
Improving MPI Reduction Performance for Manycore Architectures with OpenMP
and Data Compression

Hongzhang Shan, Samuel Williams
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, CA 94720, USA
{hshan, swwilliams}@lbl.gov

Calvin W. Johnson
Department of Physics

San Diego State University
San Diego, CA 92182

cjohnson@sdsu.edu

Abstract—MPI reductions are widely used in many scien-
tific applications and often become the scaling performance
bottleneck. When performing reductions on vectors, different
algorithms have been developed to balance messaging overhead
and bandwidth. However, most implementations have ignored
the effect of single-thread performance not scaling as fast as
aggregate network bandwidth. In this work, we propose, imple-
ment, and evaluate two approaches (threading and exploitation
of sparsity) to accelerate MPI reductions on large vectors when
running on manycore-based supercomputers. Our benchmark
results show that our new techniques improve the MPI Reduce
performance up to 4× and improve BIGSTICK application
performance by up to 2.6×.

I. INTRODUCTION

When parallelized, many numerical methods require dot
products or norm calculations that give rise to global re-
ductions on scalar variables. More challenging, multidimen-
sional parallelization often results in broadcasts or reductions
on large vectors of size N/

√
P (i.e. megabytes to gigabytes).

Whereas in the former, reductions on scalars are often
latency-limited, reductions in the latter can be particularly
bandwidth-intensive.

The MPI collective operations MPI_Reduce and
MPI_Allreduce succinctly express the requisite function-
ality and are widely used in many scientific and engineering
applications due to their ease of use, high performance,
and portability. A five-year application profiling study [13]
showed that more than 40% of application MPI time is spent
in these two functions.

In the manycore era, memory capacity is limited, single-
thread performance is sacrificed, while core concurrency
on a chip is maximized. In practice, the memory capacity
constraint can restrict many challenging applications to only
a few MPI processes per manycore node — far fewer than
the available number of cores or threads. Concurrently, high
parallel concurrency and low single-thread performance can
conspire to result in MPI collectives becoming performance
scaling bottlenecks [7], [16]. As a consequence, when
MPI_Reduce or MPI_Allreduce are called, many cores
are simply idle waiting for the reductions to finish, wasting

0.01

0.10

1.00

10.00

100.00

1000.00

1 4 16 64 256

Av
er

ag
e

Ru
nn

in
g

Ti
m

es
 (m

s)

OpenMP Concurrency

OpenMP Effect on MPI_Reduce

1K 1M 200M

Figure 1. The average running times of MPI_Reduce for 2 MPI
processes, one per node. The OpenMP has almost no performance benefit at
all. The bandwidth for 200M single-precision floats is only about 200M*4
/ 530ms = 1.5GB/s, far less than the Aries injection bandwidth.

the precious computing resources. To illustrate this, Figure 1
shows the average MPI_Reduce run times for two MPI
processes on a pair of manycore (KNL) nodes at NERSC.
As we vary the number of OpenMP threads per MPI process
from 1 to 256 and the vector size for 1K, 1M, and 200M
single-precision floating-point numbers (floats), we observe
that the MPI_Reduce time remains roughly constant with
thread concurrency while increasing with vector size (albeit
slowly at first). A run time of about 530 milliseconds for
200M singles (0.8GB) implies a bandwidth of only 1.5GB/s
— far less than the Aries injection bandwidth.

In this paper, we present two techniques to accelerate MPI
reductions running on manycore nodes. First, we exploit
the idle threads on a manycore node in order to accelerate
the local reduction computations in MPI_Reduce. To that
end, we augmented the MPICH [19], [11] algorithms with
OpenMP by partitioning the local reduction work among
OpenMP threads. This approach is different from other
popular optimization approaches that focus on latency and

bandwidth optimization. Instead, we focus on local (on-
node) work. Our results show that MPI_Reduce begins to
benefit from our OpenMP optimizations when the message
size exceeds 8K single-precision floating-point numbers (i.e.
reductions on vectors). Moreover, as we increase the vector
size, we observe a larger benefit. For large messages of
128K single-precision floating-point numbers and beyond,
our new algorithm delivers up to a 4× performance speedup
— largely due to OpenMP parallelization and avoiding local
(superfluous) copies.

Motivated by the observation that, at high concurrency,
the local vectors injected into a reduction might be mostly
zero, we also examined the performance benefit from data
compression. To that end, we developed two straightforward
algorithms that exploit sparsity to compress the data for
MPI_Reduce. One approach (Idx) compresses the non-
zero array elements into a new data array and uses an
additional array to store the indices of the non-zero elements.
Our second approach (Bits) eliminates all zero elements
from the payload array but uses a bit mask array to
indicate whether the corresponding array element is nonzero.
We implemented both approaches using Intel intrinsics to
vectorize the packing/unpacking on KNL. We found that if
the zeros follow a uniform data distribution the data sparsity
should exceed 30% to overcome the packing and unpacking
overhead for the Bits algorithm, while for the Idx algorithm,
the sparsity needs to be above 90%.

To demonstrate the efficacy of our techniques, we in-
tegrated our newly developed MPI_Reduce algorithms
into the application BIGSTICK [2], [6], [7], whose scaling
performance is very sensitive to the MPI_Reduce perfor-
mance. BIGSTICK’s dominant computation is essentially
a 2.5D parallelized sparse-matrix vector multiplication (al-
though the compression of the matrix is far more complex
than CSR) inside a Lanczos eigensolver. Such methods ne-
cessitate a MPI_Reduce to reduce per-process partial sums
of vector data to the root (diagonal) process. In practice, the
data volume for MPI_Reduce does not change with the
number of MPI processes. As such, when more processes
are used, although the time in local matvec decreases, the
time spent in the MPI_Reduce operation increases to the
point where it is the bottleneck. Our results show that
our new algorithms improve overall matvec’s performance
by up to 2.6×. Interestingly, data compression did not
provide a noticeable performance benefit. Further profiling
revealed that this is due to a wildly uneven distribution of
nonzeros among processes. Although most processes inject
vectors that were only 10% nonzero, a few processes in
each communicator injected vectors that were more than
90% nonzero (essentially dense). Note, the resultant vector
ejected to the root is always dense. These processes slowed
down the whole MPI_Reduce operations.

The rest of the paper is organized as follows. The related
work is discussed in Section II. In Section III, we described

the three implementations of MPI_Reduce and their differ-
ences with the corresponding MPICH implementation. Two
data compression implementations are also been described
in this section. Next, we describe about our experimental
platform in Section IV and the performance results are
analyzed in Section V. The performance effects on appli-
cation BIGSTICK are examined in Section VI. Finally, we
summarized our results and discussed the future work in
Section VII.

II. RELATED WORK

The related work can be divided into two categories,
performance optimization and data compression.

Optimizing the performance of MPI collective reduction
operations has been an active research topic. Thakur and
Gropp described the algorithms used by MPICH [20], [19],
[12]. Some specific implementations on the IBM Blue-
Gene/Q platform have been discussed in [10]. Kandalla et
al. discussed how to develop the topology-aware algorithms
for Infiniband clusters [8] and the MIC clusters [9]. For
the Aries network used on the Cray XC30 platform, Jain et
al. [5] found that using random job placement can often
avoid hot-spots and deliver better performance. Faraj et
al. developed a scheme that will automatically generate
topology specific routines and use an empirical approach
to select the best implementations [3]. Rabenseifner et at.
discussed some optimizations for non-power-of-two number
of processes [14]. Some research has also been done devel-
oping collective communication algorithms for clusters of
SMPs [21], [17].

Our approach differs from these approaches mainly in
that we focus on optimizing local reduction work instead of
latency and bandwidth. Furthermore, our OpenMP strategy
is platform independent.

Another category is data compression, which can be
used to optimize the MPI_Reduce and MPI_Allreduce
performance by reducing the communication volume for
sparse data. Hofmann et al. used a Run Length Encoding
(RLE) scheme and directly incorporated it into the reduction
process [4]. Traff et al. discussed how to exploit algebraic
(neutral element) properties for compression and computa-
tion natural for MPI reduction operations [22]. Renggli et
al. generalized standard collective operations by allowing
processes to contribute sparse input data vectors [18]. A
set of communication efficient protocols for sparse input
data have been designed and implemented. We developed
two different, straightforward compression schemes, Idx and
Bits, which have been fully vectorized and parallelized by
OpenMP to reduce the packing/unpacking overhead.

III. ALGORITHMS AND IMPLEMENTATION

Our implementation follows MPICH [11] using a bino-
mial tree algorithm for small vectors and the reduce-scatter
algorithm for large vectors. In addition, we implemented the

ring algorithm. All the communication is carried out by MPI
point-to-point messaging using MPI_Send, MPI_Recv,
MPI_Wait, and MPI_Sendrecv. For better performance,
all these point-to-point functions can be replaced by more
efficient, lower-level communication API calls. The main
differences between our implementation and MPICH are that
1) we avoid the MPIR Localcopy by explicitly designating
which data buffer to use in the later stages, and 2) OpenMP
parallel regions are employed to perform the local reduc-
tions. When data compression is enabled, OpenMP regions
are also used for data compression and decompression.

A. Cost Model

Before we jump to the details of different algorithms, we
first describe a simple cost model that we use to understand
the performance characteristics of the various algorithms.
We use a similar model as the one used in [20], which
assumes the cost to send a message from one process to
another is α + Nβ, where α is the message latency, β is
the transfer time per float (inverse bandwidth), and N is the
message size in floats. The model also assumed that these
parameters are independent of how many pairs of processes
are communicating with each other, independent of the
distance between the communicating nodes, and that the
communication links are bidirectional. In addition, we add a
γ cost per float to incorporate the cost of the local reduction
on each process — a key component given the discrepancy
between single-thread performance and aggregate network
bandwidth. Finally, we assume that there is no overlap
between local computation and communication.

B. Binomial Tree (BTree)

The binomial tree algorithm is simple. Based on the bit
representation of the rank relative to the root, starting from
the right, if the bit is 1, one sends data to the process with the
corresponding bit cleared. If the bit is 0, it will receive data
from the process with that bit set as long as that process
exists. It then performs the reduction operation between
its its own data and the received data. This process will
repeat logP steps where P is the total number of processes
involved in the communicator. Based on our simple model,
the estimated cost is logP × (α+Nβ +Nγ).

C. Reduce-Scatter (RedScat)

The cost model for the binomal tree indicates that when
the message size N becomes large, both the bandwidth term
Nβ and the local reduction term Nγ could easily outweigh
the latency term α and become the dominant performance
factors. The motivation behind the reduce-scatter algorithm
is to reduce the bandwidth cost term logP ×Nβ.

The reduce-scatter algorithm is divided into two phases
— reduce-scatter followed by the gather operation. The
reduce-scatter phase is illustrated in Figure 2 with P = 4.
The vector data is divided into P blocks on all processes.

0
0

0
0

1
1

1
1

3
3

3
3

2
2

2
2

0 1 2 3

0123

0
0
01

0
1

01
0123

1

1
3

0123
23
3

3
23

2
2

0123

2

23
23

2
2

3
3

23
23

01

0
0
01

0 2 3
1

01
01
1

1

0 1 2 3
23
23

2
2

01

0
0
01

3
3

23
23

1

01
01
1

1

a) Initial status and communication in 1st step b) After 1st step status

c) 2rd step communication d) After 2rd step status

Figure 2. The illustration of reduce-scatter phase for the RedScat algorithm
when P=4. The numbers in the block represent the process ranks whose
data has already been reduced for that block. The shaded blocks represents
the communicated data. Each process holds one block of the final results.

During the first step, each process will send N/2 data to
the process whose rank differs in only the least significant
bit. After receiving the data, a local reduction operation is
performed. During the next step, each process will send
N/4 data to the process whose rank differs in only the
second bit. This process will repeat logP steps. This is a
standard vector halving and distance doubling procedure.
Finally, each process will own one block of the final results.
A gather operation is needed at the end to gather all
the results for the root. The estimated cost for reduce-
scatter phase is αlogP + P−1

P Nβ + P−1
P Nγ. and for the

gather phase is αlogP + P−1
P Nβ. So the total cost is

2αlogP+2P−1
P Nβ+ P−1

P Nγ. Compared with the binomial
tree, the latency term doubled but the bandwidth and local
reduction terms could be reduced substantially when N is
large.

If P is not a power of 2, extra steps are needed for the
reduce-scatter phase. We will pair some of the processes
so that the total number of processes participating in the
reduce-scatter phase will be the nearest lower power of
two. For each pair, each process will be responsible for
performing the reduction for half of the data. Then, one
process will send its data to its partner and wait for the
whole reduce-scatter phase to finish. Only its partner will
participate in the following reduce-scatter phase. The extra
cost is 2α+Nβ + 1

2Nγ.

D. Ring

Similar to the reduce-scatter algorithm, the ring algorithm
also has two phases — the reduce-scatter phase and the
gather phase. However, during the reduce-scatter phase, all
the processes will form a ring and only communicate with
their neighbors. One process will send the data to its left
neighbor and receive data from its right neighbor. The data
is also divided into P blocks. Figure 3 illustrated the whole

0
0

0
0

1
1

1
1

3
3

3
3

2
2

2
2

0 1 2 3

a) Initial status and communication in 1st step

2
2

23
2

03
3

3
3

0

0
0
01

0 2 3
1

1
12
1

1

b) 1st step status and next step communication

023
2

23
2

03
013

3
3

0

0
012
01

0 2 3
1

123
12
1

1
023
0123

23
2

03
013

3
0123

0

0123
012
01

0 2 3
0123

123
12
1

1

c) 2rd step status and next step communication d) Final status

Figure 3. Illustration of the ring algorithm for P=4. The numbers in the
block represent the process ranks whose data has already been reduced.
The shaded blocks represents the communication data. Each process holds
one block of the final results. Note that by controlling which block to start
with in the first step, we can control which final block will be left on the
root.

1

10

100

1000

2 4 8 16 32 64 128

La
te

nc
y T

im
e

#Processes (P)

Latency Effect

Ring

Binomial/Redscat P*⍺

log(P)*⍺

Figure 4. The relationship between latency and number of processes P
for our three algorithms. Observe the log scale and the superiority of the
binomial and redscat algorithms at high concurrency.

process with P = 4. The whole process will repeat P
steps instead of logP . The estimated cost for the reduce-
scatter phase is Pα + P−1

P Nβ + P−1
P Nγ. And the total

cost with the gather stage is (P + logP)α + 2P−1
P Nβ +

P−1
P Nγ. Compared with the reduce-scatter algorithm, the

latency term becomes much larger and could become the
performance bottleneck when P is large. However, its
implementation is much simpler and the needed intermediate
buffer is much smaller (N/P vs. N/2 in reduce-scatter).
Furthermore, it does not mandate P be a power of 2.

E. Performance Characteristics

Figure 4 shows the relationship between the latency cost
and the number of processes P for our three algorithms.
For the Ring algorithm, its latency cost scales linearly with
P while for the other two algorithms, the cost only scales
as log(P). The bandwidth cost relationship is shown in

0

1

2

3

4

5

6

7

8

2 4 8 16 32 64 128

Ba
nd

w
ith

 T
im

e

#Processes (P)

Bandwidth Effect

Binomial

Ring/Redscat
log(P)*N*β

N*β

Figure 5. The relationship between bandwidth cost and number of
processes P and data size N . For large N , this bandwidth term should
dominate. Observe the log scale and the superiority of the ring and redscat
algorithms at high concurrency.

Figure 5. The Binomial algorithm has log(P) times higher
cost than the other two. The local reduction cost is similar
to bandwidth. Theoretically, the redscat algorithm should
perform the best of the three. Nevertheless, due to the
simplicity of our cost model, the actual running cost may
be different, especially for the cases when P is not a
power of 2 and extra phases are needed. However, none of
these algorithms address how to improve the local reduction
time (γ term). This motivates us to introduce OpenMP to
parallelize and accelerate local reduction time (drive the
γ term down by OMP_NUM_THREADS) and ensure that
single-thread performance is not an impediment to network
bandwidth.

F. Data Compression

We also consider the algorithms for sparse data cases
and implemented two approaches to reduce the volume of
the communication data. One approach (Bits) is to pack
the nonzero array elements into a new data array and
use an auxiliary array of 1 bit per uncompressed element
to indicate whether the corresponding array element is a
nonzero. Suppose, we have a float (4 bytes per element)
array of size N with nonzero ratio of R. This packing could
reduce the total communication volume to 4RN + N/8
bytes. The corresponding overhead is the time to pack
and unpack the data at sender and receiver side in each
stage of the distributed memory reduction algorithm. To
maximize performance, we use Intel intrinsics to vectorize
the packing/unpacking operations.

Another approach (Idx) is to pack the non-zero array
elements into a new data array and use an auxiliary array to
capture the corresponding indices of the nonzero elements.
For this approach, the communication volume would be
8RN (32-bit values plus 32-bit indices). Based on the

received indices of the nonzero elements, the local reduction
could be performed using scattered indirect data access.

IV. EXPERIMENTAL PLATFORM

We evaluate performance on a HPC platform named Cori
installed at NERSC. Cori consists of two partitions, one
with Intel Xeon “Haswell” (HSW) processors, the other with
Intel Xeon Phi “Knights Landing” (KNL) processors. Both
partitions share the same Cray Aries global interconnect.
In this paper, we use only the KNL partition for all our
experiments.

Each KNL node contains a single, self-hosted Intel Xeon
Phi processor with 68 out-of-order superscalar cores running
at 1.4GHz. Each core has a 32KB L1 data cache, two 512-
bit vector units, and four hardware threads. Each tile (2
cores) includes a 1MB L2 cache. The node contains 16GB of
MCDRAM and 96GB DDR4-2133 memory providing about
350GB/s of MCDRAM and 80GB/s of DDR bandwidth. The
MCDRAM is configured as a direct mapped L3 cache and
the directory is configured for quadrant mode (quadcache).

The programming environment includes the following
modules:

• PrgEnv-intel/6.0.4,
• MPI version : cray-mpich/7.7.0,
• Compiler : intel/18.0.1.163.

In addition, when performance is measured, the following
environment variables are set to enable DMAPP communi-
cation.

• MPICH_NEMESIS_ASYNC_PROGRESS=MC
• MPICH_MAX_THREAD_SAFETY=multiple
• MPICH_USE_DMAPP_COLL=1

Without enabling DMAPP communication, the performance
of MPI Reduce function would be significantly lower. Fi-
nally, environment variable OMP_NUM_THREADS is used to
control the number of OpenMP threads per MPI process.

V. PERFORMANCE OF MICROBENCHMARKS

In this section, we will investigate the performance of
our MPI_Reduce implementations on KNL against
the default Cray MPICH implementation version
cray-mpich/7.7.0 with DMAPP and quantify
the benefit of threading. We start from the large data cases,
then move on to the smaller data sets. Finally, we discuss
the additional benefit from data compression.

A. Performance for Large Data Sets

We collected the performance of different algorithms with
fixed vector size of 200M single-precision floating points
(floats) as this is representative of the vector sizes in the
BIGSTICK application. Figure 6 shows the scaling results
for 2 to 512 MPI processes. To quantify the benefits of
OpenMP more clearly, we always run with one MPI process
per node. This orthogonalizes these forms of parallelism and
ensures there is no subtle tradeoff between MPI parallelism

0.00

0.50

1.00

1.50

2.00

2.50

O
M

P=
1

O
M

P=
2

O
M

P=
4

O
M

P=
8

O
M

P=
1

O
M

P=
2

O
M

P=
4

O
M

P=
8

O
M

P=
1

O
M

P=
2

O
M

P=
4

O
M

P=
8

O
M

P=
1

O
M

P=
2

O
M

P=
4

O
M

P=
8

O
M

P=
1

O
M

P=
2

O
M

P=
4

O
M

P=
8

P=2 P=4 P=16 P=64 P=512

Th
e

Av
er

ag
e

Ti
m

es
 (S

ec
on

ds
)

The Performance of Different Reduce Algorithms for Large Data

Cray Binomial

Redscat Ring

Figure 6. MPI Reduce times on KNL as a function of algorithm,
MPI concurrency (one process per node), and OpenMP parallelization
for N=200M floats. Our Redscat and Ring algorithms deliver superior
performance compared to Cray’s implementation with 1 thread and see
even greater speedup at high thread parallelism.

and OpenMP parallelism. The best Cray MPICH implemen-
tation is labeled Cray, while our three algorithms are labeled
as Binomial, Redscat, and Ring.

Although the array size remains constant with an increas-
ing number of MPI processes, the average total running time
increases. For Redscat and Ring algorithms, the increased
times are mainly due to their latency cost, which increases
logP and P times separately. The bandwidth and local
reduction cost also increase slightly with P−1

P times. For
Binomial algorithm, all three terms increase logP times,
causing its running times jump sharply higher with larger
P .

Observe that OpenMP has no performance effect on
the Cray implementation across all MPI concurrency. Con-
versely, OpenMP can improve MPI_Reduce time for all
three of our algorithms. As the binomial implementation
can become dominated by a large logPγ term, the benefit
of OpenMP is much more pronounced with performance
scaling almost linearly with thread concurrency.

In order to understand performance and scalability, we
breakdown MPI_Reduce time at 512 processes for differ-
ent algorithms and thread concurrency. To that end, Figure 7
breaks time into four components:

• Comm: the MPI time to send and receive data between
processes

• Local: the time to perform the local reduction
• Gather: the MPI time to gather final data blocks into

root process (not applicable to binomial)
• Other: the rest of the running time

We depend on HPCToolkit [1] for profiling the Cray im-
plementation results as we cannot manually add timers to
Cray’s implementation as we did for our implementations.
The MPIC_Sendrecv time is tabulated under Comm time,
the MPIR_SUM time is tabulated under Local time, and

0.00

0.50

1.00

1.50

2.00

2.50

OM
P=
1

OM
P=
2

OM
P=
4

OM
P=
8

OM
P=
1

OM
P=
2

OM
P=
4

OM
P=
8

OM
P=
1

OM
P=
2

OM
P=
4

OM
P=
8

OM
P=
1

OM
P=
2

OM
P=
4

OM
P=
8

Th
e

Av
ae

ra
ge

 T
im

es
 (s

)

RedScat Binomial Ring Cray

The Time Breakdowns for P=512

Comm Local

Gather Other

Cray Time

Figure 7. The time breakdown for different reduction algorithms with
200M element array sizes using 512 processes (one per node) and 8
OpenMP threads per process. The horizontal line is the running time of the
Cray implementation. Observe the high MPI time in the Binomial imple-
mentation and the large and constant local time in the Cray implementation.

the MPIC_Send and MPIC_Recv times are tabulated under
Gather time as they are used only in the gather phase.

There are a couple of key observations. First, local
reduction time is substantial (dominate for Binomial) on
KNL. As such, improving the performance of the local
reduction is imperative. Using multiple OpenMP threads
significantly reduces the local reduction times for Binomial,
Ring, and RedScat algorithms, while it shows no benefit
for the Cray implementations where HPCToolkit showed
local reduction time remained constant across with respect
to OpenMP concurrency.

Second, even without OpenMP parallelism (OMP=1), the
RedScat and Ring algorithms clearly outperform the Cray
implementation. This is mainly due to the following two
reasons. First, the Cray implementation has much higher
Local reduction time, indicating that our highly-tuned, vec-
torized local reduction is much more efficient. Additionally,
the Cray implementation also has much higher Other time.
HPCToolkit profiling results tells that this is caused by the
MPIR_Localcopy function. In MPICH, this function is
used to copy data from sendbuf to recvbuf at the start of the
MPI_Reduce function. In our implementation, this copy
has been removed by explicitly designating whether the
sendbuf or recvbuf will be used in the later stage.

The third observation is that while our RedScat and Ring
implementations perform better than the Cray implementa-
tion, our Binomial implementation performs worse due to its
high local reduction and data movement times (both scaled
by logP in the performance model).

Finally, we observe that increasing OpenMP parallelism
beyond 8 threads (total of 8 cores per node) will de-
liver asymptotic improvements to RedScat performance as

it is dominated by communication. Further performance
improvements can only be through increasing the number of
cores driving the network. Nevertheless, as shown in Table I,
the RedScat implementation delivers the best performance
attaining a 2.1-3.7× speedup over the best Cray implemen-
tation.

Table I
THE SPEEDUP OF OUR RedScat IMPLEMENTATION RELATIVE TO THE

BEST Cray IMPLEMENTATION FOR A 200M VECTOR SIZE AS A
FUNCTION OF MPI (NODE) AND OPENMP (THREAD) CONCURRENCIES.

MPI= OMP=1 OMP=2 OMP=3 OMP=4
2 2.3× 2.6× 3.2× 3.7×
4 2.2× 2.4× 2.9× 3.3×
16 2.1× 2.3× 2.8× 3.1×
64 2.1× 2.3× 2.7× 3.1×

512 2.1× 2.3× 2.7× 3.0×

B. Performance for Small and Medium Data Sets

While it is clear that using more OpenMP threads can
accelerate the local reduction operation for large vector sets,
we are also interested in determining at what vector size
the performance starts to see a benefit from using OpenMP
threads. We measured the performance of all four algorithms
for vector sizes ranging from 4 to 16M floats. Figure 8
shows our best speedup relative to the Cray implementation
as a function of MPI concurrency (one process per node)
and vector size (OpenMP is fixed at 8 threads). Note, we
prefix each entry with a letter to represent the best algorithm
(R=RedScat, C=Cray, B=Binomial, G=Ring).

For small arrays up to 2K floats, the Cray implementation
usually delivers the best performance. This is probably due
to the fact that the Cray implementation uses more efficient
lower-level communication APIs instead of the point-to-
point MPI functions that have much higher overhead. When
vector sizes exceed 512K floats, the Local reduction times
become more important. As such, the RedScat algorithm
starts to perform best and deliver a 2-3× speedup over
the Cray implementation. There exist the transition areas
from small arrays to big arrays, where the Binomial al-
gorithm delivers the best performance. Figure 9 displays
the time breakdowns for 128K floats data size using 16
MPI processes (one per node) and eight OpenMP threads.
Unlike Figure 7, the times are shown in microseconds
instead of seconds. The main reason the Binomial algorithm
outperforms the RedScat in this region is that it eliminates
the relatively expensive gather stage.

C. Performance Effects of Data Compression

Another approach to improving MPI_Reduce perfor-
mance is to compress the data to reduce the communication
volume when the reduced data is sparse (most injected
vector elements are 0.0). We examine performance of two
straightforward algorithms: the Bits and the Idx algorithms.

2 4 16 64 512
Number of Processes

16777216
8388608
4194304
2097152
1048576

524288
262144
131072

65536
32768
16384

8192
4096
2048
1024

512
256
128

64
32
16

8
4

M
es

sa
ge

 S
iz

e

B 3.6 R 3.3 R 3.1 R 3.0 R 2.9
B 3.7 R 3.2 R 3.0 R 2.9 R 2.7
B 3.6 R 3.1 R 2.9 R 2.8 R 2.5
B 3.7 R 3.0 R 2.9 R 2.6 R 2.3
B 3.5 R 2.9 R 2.7 R 2.3 R 1.9
B 3.4 R 2.9 R 2.4 R 2.0 R 1.6
B 3.8 B 2.9 B 2.2 B 1.8 R 1.5
B 4.3 B 3.1 B 2.6 B 2.1 B 1.4
B 3.7 B 2.7 B 2.5 B 2.0 B 1.3
B 2.7 B 2.4 B 2.3 B 1.8 B 1.5
B 2.5 B 2.3 B 2.0 B 1.6 B 1.5
B 2.0 B 2.1 B 1.4 B 1.3 B 1.2
B 2.0 G 2.1 B 1.1 C 1.0 B 1.1
C 1.0 C 1.0 C 1.0 C 1.0 C 1.0
B 2.1 B 1.3 C 1.0 C 1.0 C 1.0
B 1.0 C 1.0 C 1.0 C 1.0 C 1.0
B 1.0 C 1.0 C 1.0 C 1.0 C 1.0
C 1.0 C 1.0 C 1.0 C 1.0 C 1.0
C 1.0 C 1.0 C 1.0 C 1.0 C 1.0
C 1.0 C 1.0 C 1.0 C 1.0 C 1.0
C 1.0 C 1.0 C 1.0 C 1.0 C 1.0
C 1.0 C 1.0 C 1.0 C 1.0 C 1.0
B 1.1 C 1.0 C 1.0 C 1.0 C 1.0

Normalized Best Algorithmic Performance to Cray
(B:Binomial, C:Cray, R:Redscat, G:Ring)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 8. Normalized best algorithmic performance using the Cray
implementation as the baseline for eight OpenMP threads. Note, one process
per node, 8 threads per process, “C”=Cray, “B”=Binomial, “G”=Ring, and
“R”=RedScat.

0

500

1000

1500

2000

2500

Cray Binomial RedScat Ring

Th
e

Av
er

ag
e

Ti
m

es
 (u

s)

The Time Breakdowns for
P=16, #OpenMP=8, Data=128K

Comm Local

Gather Other

Figure 9. The time breakdowns of different reduction algorithms for 128K
floats data size when using 16 processes (one per node) and 8 threads per
process.

Figure 10 shows the average running times of the RedScat
algorithm, where the vector data is compressed using either
the Bits or Idx algorithms. In both cases, we use a uniform
distribution of nonzeros with sparsity (measured upon injec-
tion) ranging from 10% to 90% on vectors of 200M floats.
When the data sparsity is low (left) and the data is mostly
nonzero (dense vectors), the Bits approach outperforms Idx
due to less data being needed in the auxiliary data array. As
the sparsity increases (right) and the vectors become mostly
zero, the difference of these two algorithms shrinks. The
Bits algorithms needs one bit for every elements, so the
auxiliary array size is N/8 bytes while the index array size
is 4N × (1 − Sparsity) for the Idx algorithm, where N
is the array size. The data sparsity needs to be higher than
97% for Idx algorithm to require smaller auxiliary size.

When compared to the baseline (uncompressed) RedScat

0.00

0.10

0.20

0.30

0.40

0.50

0.60

10% 20% 30% 40% 50% 60% 70% 80% 90%

Av
er

ag
e

Ru
nn

in
g

Ti
m

e
(s

)

Data Sparsity

The Performance of Bits and Idx Algorithms Against Baseline

BITS IDX Baseline

Figure 10. The performance of Bits and Idx algorithm for different
data sparsity when P=64 and OpenMP=8 compared to the best (RedScat)
baseline implementation without compression.

2 4 16 64 512
Number of Processes

90%

80%

70%

60%

50%

40%

30%

20%

10%

D
at

a
S

pa
rs

ity

1.46 1.32 1.38 1.44 1.18

1.38 1.32 1.31 1.36 1.07

1.29 1.22 1.22 1.26 1.05

1.20 0.90 1.16 1.19 0.93

1.13 1.02 1.09 1.11 0.69

1.06 0.99 1.03 1.05 0.84

1.00 0.94 0.97 0.98 0.73

0.95 0.89 0.92 0.95 0.69

0.90 0.84 0.87 0.89 0.70

Bits algorithm results relative to performance without compression.

0.75

1.00

1.25

1.50

1.75

2.00

Figure 11. Performance of the Bits implementation relative to no
compression as a function of sparsity and concurrency (one process per
node, 8 threads per process). Observe that to break even (1.0), one needs
increasing sparsity with increasing concurrency.

algorithm, we observe that when the number of nonzeros
falls below 65% (sparsity exceeds 35%), the advantage of
compressing the data starts to appear for the Bits algorithm.
Conversely, for Idx, the number of nonzeros must fall below
35%. Figure 11 shows the performance of Bits algorithm
relative to the case without data compression under different
parallelisms. The higher the concurrency, the higher sparsity
is needed for compression algorithms to outperform the
default.

VI. APPLICATION PERFORMANCE OF BIGSTICK

In this section, we describe how MPI_Reduce is used
in BIGSTICK and why its performance is critical to BIG-
STICK’s scalability. We then quantify the performance
benefits of our newly developed reduction algorithms and
compression techniques on BIGSTICK.

Initial basis vector (vecin)

HBlock(3,3)

Fi
na

l b
as

is
 v

ec
to

r (
ve

co
ut

) Blocks also
represent a
team of MPI
processes
matched to
block
workload

Figure 12. A schematic diagram of the SpMV operation. The application of
the Hamiltonian matrix to the initial basis vector to produce the final basis
vector, is organized as operations from initial fragments to final fragments.

A. BIGSTICK Algorithm Description

BIGSTICK implements the configuration interaction
method on large-scale, distributed memory platforms. It uses
the iterative Lanczos algorithm to solve the matrix form
of the the non-relativistic nuclear many-body Schrodinger
equation [7]. Its dominant computation is essentially a
sparse matrix-vector multiplication between the Hamiltonian
matrix(H) and the basis vectors. The matrix and basis vector
sizes could be very large, up to tens of billions. To reduce
the memory pressure, the non-zero matrix elements are
computed on the fly (i.e. it is not CSR) and only the data
structure information necessary to reconstruct the matrix is
stored. This reduces the memory capacity requiredment by
100-1000×. Nevertheless, the memory requirements remain
immense and can be challenging to distribute among pro-
cesses. As a result, we are often limited to running only one
or a few processes per node.

To partition the workload evenly among all the processes,
the basis vector is divided into fragments based upon the
proton substate eigenvalue Mp, which is the z component
of angular momentum for the proton substate. Once the basis
state vectors are divided into F fragments, the Hamiltonian
matrix will be divided into F × F blocks correspondingly.
Figure 12 illustrates this process.

Each block (i, j) includes all the jump operations from
fragment i of the input basis state vector to fragment
j of the output vector. Because of physical constraints,
mostly quantum selection rules, the nonzero matrix elements
(including the data required to reconstruct those nonzero
matrix elements on the fly) are not uniformly distributed
with the basis elements. To aid in distributing work and
memory, the control information for reconstructing matrix
elements is contained in data structures we call bundles.

We can exactly predict the number of operations in a block
of Figure 12 (by operation we mean reconstruction and ap-
plication of a matrix element) from the bundle information.
MPI processes are assigned to blocks based on the amount
of associated work required for the blocks. All processes

assigned to the same block form a team. The operations
and associated data will be evenly distributed among the
team members. Figure 12 shows the MPI processes divided
into a two dimensional array of teams. Each MPI process
now owns a set of unique bundles and stores one copy of a
fragment of the input and output vectors.

All the processes in a row will form a row communicator
so that after the matrix-vector local computation, the results
could be reduced using the sum operation to the root process.
Then the results will be broadcasted in the column direction
using column communicator. Therefore, the root process
must be selected from the diagonal block and its rank in the
global communicator will not necessary be 0. All the row
communicators will communicate at the same time while
overlapping with some column communicators.

When more processes are used, each block will be as-
signed more processes and correspondingly each process
in the block will get less work. However, the data size in
MPI_Reduce function won’t change (we’re only increasing
the 0.5D axis of a 2.5D decomposition). As more processes
participate in this collective operation, its running time
grows quickly and can ultimately become the scaling bottle-
neck. Further performance characteristics of BIGSTICK and
implementation details could be found in paper [16], [15].

B. BIGSTICK Performance

Our test problem is 130Cs which has 5 valence protons
and 27 neutrons, with a frozen 100Sn core. The basis
vector size is 10.6 billion and there are approximately
2.4 × 1012 nonzero matrix elements. The benchmark is
run with five Lanczos steps as each step takes similar
running time. We focus on our Redscat algorithm as it
delivers the best performance for large data sizes and higher
concurrencies. Figure 13 shows the total MatVec times and
the corresponding MPI_Reduce times for the Cray and
our RedScat algorithms. The performance is for 2048 MPI
processes with 4 processes running on a node. The reduce
vector size is about 200M floats.

Our Redscat algorithm performs significantly better than
the default Cray implementation. The performance speedup
increases from 1.2× when using one OpenMP thread to
2.6× when using 16 OpenMP threads. The total MatVec
time improvements are completely due to the underlying
different MPI_Reduce implementation.

Figure 14 shows a detailed timing breakdown when using
2048 MPI processes as a function of the number of threads.
Similar to the RedScat results in Figure 7, the Local time
scales almost linearly with the number of OpenMP threads.
One may attribute the mere 1.3× speedup between 1 and
2 threads to OpenMP overhead. Unlike the RedScat data in
Figure 7, the Other times become much more significant.
This is related with the properties of the row communicator.
In Figure 7, the size of the MPI communicator is 512 —
a power of 2. In Figure 14, although the total number of

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

1 2 4 8 16

Sp
ee

du
p

fo
r T

ot
al

 M
at

Ve
c

Ti
m

es

Th
e

Av
er

ag
e

Ti
m

es
(s

)

The OpenMP Concurrency

The Total MatVec and MPI_Reduce Times

Total MatVec (Cray)
Total MatVec (RedScat)
MPI_Reduce (Cray)
MPI_Reduce (RedScat)
MatVec Speedup

Figure 13. BIGSTICK total MatVec and MPI_Reduce time as a function
of algorithms and threading for a fixed 2048 processes with 4 process per
node. Observe that we attain substantially better performance over using
the Cray implementation by optimizing the reduction.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

OMP=1 OMP=2 OMP=4 OMP=8 OMP=16

Th
e

Av
er

ag
e

Ti
m

es
 (s

)

Time Breakdown for BIGSTICK

Comm Local Gather Other

Figure 14. Time breakdown of MPI_Reduce in BIGSTICK for our
RedScat implementation using 2048 MPI processes with 4 processes per
node.

processes is a power of 2 (2048), the size of each row
communicator is not a power of 2 as it is determined based
on the workload distribution. Therefore, as we described
in Section III, an extra step is needed to pair some of the
processes so that the total number of processes participated
in the reduce-scatter phase will be the nearest lower power
of two. This extra step is non-trivial and its time is included
in the Other portions.

C. Data Compression

We also measured the performance effect of using data
compression. Figure 16 shows the MPI_reduce times
for the Bits and Idx compression methods and compares
to the baseline (no compression). The average nonzeros
constitute 8% of each vector on average. The Idx method
has the highest running times. The Bits method performs
a little better then the baseline results, not so significantly

0 500 1000 1500 2000
Process Ranks

20%

30%

40%

50%

60%

70%

80%

90%

100%

Da
ta

 S
pa

rs
ity

Figure 15. The data sparsity for BIGSTICK MPI_Reduce operation
across MPI processes. Each dot represents one MPI process plotted at its
MPI rank and sparsity for its 200M float vector. Observe there are only
a few processes that inject very dense vectors while most processes inject
very few nonzeros.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 4 8 16

Th
e

Av
er

ag
e

Re
du

ce
 T

im
es

 (s
)

The OpenMP Conrrencies

The Performance Effect of Data Compression for BIGSTICK

Idx Bits Baseline

Figure 16. The performance effect of the Bits and Idx data compression
methods compared to the default baseline (no compression).

as expected. Figure 15 displays the data sparsity for the
2048 MPI processes. We see that a couple of processes have
very high nonzero density (low sparsity), which is different
from our micro benchmarks where all processes have similar
nonzero density. A single process in a subcommunicator
injecting a dense vector can quickly destroy the bandwidth
advantage of compression. A single slow subcommunicator
can slow the entire iterative solver. This density imbalance
destroys the performance advantage one would hope for
from the 10% nonzero global average density.

VII. CONCLUSIONS

In this work, we developed and evaluated new tech-
niques that exploit the massive thread parallelism available
on KNL processors to improve the overall MPI_Reduce
performance. Results showed that this approach is very
effective and promising, especially for large vector sizes,
and is capable of delivering up to 4× better performance.
We then evaluated these techniques within the BIGSTICK
application attaining a speedup of 2.6×. We’ve also applied
similar changes to MPI_Allreduce and looking for more
applications for evaluation.

Our future work is four-fold. First, we see the need
to develop better algorithms to address the non-power-of-
two cases to alleviate the overhead of pairing, and develop
a hierarchical scheme that combines the advantages of
the different algorithms presented in this paper. Second,
we will deploy new optimizations in our implementations.
This includes improving the point-to-point communication
both inside a node with direct read and write data access
as well as between nodes, exploring alternate partitioning
mechanisms that balance the benefits from compression and
decomposition of nonzeros against the cost of injecting
dense vectors into the reduction network, and exploring
more complex, compression techniques amenable to both
reductions on floating-point and graph analytic data. Third,
we will expand our evaluation methodology to include other
HPC platforms (e.g. Infiniband FatTrees) and commodity
clusters to quantify the benefits of algorithms, implemen-
tations, and compression. Finally, we will integrate and
evaluate our threaded reduction into other applications and
domains.

ACKNOWLEDGEMENTS

This material is based upon work supported by the Ad-
vanced Scientific Computing Research Program in the U.S.
Department of Energy, Office of Science, under Award Num-
ber DE-AC02-05CH11231. This research used resources of
the National Energy Research Scientific Computing Center
(NERSC), which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

REFERENCES

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin,
J. Mellor-Crummey, and N. R. Tallent. HPCToolkit: Tools
for performance analysis of optimized parallel programs.
Concurrency and Computation. In Practice and Experience,
22(6), pages 685–701, 2010.

[2] BIGSTICK. http://github.com/cwjsdsu/BigstickPublick/.

[3] A. Faraj and X. Yuan. Automatic Generation and Tuning of
MPI Collective Communication Routines. ICS 05, 2005.

[4] M. Hofmann and G. Rnger. MPI Reduction Operations for
Sparse Floating-point Data. Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pages 94–
101, 2008.

[5] N. Jain, A. Bhatele, N. J. W. Xiang Ni, and L. V. Kale.
Maximizing Throughput on a Dragonfly Network. The
International Conference for High Performance Computing,
Networking, Storage and Analysis, 2014.

[6] C. Johnson, W. E. Ormand, K. S. McElvain, and H. Shan.
Bigstick: A flexible configuration-interaction shell-model
code. arXiv:1801:08432.

[7] C. W. Johnson, W. E. Ormand, and P. G. Krastev. Factoriza-
tion in large-scale many-body calculations. Computer Physics
Communications, 184:2761–2774, 2013.

[8] K. Kandalla, H. Subramoni, A. Vishnu, and D. K. D. Pan-
daj. Designing Topology-Aware Collective Communication
Algorithms for Large Scale InfiniBand Clusters: Case Studies
with Scatter and Gather. IEEE International Symposium
on Parallel and Distributed Processing, Workshops and Phd
Forum (IPDPSW), 2010.

[9] K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri,
D. Bureddy, and D. K. Panda. Designing Optimized MPI
Broadcast and Allreduce for Many Integrated Core (MIC)
InfiniBand Clusters. In 2013 IEEE 21st Annual Symposium
on High-Performance Interconnects, 2013.

[10] S. Kumar, A. Mamidala, P. Heidelberger, D. Chen, and
D. Faraj. Optimization of MPI collective operations on the
IBM Blue Gene/Q supercomputer. International Journal
of High Performance Computing Applications, 28:450–464,
2014.

[11] MPICH is a high performance and widely portable imple-
mentation of the message passing interface (mpi) standard.
https://github.com/pmodels/mpich.

[12] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg,
E. Gabriel, and J. J. Dongarra. Performance Analysis of MPI
Collective Operations. Cluster Computing, June 2007, Volume
10, Issue 2, PP127-143.

[13] R. Rabenseifner. Automatic MPI counter profiling of all users:
First results on a CRAY T3E 900-512. n Proceedings of the
Message Passing Interface Developers and Users Conference
1999 (MPIDC 99), pages 77–85, 1999.

[14] R. Rabenseifner and J. L. TrŁff. More efficient reduc-
tion algorithms for non-powerof-two number of processors
in message-passing parallel systems. Proceedings of Eu-
roPVM/MPI. Lecture Notes in Computer Science, Springer-
Verlag, 2004.

[15] H. Shan, S. Williams, C. Johnson, and K. McElvain. A
Locality-based Threading Algorithm for the Configuration-
Interaction Method. In Parallel and Distributed Scientific and
Engineering Computing (PDSEC), June 2017.

http://github.com/cwjsdsu/BigstickPublick/
https://github.com/pmodels/mpich

[16] H. Shan, S. Williams, C. Johnson, K. McElvain, and E. Or-
mand. Parallel Implementation and Performance Optimization
of the Configuration-Interaction Method. In SC ’15 Proceed-
ings of 2015 International Conference for High Performance
Computing, Networking, Storage and Analysis, November
2015.

[17] S. Sistare, R. vandeVaart, and E. Loh. Optimization of MPI
collectives on clusters of large-scale SMPs. In Proceedings of
SC99: High Performance Networking and Computing, 1999.

[18] High Performance SParse Communication for Machine
Learning. https://arxiv.org/pdf/1802.08021.pdf.

[19] R. Thakur and W. Gropp. Improving the Performance of
Collective Operations in MPICH. 10th European PVM/MPI
User’s Group Meeting, 2003.

[20] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of
Collective Communication Operations in MPICH. Interna-
tional Journal of High Performance Computing Applications,
Spring 2005, Vol. 19, 2005.

[21] V. Tipparaju, J. Nieplocha, and D. K. Panda. Fast collective
operations using shared and remote mem- ory access pro-
tocols on clusters. In Proceedings of the 7th International
Parallel and Distributed Process- ing Symposium (IPDPS 03),
2003.

[22] J. L. TrŁff. Transparent neutral element elimination in
mpi reduction operations. Recent Advances in the Message
Passing Interface, pages 275–284, 2010.

https://arxiv.org/pdf/1802.08021.pdf

APPENDIX

This artifact contains the compiler and environment de-
scriptions and the instructions to reproduce the results.

A. Obtaining the Code

Our work need the following source codes:
• The MPI Reduce benchmark: available from Bitbucket

: git@bitbucket.org:shz0116/myreduce.git
• Application Bigstick: available from Github :

http://github.com/cwjsdsu/BigstickPublick/
• Profiling Tool HPCToolkit: available from

http://hpctoolkit.org/software.html

B. Hardware dependencies

The platform we used is located at NERSC, called cori.
More details regarding how to use this platform can be found
at http://www.nersc.gov/systems/cori/.

C. Software dependencies

The results are collected on Cori using following modules:
• Compiler: intel/18.0.1.163
• MPI Version: cray-mpich/7.7.0
• Programming Environment: PrgEnv-intel/6.0.4

D. More Description

There is a Makefile in the src directory of Bigstick. Just
type ”make cori-openmp-mpi”, Bigstick will automatically
compiled the code to generate the executable file. Execution
of Bigtsick needs an input file to define the data set.

The MPI_Reduce benchmark can be directly compiled
and linked with ”cc” command. To run this benchmark,
it requires the following parameters ”Algorithm, Compress
Approach, Data Size”. If no explicit ”Data Size” is given,
the program will run default data range from 4 to 16 million
floating points.

The compiling and usage of HPCToolkit can be referenced
from hpctoolkit.org.

The timing information are reported at the end of each
run.

We plan to create a reproductivity directory to include all
the job scripts and related python tools for post-processing
in the repository.

