ix=0; ix<n1; ix++) {

int offset = iz*dimn1n2 + iy*n1 + ix;

float value = 0.0;

value += ptr_prev[offset]*coeff[0];

for(int ir=1; ir<= 8 ; ir++) {

value += coeff[ir] * (ptr_prev[offset + ir] + ptr_prev[offset - ir]);

value += coeff[ir] * (ptr_prev[offset + ir*n1] + ptr_prev[offset - ir*n1]);

value += coeff[ir] * (ptr_prev[offset + ir*dimn1n2] + ptr_prev[offset - ir*dimn1n2]);

}

ptr_next[offset] = 2.0f* ptr_prev[offset] - ptr_next[offset] + value*ptr_vel[offset];

}

Intel Advisor: A Stencil Example Iso3DFD

Progressive levels of optimization
§ Dev00: unoptimized implementation of iso3DFD
§ Dev01: adding OpenMP threading
§ Dev02: reverse loops improving memory access pattern
§ Dev03: vectorization, improve compute throughput and L1 AI
§ Dev04: implement cache blocking, improving DRAM AI

v00 – where am I?

• Main hotspot is loop at
iso-3dfd_parallel.cc:43

§ Performance is far from machine
peak

§ Problem:
– Serial – 1 thread (Summary,

Roofline)
– Scalar

1 thread is used

Scalar
Optimization
opportunity

Performance
metrics

Single precision

v01 – introduce OpenMP threading

Top max GFLOPS limit increases
with number of threads

Add v00 to comparison

The loop moves up
after threading

Enable Integrated Roofline Model
Enable showing memory

level relationships

Double click to see all
memory levels traffic

2

1Zoom by selection, taking
the dot and upper roofs

Do you see anything
suspicious?

v01 – Memory Access Patterns

Memory object
allocation site

Strided access

v02 – reverse loops

All unit strides now

L1, L2, LLC and DRAM
are in order

v02 – find reason for no vectorization

Compare all memory levels with v02

Enable all memory levels

L1 AI is higher after vectorization, due
to less impact from pointer arithmetic

v02

v03

CARM Roofline Guidance:
either DRAM or LLC is the

bottleneck

Integrated Roofline:
DRAM is the bottleneck

v04 – implement cache blocking

DRAM memory
impact decreases

after cache blocking

v04v03

V04: higher memory locality

V03: shorter difference in AI
=> less locality

DRAM is still bottleneck,
but now the limit is higher

