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Background



Why Use Performance Models or Tools?
§ Identify performance bottlenecks

§ Motivate software optimizations

§ Determine when we’re done optimizing
• Assess performance relative to machine capabilities

• Motivate need for algorithmic changes

§ Predict performance on future machines / architectures

• Sets realistic expectations on performance for future procurements

• Used for HW/SW Co-Design to ensure future architectures are well-suited for the 

computational needs of today’s applications.
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Performance Models

6

#FP operations

Cache data movement

DRAM data movement

PCIe data movement

Depth

MPI Message Size

MPI Send:Wait ratio

#MPI Wait’s

Flop/s

Cache GB/s

DRAM GB/s

PCIe bandwidth

OMP Overhead

Network Bandwidth

Network Gap

Network Latency

§ Many different components can contribute to kernel run time.

§ Some are application-specific, and some architecture-specific.



Performance Models
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§ Can’t think about all these terms all the time for every application…

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Computational
Complexity



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogP

Culler, et al, "LogP: a practical model of parallel computation", 
CACM, 1996.



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogGP

Alexandrov, et al, "LogGP: incorporating long messages into 
the LogP model - one step closer towards a realistic model for 
parallel computation", SPAA, 1995.



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Roofline
Model

Williams et al, "Roofline: An Insightful Visual Performance 
Model For Multicore Architectures", CACM, 2009.



Performance Models / Simulators
§ Historically, many performance models and simulators tracked time to 

predict performance (i.e. counting cycles)

§ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)
• HW stream prefetching (hardware speculatively loads data)
• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

§ … resulted in a shift from a latency-limited computing regime to a 
throughput-limited computing regime
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Roofline Model
§ Roofline Model is a throughput-

oriented performance model…
• Tracks rates not times
• Augmented with Little’s Law

(concurrency = latency*bandwidth) 
• Independent of ISA and architecture (applies 

to CPUs, GPUs, Google TPUs1, etc…)

13
1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor 
Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/


Roofline Model:
Arithmetic Intensity and Bandwidth



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite reuse and 

bandwidth limit performance.
§ Assuming perfect overlap of 

communication and computation…

15

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

#FP ops / Peak GFlop/s
Time = max

#Bytes / Peak GB/s



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite reuse and 

bandwidth limit performance.
§ Assuming perfect overlap of 

communication and computation…
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CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

1 / Peak GFlop/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite reuse and 

bandwidth limit performance.
§ Assuming perfect overlap of 

communication and computation…
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CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFlop/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite reuse and 

bandwidth limit performance.
§ Assuming perfect overlap of 

communication and computation…
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CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFlop/s
GFlop/s = min

AI * Peak GB/s
Note, Arithmetic Intensity (AI) = Flops / Bytes (as presented to DRAM )



(DRAM) Roofline
§ Plot Roofline bound using 

Arithmetic Intensity as the x-axis
§ Log-log scale makes it easy to 

doodle, extrapolate performance 
along Moore’s Law, etc…

§ Kernels with AI less than machine 
balance are ultimately DRAM 
bound (we’ll refine this later…)
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Roofline Example #1
§ Typical machine balance is 5-10 

flops per byte…
• 40-80 flops per double to exploit compute capability
• Artifact of technology and money
• Unlikely to improve

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.083 flops per byte == Memory bound
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TRIAD

Gflop/s ≤ AI * DRAM GB/s

#pragma omp parallel for
for(i=0;i<N;i++){
Z[i] = X[i] + alpha*Y[i];

}

0.083

Peak Flop/s



Roofline Example #2
§ Conversely, 7-point constant 

coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• AI = 0.11 flops per byte (L1)

21

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)



Roofline Example #2

22

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

CPU
(compute, flop/s)

CACHE
(only compulsory misses)

Cache Bandwidth
(GB/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

§ Conversely, 7-point constant 
coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• Cache can filter all but 1 read and 1 write per point
• AI = 0.44 flops per byte



Roofline Example #2
§ Conversely, 7-point constant 

coefficient stencil…
• 7 flops

• 8 memory references (7 reads, 1 store) per point

• Cache can filter all but 1 read and 1 write per point

• AI = 0.44 flops per byte == memory bound,
but 5x the flop rate
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7-point
Stencil

Gflop/s ≤ AI * DRAM GB/s

TRIAD

Arithmetic Intensity (Flop:Byte)
0.083 0.44

Peak Flop/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}



Refining Roofline:
Memory Hierarchy



Hierarchical Roofline
§ Processors have multiple levels of 

memory/cache
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications have locality in each level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have a unique 

bandwidth
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CPU

L1 D$

DRAM

L2 D$

MCDRAM

Bandwidth

L1 GB/s

L2 GB/s

MCDRAM GB/s

DRAM GB/s

Data Movement

L1 GB

L2 GB

MCDRAM GB

DRAM GB



Hierarchical Roofline
§ Processors have multiple levels of 

memory/cache
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications have locality in each level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have a unique 

bandwidth
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DRAM

L2 D$

MCDRAM

Arithmetic Intensity

GFlop/s
L1 GB/s

GFlop/s
L2 GB/s

GFlop/s
MCDRAM GB/s

GFlop/s
DRAM GB/s

Data Movement

L1 GB

L2 GB

MCDRAM GB

DRAM GB



Hierarchical Roofline
§ Processors have multiple levels of 

memory/cache
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications have locality in each level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have a unique 

bandwidth
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CPU

L1 D$

DRAM

L2 D$

MCDRAM

Arithmetic Intensity

GFlop/s
L1 GB/s

GFlop/s
L2 GB/s

GFlop/s
MCDRAM GB/s

GFlop/s
DRAM GB/s

Arithmetic Intensity

GFlop’s
L1 GB

GFlop’s
L2 GB

GFlop’s
MCDRAM GB

GFlop’s
DRAM GB



DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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DDR G
B/s

MCDRAM ca
ch

e G
B/s

MCDRAM bound
MCDRAM AI*BW <

DDR AI*BW 

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure bandwidth

§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum

30

A
tta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

L2
 G

B/s

Peak Flop/s



DDR G
B/s

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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Peak Flop/s
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NUMA Effects
§ Cori’s Haswell nodes are built 

from 2 Xeon processors (sockets)
• Memory attached to each socket (fast)

• Interconnect that allows remote memory 
access (slow == NUMA)

• Improper memory allocation can result in 
more than a 2x performance penalty
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constrained



Refining Roofline:
In-core Effects



In-Core Parallelism
§ We have assumed one can attain peak flops with high locality.
§ In reality, we must …

• Vectorize loops (16 flops per instruction)
• Use special instructions (e.g. FMA)
• Ensure FP instructions dominate the instruction mix
• Hide FPU latency (unrolling, out-of-order execution)
• Use all cores & sockets

§ Without these, …
• Peak performance is not attainable
• Some kernels can transition from memory-bound to compute-bound
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Data Parallelism (e.g. SIMD)
§ Most processors exploit some 

form of SIMD or vectors.
• KNL uses 512b vectors (8x64b)

• GPUs use 32-thread warps (32x64b)

§ In reality, applications are a mix of 
scalar and vector instructions.
• Performance is a weighted average 

between SIMD and no SIMD
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Data Parallelism (e.g. SIMD)
§ Most processors exploit some 

form of SIMD or vectors.
• KNL uses 512b vectors (8x64b)

• GPUs use 32-thread warps (32x64b)

§ In reality, applications are a mix of 
scalar and vector instructions.
• Performance is a weighted average 

between SIMD and no SIMD

Ø There is an implicit ceiling based on 
this weighted average
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Partial
vectorization
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Return of CISC
§ Modern CPUs and GPUs are increasingly reliant on special (fused) 

instructions that perform multiple operations.
o FMA (Fused Multiply Add): z=a*x+y …z,x,y are vectors or scalars
o 4FMA (quad FMA): z=A*x+z …A is a FP32 matrix; x,z are vectors
o WMMA (Tensor Core): Z=AB+C …Z,A,B,C are FP16 matrices

§ n.b., this is orthogonal to SIMD where the the same operation(s) is 
applied to a vector of operands.

37

Ø Performance is now a weighted average of scalar, vector, FMA, and 
WMMA operations. 



Return of CISC
§ Total lack of FMA reduces 

performance by 2x on KNL.

(4x on Haswell)
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Partial FMA

§ In reality, applications are a mix of 

FMA, FAdd, and FMul.

• Performance is a weighted average

Ø There is an implicit ceiling based on 
this weighted average



Return of CISC
§ On Volta, Tensor cores can 

provide 100TFLOPs of FP16 
performance
(vs. 7.5 TFLOPS for DP FMA)
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§ Observe, machine balance has 
now grown to …

100 TFLOP/s / 800 GB/s
= 125 FP16 per byte !!



Floating-Point Divides
§ Although many processors support a Floating-point divide instruction, 

most implement divides through a sequence of FP instructions
o rcp (reciprocal estimate to k bits)
o Newton-Raphson iterations (mul+FMA) to recover full precision

§ All of these instructions can be pipelined and/or executed out of order

40

Ø FP Divides increase arithmetic intensity and increase raw Flop 
rates.



Floating-Point Divides
§ #FP operations deduced from 

source code can be an 
underestimate…
o FP Divides require 10+ instructions on 

KNL and GPUs.
o These must be included in both AI and 

Flop/s to affect proper Roofline analysis
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Peak Flop/s

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/s

No FMA

Ø As a result, AI and performance both 
increase and one can be compute-
bound

Arithmetic Intensity (Flop:Byte)



Superscalar vs. Instruction mix
§ Superscalar processors have finite instruction fetch/decode/issue 

bandwidth (e.g. 4 instructions per cycle)
§ Moreover, the number of FP units dictates the FP issue rate required to 

hit peak (e.g. 2 vector instructions per cycle)

42

Ø Ratio of these two rates is the FP instruction fraction required to 
hit peak



Superscalar vs. Instruction mix
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§ Haswell CPU
• 4-issue superscalar
• Only 2 FP data paths
• Requires 50% of the instructions to be FP 

to get peak performance



Superscalar vs. Instruction mix
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§ Conversely, on KNL…
• 2-issue superscalar
• 2 FP data paths
• Requires 100% of the instructions to be 

FP to get peak performance

§ Haswell CPU
• 4-issue superscalar
• Only 2 FP data paths
• Requires 50% of the instructions to be FP 

to get peak performance



Superscalar vs. Instruction mix
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§ Conversely, on KNL…
• 2-issue superscalar
• 2 FP data paths
• Requires 100% of the instructions to be 

FP to get peak performance

§ Haswell CPU
• 4-issue superscalar
• Only 2 FP data paths
• Requires 50% of the instructions to be FP 

to get peak performance



Superscalar vs. Instruction mix
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non-FP instructions 
sap issue bandwidth 
and pull performance 

below the Roofline

§ Conversely, on KNL…
• 2-issue superscalar
• 2 FP data paths
• Requires 100% of the instructions to be 

FP to get peak performance
Ø Codes that would have been memory-

bound are now decode/issue-bound.

§ Haswell CPU
• 4-issue superscalar
• Only 2 FP data paths
• Requires 50% of the instructions to be FP 

to get peak performance



Superscalar vs. Instruction mix
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6% FP (94% int)

≥25% FP

§ On Volta, each SM is partitioned 
among 4 warp schedulers

§ Each warp scheduler can 
dispatch 32 threads per cycle

§ However, it can only execute 8 
DP FP instructions per cycle.

§ i.e. there is plenty of excess 
instruction issue bandwidth 
available for non-FP instructions.



Refining Roofline:
Locality Effects



Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
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Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses

§ However, write allocate caches 
can lower AI
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Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
§ However, write allocate caches 

can lower AI
§ Cache capacity misses can have 

a huge penalty
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Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
§ However, write allocate caches 

can lower AI
§ Cache capacity misses can have 

a huge penalty
Ø Compute bound became 

memory bound
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!Know the theoretical

bounds on your AI.



Overview of Roofline 
Methodology



Machine Characterization

54

§ “Theoretical Performance” numbers can be highly optimistic…
• Pin BW vs. sustained bandwidth
• TurboMode at low concurrency
• Underclocking for AVX
• Compiler failing on high-AI loops.

Ø Take marketing numbers with a grain of salt



Machine Characterization
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§ To create a Roofline model, we must benchmark…
o Sustained Flops

• Double/single/half precision

• With and without FMA (e.g. compiler flag)

• With and without SIMD (e.g. compiler flag)

o Sustained Bandwidth
• Measure between each level of memory/cache

• Iterate on working sets of various sizes and identify plateaus

• Identify bandwidth asymmetry (read:write ratio)

§ Benchmark must run long enough to observe effects of power throttling



Measuring Application AI and Performance
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§ To characterize execution with Roofline we need…
o Time
o Flops (=> flop’s / time)
o Data movement between each level of memory (=> Flop’s / GB’s)

§ We can look at the full application…
o Coarse grained, 30-min average
o Misses many details and bottlenecks

§ or we can look at individual loop nests…
o Requires auto-instrumentation on a loop by loop basis
o Moreover, we should probably differentiate data movement or flops on a core-by-core basis.



How Do We Count Flop’s?
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Manual Counting
§ Go thru each loop nest and 

count the number of FP 
operations

ü Works best for deterministic 
loop bounds

ü or parameterize by the 
number of iterations 
(recorded at run time)

✘ Not scalable

Perf. Counters
§ Read counter before/after

ü More Accurate

ü Low overhead (<%) == can 
run full MPI applications

ü Can detect load imbalance
✘ Requires privileged access

✘ Requires manual 
instrumentation (+overhead) 
or full-app characterization 

✘ Broken counters = garbage
✘ May not differentiate 

FMADD from FADD

✘ No insight into special 
pipelines

Binary Instrumentation
§ Automated inspection of 

assembly at run time

ü Most Accurate

ü FMA-, VL-, and mask-aware

ü Can count instructions by 
class/type

ü Can detect load imbalance

ü Can include effects from 
non-FP instructions

ü Automated application to 
multiple loop nests

✘ >10x overhead (short runs / 
reduced concurrency)



How Do We Measure Data Movement?
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Manual Counting
§ Go thru each loop nest and 

estimate how many bytes 
will be moved

§ Use a mental model of 
caches

ü Works best for simple loops 
that stream from DRAM 
(stencils, FFTs, spare, …)

✘ N/A for complex caches

✘ Not scalable

Perf. Counters
§ Read counter before/after
ü Applies to full hierarchy (L2, 

DRAM, 
ü Much more Accurate
ü Low overhead (<%) == can 

run full MPI applications
ü Can detect load imbalance
✘ Requires privileged access
✘ Requires manual 

instrumentation (+overhead) 
or full-app characterization 

Cache Simulation
§ Build a full cache simulator 

driven by memory 
addresses

ü Applies to full hierarchy and 
multicore

ü Can detect load imbalance
ü Automated application to 

multiple loop nests
✘ Ignores prefetchers
✘ >10x overhead (short runs / 

reduced concurrency)



Roofline-Driven 
Optimization



Why is Roofline Useful?
§ Imagine a mix of loop nests
§ Flop/s alone may not be useful in 

deciding which to optimize first
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Why is Roofline Useful?
§ We can sort kernels by AI …
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Why is Roofline Useful?
§ We can sort kernels by AI …
§ … and compare performance 

relative to machine capabilities

62

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)



Why is Roofline Useful?
§ Kernels near the roofline are 

making good use of 
computational resources
o kernels can have low performance 

(Gflop/s), but make good use of a 
machine

o kernels can have high performance 
(Gflop/s), but make poor use of a 
machine
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Tracking Progress Towards Optimality
§ One can conduct a Roofline 

optimization after every 
optimization (or once per quarter)
o Tracks progress towards optimality
o Allows one to quantitatively speak to 

ultimate performance / KPPs
o Can be used as a motivator for new 

algorithms.
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Roofline Scaling Trajectories

65

§ Often, one plots performance as a 
function of thread concurrency
o Carries no insight or analysis
o Provides no actionable information.
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Roofline Scaling Trajectories
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§ Often, one plots performance as a 
function of thread concurrency
o Carries no insight or analysis
o Provides no actionable information.

§ Khaled Ibrahim developed a new 
way of using Roofline to analyze 
thread (or process) scalability
o Create a 2D scatter plot of performance 

as a function of AI and thread 
concurrency

o Can identify loss in performance due to 
increased cache pressure

Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A Method 
for Parallel Application and Architectural Performance Analysis", HPCS Special Session on 
High Performance Computing Benchmarking and Optimization (HPBench), July 2018.
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Roofline Scaling Trajectories
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§ Observe…
o AI (data movement) varies with both 

thread concurrency and problem size
o Large problems (green and red) move 

much more data per thread, and 
eventually exhaust cache capacity

o Resultant fall in AI means they hit the 
bandwidth ceiling quickly and degrade.

o Smaller problems see reduced AI, but 
don’t hit the bandwidth ceiling
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Driving Performance Optimization
§ Broadly speaking, there are three 

approaches to improving 
performance:
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Driving Performance Optimization
§ Broadly speaking, there are three 

approaches to improving 
performance:

§ Maximize in-core performance 
(e.g. get compiler to vectorize)
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Driving Performance Optimization
§ Broadly speaking, there are three 

approaches to improving 
performance:

§ Maximize in-core performance 
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth 
(e.g. NUMA-aware, unit-stride)
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Driving Performance Optimization
§ Broadly speaking, there are three 

approaches to improving 
performance:

§ Maximize in-core performance 
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth 
(e.g. NUMA-aware, unit stride)

§ Minimize data movement
(e.g. cache blocking)

71

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
om

pu
ls

or
y 

AI

C
ur

re
nt

 A
I



Summary



Summary

§ In this talk, we introduced several concepts…
o Basic terminology (bandwidth, flop/s, arithmetic intensity)
o How to refine the Roofline to account for the memory hierarchy
o How to refine the Roofline to account for complex core architectures
o How to map the 3Cs of Caches onto the Roofline model
o General approaches to constructing a Roofline model for a machine and application
o How to use the Roofline model
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