.| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

S
T i B
G e\

) <%

s O8>

Performance Tuning of Scientific
Codes with the Roofline Model

8:30am
8:35am
9:15am
10:00am
10:30am
11:15am
11:55pm

Welcome/Introductions

Roofline Introduction

Roofline on GPU-accelerated Systems
break
Roofline on CPU-based Systems
HPC Application Studies

closing remarks / Q&A

all
Samuel Williams
Charlene Yang

SEIMIEIRWVAETE
Jack Deslippe
all

>
]

«| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Introduction to the
Roofline Model

Samuel Williams

Computational Research Division
Lawrence Berkeley National Lab

mailto:SWWilliams@lbl.gov

S

«| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

S5, U.S. DEPARTMENT OF

5 %
e\ 9
‘/4\ <%

Acknowledgements

= This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

» This material is based upon work supported by the DOE RAPIDS SciDAC Institute.

= This research used resources of the National Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

SH%% U.S. DEPARTMENT OF

i BERKELEY LAB) ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Background

Why Use Performance Models or Tools?

= |dentify performance bottlenecks
= Motivate software optimizations

= Determine when we’re done optimizing

« Assess performance relative to machine capabilities
« Motivate need for algorithmic changes

* Predict performance on future machines / architectures

« Sets realistic expectations on performance for future procurements

« Used for HW/SW Co-Design to ensure future architectures are well-suited for the
computational needs of today’s applications.

= A
; P L

BERKELEY LAB

Performance Models

= Many different components can contribute to kernel run time.
= Some are application-specific, and some architecture-specific.

#FP operations Flop/s

Cache data movement Cache GB/s

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead

MPI| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
... #MPI Wait's.. Network Latency. ...

Performance Models

= Can't think about all these terms all the time for every application...

Computational _________ o ____

Complexity ~~ #FP operations Flop/s !

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead
MPI| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
... #MPI Wait's.. Network Latency. ...

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations Flop/s

Cache data movement Cache GB/s

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead

MP| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
... #MPI Wait's.. Network Latency. | ...

Culler, et al, "LogP: a practical model of parallel computation”,
CACM, 1996.

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations Flop/s
Cache data movement Cache GB/s
DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
______________ Depth. OMP Overhead ____
" MPI Message Size Network Bandwidth "
' MPI Send:Wait ratio Network Gap

.. l o #MPI Wait's Network Latency

Alexandrov, et al, "LogGP: mcorporatlng-lorrg-messagesmto --------------------------- g
the LogP model - one step closer towards a realistic model for 9
parallel computation”, SPAA, 1995.

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

- - - O B B S EEE EEE EEE EEE EEE SEE SEE EEE S SEE EEE SEE SEE BEE SEE SEE BEm EEE SEE BEm EEm SEm BEe S BEe B S E

] #FP operations Flop/s
'Cache data movement Cache GB/s
DRAM data movement DRAM GB/s |
PCle data movement PCie bandwidth
Depth OMP Overhead
MPI| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap

... #MPI Wait's.. Network Latency. ...

Williams et al, "Roofline: An Insightful Visual Performance
Model For Multicore Architectures”, CACM, 20009.

y Roofline
: Model

11

Performance Models / Simulators

= Historically, many performance models and simulators tracked time to
predict performance (i.e. counting cycles)

= The last two decades saw a number of latency-hiding techniques...

« Out-of-order execution (hardware discovers parallelism to hide latency)
 HW stream prefetching (hardware speculatively loads data)
« Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

= ... resulted in a shift from a latency-limited computing regime to a
throughput-limited computing regime

— A
12 rr/r>| "“|

BERKELEY LAB

Roofline Model

°
®
B
B
{l
®

& crd.lbl.gov (@] ﬁ g R

= Roofline Model is a throughput- Py

COMPUTATIONAL RESEARCH
BERKELEY LAB

oriented performance model...

CRD A PERFORMANCE AND ALGORITHMS RESEARCH STAFF RESEARCH PUBLICATIONS
—

Home » Performance and Algorithms Research » Research » Roofline

 Tracks rates not times

Performance and Algorithms Research

 Augmented with Little’s Law

g ovance Roofline Performance Model

ALGORITHMS

RESEARCH Roofline is a visually intuitive performance model used to bound the performance of various numerical methods and operations running on
— * . Ragearch i or p Rather than simply using percent-of-peak estimates, the model can be used to
CO n C u rre n Cy — a e n Cy a n W I T assess the quality of attained performance by combining locality, idth, and different izati i into a single
performance figure. One can examine the resultant Roofline figure in order to determine both the implementation and inherent performance
BeBOP limitations.
EDGAR
. . GRS Arithmetic Intensity
. I n d e e n d e n t Of I SA a n d a rC h I te Ct u re a I I e S HPGMG The core parameter behind the Roofline model is Arithmetic Intensity. Arithmetic Intensity is the ratio of total floating-point operations to
Roofline total data movement (bytes). A BLAS-1 vector-vector increment (x[i[+=y[i]) would have a very low arithmetic intensity of 0.0417 (N FLOPS
SciDAC /24N Bytes) and would be independent of the vector size. Conversely, FFT's perform 5*N*logN flops for a N-point double complex
TOP500 transform. If out of place on a write allocate cache architecture, the transform would move at least 48N bytes. As such, FFT's

to CPUs, GPUs, Google TPUs', etc...)

1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor
Processing Unit”, ISCA, 2017.

13

Previous Projects

would have an arithmetic intensity of 0.104*logN and would grow slowly with data size. Unfortuantely, cache capacities would
limit FFT arithmetic intensity to perhaps 2 flops per byte. Finally, BLAS3 and N-Body Particle-Particle methods would have
arithmetic intensity grow very quickly.

Facebook 0.1-1.0 flops per byte Typically < 2 flops per byte 0O(10) flops per byte
q A A A
S r A} r N 7 A}
Google+
|8
Twitter

SpMV

BLAS1,2 Particle
ils (PDE: Methods
Stencils (| s) FFTs, I
Lattice Boltzmann Spectral Methods Linear Algebra
N Melhodsj N L (BLAS3) ,
Y Y Y
o(1) O(log(N)) O(N)

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

>

&
frfrrrerenr |

BERKELEY LAB

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

.| BERKELEY LAB

EEE

Roofline Model:

Arithmetic Intensity and Bandwidth

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite reuse and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assuming perfect overlap of | (©B/s)
communication and computation... DRAM
(data, GB)
"#FP ops / Peak GFlop/s
Time = max <
_#Bytes / Peak GB/s

15

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite reuse and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assuming perfect overlap of | (©B/s)
communication and computation... DRAM
(data, GB)

Time "1/ Peak GFlop/s
#FP ops MaX
P _#Bytes | #FP ops / Peak GB/s

16

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite reuse and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assuming perfect overlap of | (©B/s)
communication and computation... DRAM
(data, GB)

_
#FP ops . Peak GFlop/s
Time _(#FP ops / #Bytes) * Peak GB/s

17

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite reuse and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assuming perfect overlap of | (©B/s)
communication and computation... DRAM
(data, GB)
Peak GFlop/s

GFlop/s = min=<

_Al * Peak GB/s

Note, Arithmetic Intensity (Al) = Flops / Bytes (as presented to DRAM)

18

(DRAM) Roofline

= Plot Roofline bound using
Arithmetic Intensity as the x-axis

* Log-log scale makes it easy to
doodle, extrapolate performance
along Moore’s Law, etc...

= Kernels with Al less than machine
balance are ultimately DRAM
bound (we’ll refine this later...)

Peak Flop/s

Attainable Flop/s

19

Roofline Example #1

= Typical machine balance is 5-10

flops per byte...
« 40-80 flops per double to exploit compute capability Peak Flop/s
« Artifact of technology and money "
* Unlikely to improve §
T
Q@
O
c
= Consider STREAM Triad... E
#pragma omp parallel for
for(i=0;i<N;i++){
z[i] = x[i] + alpha*Y[i];
}
. _ 0.083
* 2flops per iteration Arithmetic Intensity (Flop:Byte)

« Transfer 24 bytes per iteration (read X][i], Y[i], write Z[i])
- Al =0.083 flops per byte == Memory bound

— A
20 rr/r>| H

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant
coefficient stencil... CPU

(compute, flop/s)

7 flops
« 8 memory references (7 reads, 1 store) per point
« Al=0.11 flops per byte (L1)

#pragma omp parallel for
for(k=1; k<dim+1;k++){ .
for(j=l;j<d1’m+1;j++){ DRAM Bandwidth

for(i=1;i<dim+1l;i++){ (GB/s)
new[k][j][i1] = -6.0%old[k 1[3 1[i 1]
+oldlk 1[3 1[i-1]

Ntk 16 i) DRAM
old[k J[j-11[1]
old[k J[j+1][i (data, GB)
old[k-11[3 1[4
old[k+1]1[3 1[4

— A
21 |i|>| u

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant
coefficient stencil... CPU

(compute, flop/s)

7 flops

« 8 memory references (7 reads, 1 store) per point Cache Bandwidth
(GBI/s)

« Cache can filter all but 1 read and 1 write per point

« Al =0.44 flops per byte CACH E

(only compulsory misses)

#pragma omp parallel for

for(k=1;k<dim+1;k++) { DRAM Bandwidth

for‘(J =1; J<d1llrf1.ﬂ,3++){ (GB/s)
103 10]
103 1[i-1]
103 1[i+1] DRAM
10j-1107]
] [3‘+1] [:_ (data, GB)

= =d LJ

old[k+11[j 1[1

'~ X
2 2 l:r—r>| H

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant

coefficient stencil...
« 7 flops Peak Flop/s
« 8 memory references (7 reads, 1 store) per point "
« Cache can filter all but 1 read and 1 write per point E—
Al =0.44 flops per byte == memory bound, ZJ OQ’\% 7 Gflop/s <Al DRAM GB/s
but 5x the flop rate 'c.é :
#pragma omp parallel for f§ :
for(k=1;k<dim+1;k++){ < | 7-point
for(j=1;j<dim+1;j++){ : :
for(i=1;i<dim+l;i++){ + Stencil
new[k][j1[i] = -6.0*old[k 1[j I[i] :
+ old[k 1[j 1[i-1] ! S
e — G o4
old[k 1[j+1][1 Arithmetic Intensity (Flop:Byte)

old[k-11[7 1I[i
old[k+1]1[7 1I[i

— A
23 rr/r>| H

BERKELEY LAB

.| BERKELEY LAB

EEE

Refining Roofline:
Memory Hierarchy

Hierarchical Roofline

= Processors have multiple levels of panauidt o
memory/cache . W 168
* Registers L1 D$
 L1,L2, L3 cache L2 GBIs | L2 GB
. MCDRAM/HBM (KNL/GPU device memory) L2 D$
 DDR (main memory) MCDRAM GB/s MCDRAM GB
* NVRAM (non-volatile memory) MCDRAM
= Applications have locality in each level DRAM GB/s DRAM GB
= Unique data movements imply unique Al’'s DRAM
= Moreover, each level will have a unique
bandwidth
% werf

BERKELEY LAB

Hierarchical Roofline

- Processors have mU|t|p|e |eve|S Of Arithmetic Intensity Data Movement

memory/cache GFlopls W
L1 GB/s L1GB

 Registers L1 D$
« L1, L2, L3 cache GFlop/s f L5 GR

. L2 GB/s ¥
« MCDRAM/HBM (KNL/GPU device memory) L2 D$
« DDR (main memor op/s f

(y) MCSlSA\M/GB/S + MCDRAM GB
 NVRAM (non-volatile memory) MCDRAM
= Applications have locality in each level =~ St 1 DRAM GB
= Unique data movements imply unique Al’'s DRAM
= Moreover, each level will have a unique
bandwidth
26 Rl

BERKELEY LAB

Hierarchical Roofline

- Processors have mUIt|p|e |eve|S Of Arithmetic Intensity Arithmetic Intensity

memory/cache GFlopls W GFlop's
L1 GB/s L1 GB

 Registers L1 DS$
« L1, L2, L3 cache GFlop/s i GFlop’s
. L2 GB/s + L2 GB

« MCDRAM/HBM (KNL/GPU device memory) L2 D$
« DDR (main memory) GFlop/s i GFlop’s
« NVRAM (non-volatile memory) HEDRAN GB/SMCD"R AM HPDRANTEE

' ' I I GFlop/s 1 GFlop’

= Applications have locality in each level =~ St 1 e
= Unique data movements imply unique Al’'s DRAM
= Moreover, each level will have a unique
bandwidth
27 oryf

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure bandwidth Peak Flop/s

= Measure Al for each level of memory @
« Although an loop nest may have multiple i
Al's and multiple bounds (flops, L1, L2, ... %
DRAM) .. -% DDR Bound
= DDR AI*"BW <
. ... performance is bound by the < MICDRAM AI"BW
minimum

= A
28 rr/r>| "“|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...
= Measure bandwidth . Peak Flop/s

= Measure Al for each level of memory @

« Although an loop nest may have multiple %
Al's and multiple bounds (flops, L1, L2, ... IS
DRAM)... 5

. ... performance is bound by the <
minimum DDR bottleneck

pulls performance
below MCDRAM
Roofline

etic Intensity (Flop:Byte)

- A
29 r:}l "“|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure bandwidth Peak Flop/s

= Measure Al for each level of memory @
« Although an loop nest may have multiple %
Al's and multiple bounds (flops, L1, L2, ... S MCDRAM bound
DRAM)... 5 MCDRAM AIBW <
. ... performance is bound by the <
minimum

- A
30 r:ml "“|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of

Rooflines... |

= Measure bandwidth Peak Flop/s

= Measure Al for each level of memory @

« Although an loop nest may have multiple %
Al's and multiple bounds (flops, L1, L2, ... IS
DRAM)... s

- ... performance is bound by the < S bottioncok pulls
minimum performance below

DDR Roofline
Arithmetic Intensity (Flop:Byte

= A
31 rr/rml "“|

BERKELEY LAB

NUMA Effects

= Cori’'s Haswell nodes are built

,T
from 2 Xeon processors (sockets)
 Memory attached to each socket (fast) Peak Flop/s
* Interconnect that allows remote memory °
access (slow == NUMA) 2
* Improper memory allocation can result in %
more than a 2x performance penalty g
< Without proper
NUMA optimization,
bandwidth i
CPUO CPU 1 ca:)r:ls‘:t\:'laitnelds
cores 0-15 cores 16-31

~50GB/s ~50GB/s

DRAM| |DRAM

— A
32 r:r—r>| "“|

BERKELEY LAB

.| BERKELEY LAB

EEE

Refining Roofline:

In-core Effects

In-Core Parallelism

= \We have assumed one can attain peak flops with high locality.

= In reality, we must ...
* Vectorize loops (16 flops per instruction)
« Use special instructions (e.g. FMA)
 Ensure FP instructions dominate the instruction mix

« Hide FPU latency (unrolling, out-of-order execution)
« Use all cores & sockets

= Without these, ...

« Peak performance is not attainable
« Some kernels can transition from memory-bound to compute-bound

_— A
y Y

BERKELEY LAB

Data Parallelism (e.g. SIMD)

= Most processors exploit some

form of SIMD or vectors. I
 KNL uses 512b vectors (8x64Db) Full vectorization
 GPUs use 32-thread warps (32x64b) @
: : : : 9
= |n reality, applications are a mix of -
scalar and vector instructions. E
_9
 Performance is a weighted average <
between SIMD and no SIMD Lack of full
vectorization pulls
performance below
Arithmetic Intens DDR Roofline
35 oryf

BERKELEY LAB

Data Parallelism (e.g. SIMD)

= Most processors exploit some

form of SIMD or vectors. I
 KNL uses 512b vectors (8x64b)
 GPUs use 32-thread warps (32x64b) @
: C . : 9
= |n reality, applications are a mix of - Sartial
scalar and vector instructions. E O degtorization,
. . S ' No vectorization
« Performance is a weighted average <
between SIMD and no SIMD !
. Memory-bound
> There is an implicit ceiling based on \(__ codes can become
this weighted average Arithmetic Intensf,__ SomPuterbound
36 oryf

BERKELEY LAB

Return of CISC

* Modern CPUs and GPUs are increasingly reliant on special (fused)
instructions that perform multiple operations.

o FMA (Fused Multiply Add): Z=a"x+y ...Z,X,y are vectors or scalars
o 4FMA (quad FMA): Z=A*x+z ...A is a FP32 matrix; x,z are vectors
o WMMA (Tensor Core): /=AB+C ...Z,A,B,C are FP16 matrices

" n.b., this is orthogonal to SIMD where the the same operation(s) is
applied to a vector of operands.

» Performance is now a weighted average of scalar, vector, FMA, and
WMMA operations.

= A
37 Py

BERKELEY LAB

Return of CISC

= Total lack of FMA reduces

performance by 2x on KNL. I

(4x on Haswell) VEMA Peak

0 £l o T Partial FMA

: : : : S , VAdd Peak
= |n reality, applications are a mix of L ;
FMA, FAdd, and FMul. 8 i
. . © |

- Performance is a weighted average - : FAdd Peak
» There is an implicit ceiling based on
this weighted average

Arithmetic Intensity (Flop:Byte) g
38 il

BERKELEY LAB

Return of CISC

= On Volta, Tensor cores can)
provide 100TFLOPs of FP16
performance

(vs. 7.5 TFLOPS for DP FMA)

= Observe, machine balance has
now grown to ...

Tensor Peak

Attainable Flop/s

100 TFLOP/s / 800 GB/s DP FMA Peak
DP Add Peak
=125 FP16 per byte !! k

39

Floating-Point Divides

Although many processors support a Floating-point divide instruction,

most implement divides through a sequence of FP instructions
o rcp (reciprocal estimate to k bits)

o Newton-Raphson iterations (mul+FMA) to recover full precision

All of these instructions can be pipelined and/or executed out of order

» FP Divides increase arithmetic intensity and increase raw Flop
rates.

40

Floating-Point Divides

= #FP operations deduced from
source code can be an
underestimate... Peak Flop/s

o FP Divides require 10+ instructions on
KNL and GPUs.

o These must be included in both Al and
Flop/s to affect proper Roofline analysis

Attainable Flop/s

» As aresult, Al and performance both
increase and one can be compute-
bound

= A
41 Py

BERKELEY LAB

Superscalar vs. Instruction mix

= Superscalar processors have finite instruction fetch/decode/issue
bandwidth (e.g. 4 instructions per cycle)

= Moreover, the number of FP units dictates the FP issue rate required to
hit peak (e.g. 2 vector instructions per cycle)

» Ratio of these two rates is the FP instruction fraction required to
hit peak

42

Superscalar vs. Instruction mix

= Haswell CPU

* 4-issue superscalar
 Only 2 FP data paths Peak Flop/s
. _ . >50% FP
* Requires 50% of the instructions to be FP @ |
3 25% FP (75% int)
to get peak performance 2
© 12% FP (88% int)
®
=
T
<
>
= A
43 rr/r}lm

BERKELEY LAB

Superscalar vs. Instruction mix

= Haswell CPU

. t
* 4-issue superscalar
 Only 2 FP data paths Peak Flop/s {00% FP
* Requires 50% of the instructions to be FP @ |
o 50% FP (50(yo |nt)
to get peak performance 2
L) 25% FP (75(yo int)
©
= Conversely, on KNL... S
e 2-ISSue superscalar <
2 FP data paths
« Requires 100% of the instructions to be >
FP to get peak performance
44 oryf

BERKELEY LAB

Superscalar vs. Instruction mix

= Haswell CPU

. t
* 4-issue superscalar
 Only 2 FP data paths Peak Flop/s {00% FP
* Requires 50% of the instructions to be FP @ |
o 50% FP (50(yo |nt)
to get peak performance 2
L) 25% FP (75(yo int)
©
= Conversely, on KNL... S
e 2-ISSue superscalar <
2 FP data paths
« Requires 100% of the instructions to be >
FP to get peak performance
45 oryf

BERKELEY LAB

Superscalar vs. Instruction mix

= Haswell CPU

. t
* 4-issue superscalar
* Only 2 FP data paths
* Requires 50% of the instructions to be FP 2
to get peak performance 9 &
© © 25% FP (75% int)
©
= Conversely, on KNL... 5
. <
* 2-Issue superscalar non-FP instructions
« 2 FP data paths sap issue bandwidth
d pull perf
* Requires 100% of the instructions to be Arithmetic In D e

below the Roofline

FP to get peak performance ,
» Codes that would have been memory-

bound are now decode/issue-bound.

- A
46 Py

BERKELEY LAB

Superscalar vs. Instruction mix

= On Volta, each SM is partitioned
among 4 warp schedulers

= Each warp scheduler can Peak Flopls o p
dispatch 32 threads per cycle

= However, it can only execute 8
DP FP instructions per cycle.

= |.e. there is plenty of excess
Instruction issue bandwidth
available for non-FP instructions.

12% FP (88% int)
6% FP (94% int)

Attainable Flop/s

47

.| BERKELEY LAB

EEE

Refining Roofline:
Locality Effects

Locality Walls

= Naively, we can bound Al using

only compulsory cache misses
Peak Flop/s
D
o
[e)
L
o
@)
= <
£ No vectorizafjo
< o
>
o
S
©)
o >
Arithmetic Intensity (Flop:Byte)
Al = #Flop’s
Compulsory Misses
49)

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using
only compulsory cache misses

= However, write allocate caches Peak Flop/s
can lower Al o FMA

\o
0‘2)
QQ~
Q

ate
Al

Attainable Flop/s
Y

No vectdrigafjoZ

()

+Write Al
Compuls

Arithmetic Intensity (Flop:Byte)
Al = #Flop’s
Compulsory Misses + Write Allocates

= A
50 Py

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using

only compulsory cache misses |
= However, write allocate caches Peak Flop/s
can lower Al 8 o FMA
. . TH
= Cache capacity misses can have o
© ..G_-J —
a huge penalty E No vectcri:gatloé’
< <=t'_§'
2|2
AR
Arithmetic Intensity (Flop:Byte)
Al = #Flop's
~ Compulsory Misses + Write Allocates + Capacity Misses
51 oryf

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using
only compulsory cache misses

= However, write allocate caches Peak Flop/s
can lower Al o FMA

= Cache capacity misses can have
a huge penalty

» Compute bound became
memory bound

Attainable Flop/s

Al = #Flop's
Compulsory Misses + Write Allocates + Capacity Misses

- A
52 Py

BERKELEY LAB

.| BERKELEY LAB

EEE

Overview of Roofline
Methodology

Machine Characterization

= “Theoretical Performance” numbers can be highly optimistic...

 Pin BW vs. sustained bandwidth

 TurboMode at low concurrency
« Underclocking for AVX
« Compiler failing on high-Al loops.

» Take marketing numbers with a grain of salt

= A
5 4 r:ml "“|

BERKELEY LAB

Machine Characterization

= To create a Roofline model, we must benchmark...
o Sustained Flops
* Double/single/half precision
« With and without FMA (e.g. compiler flag)
« With and without SIMD (e.g. compiler flag)
o Sustained Bandwidth
« Measure between each level of memory/cache

« lterate on working sets of various sizes and identify plateaus
« |dentify bandwidth asymmetry (read:write ratio)

= Benchmark must run long enough to observe effects of power throttling

"
: b
rrrrrrr ‘ |

BERKELEY LAB

Measuring Application Al and Performance

» To characterize execution with Roofline we need...

o Time

o Flops (=> flop’s / time)

o Data movement between each level of memory (=> Flop’s / GB’s)
= \We can look at the full application...

o Coarse grained, 30-min average
o Misses many details and bottlenecks

= or we can look at individual loop nests...

o Requires auto-instrumentation on a loop by loop basis
o Moreover, we should probably differentiate data movement or flops on a core-by-core basis.

"
: b
rrrrrrr ‘ |

BERKELEY LAB

How Do We Count Flop’s?

Manual Counting Perf. Counters Binary Instrumentation

» Gothrueachloopnestand = Read counter before/after = Automated inspection of
count the number of FP v More Accurate assembly at run time
operations v Low overhead (<%)==can ¥ MostAccurate

v Works best for deterministic run full MPI applications v FMA-, VL-, and mask-aware
loop bounds v' Can detect load imbalance v Can count instructions by

v or parameterize by the

number of iterations X Requires privileged access Class/type
(recorded at run time) X Requires manual v' Can detect load imbalance
X Not scalable instrumentation (+toverhead) v° Can include effects from
or full-app characterization non-FP instructions
X Broken counters = garbage v° Automated application to
X May not differentiate multiple loop nests
FMADD from FADD X >10x overhead (short runs /
X Noinsightintospecial reducedconcurrency)

~
&
rrrrrrr H

pipelines 27

BERKELEY LAB

How Do We Measure Data Movement?

Manual Counting Perf. Counters Cache Simulation

» Gothru each loop nestand = Read counter before/after = Build a full cache simulator
estimate how many bytes v Applies to full hierarchy (L2, driven by memory
will be moved DRAM. addresses

= Use a mental model of v Much more Accurate v" Applies to full hierarchy and
caches | v Low overhead (<%) == can multicore |

v" Works best for simple loops run full MPI applications v' Can detect load imbalance

that stream from DRAM

- v Can detect load imbalance ¥ Automated application to
istenalls, FEIS, spare, .. X Requires privileged access multiple loop nests
X N/A for complex caches | X Ignores prefetchers
X Not scalable X Requires manual
instrumentation (+overhead) X >10xoverhead (shortruns /
or full-app characterization reduced concurrency)

- A
58 Py

BERKELEY LAB

.| BERKELEY LAB

EEE

Roofline-Driven
Optimization

Why is Roofline Useful?

* |magine a mix of loop nests

= Flop/s alone may not be useful in
deciding which to optimize first

Flop/s

Kernel (or apps)

60

Why is Roofline Useful?

= We can sort kernels by Al ...

Attainable Flop/s

Arithmetic Intensity (Flop:Byte)

61

Why is Roofline Useful?

= We can sort kernels by Al ...

,T
= ... and compare performance
relative to machine capabilities Peak Flop/s

5

LL

o

s

s

Z

62 2l

BERKELEY LAB

Why is Roofline Useful?

= Kernels near the roofline are

making good use of |
computational resources Peak Flop/s
o kernels can have low performance 2

(Gflop/s), but make good use of a =

machine =

)

o kernels can have high performance S

(Gflop/s), but make poor use of a <

machine

63 oryf

BERKELEY LAB

Tracking Progress Towards Optimality

= One can conduct a Roofline

optimization after every |
optimization (or once per quarter) Peak Flop/s
o Tracks progress towards optimality 2
o Allows one to quantitatively speak to %

ultimate performance / KPPs IS
o Can be used as a motivator for new I

algorithms. <

64 oryf

BERKELEY LAB

Roofline Scaling Trajectories

roofline_summary_sp_Ibl

= QOften, one plots performance as a
function of thread concurrency
o Carries no insight or analysis

1000.0

o Provides no actionable information.

100.0

GFlop/s
10.0
«

1.0

0.1

1 2 4 8 16 32 64
#Threads

— A
. Y

BERKELEY LAB

= QOften, one plots performance as a
function of thread concurrency

Roofline Scaling Trajectories

o Carries no insight or analysis
o Provides no actionable information.

Khaled Ibrahim developed a new
way of using Roofline to analyze

thread (or process) scalability

o Create a 2D scatter plot of performance

as a function of Al and thread
concurrency

o Can identify loss in performance due to

Increased cache pressure

Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A Method

High Performance Computing Benchmarking and Optimization (HPBench), July 2018.

GFlop/s
10.0

1000.0

100.0

1.0

roofline_summary_sp_Ibl

.

- _A--

Class A
Class B
Class C

VFMA (1229)

I
0.05

I
0.50

I I
5.00 50.00

Arithmetic Intensity (Flops/Byte)

"
: b
rrrrrrr ‘ |

BERKELEY LAB

Roofline Scaling Trajectories

roofline_summary_sp_Ibl

= QObserve...
o Al (data movement) varies with both S | |-+ ClassA VFMA (1229)
thread concurrency and problem size S || 8:333 B
- u ass C
o Large problems (green and red) move o
much more data per thread, and S e (c32) (77)
eventually exhaust cache capacity 2 - *~,
o Resultant fall in Al means they hit the T = ’@DDC?%) (9.2)
bandwidth ceiling quickly and degrade. © = /" o
o Smaller problems see reduced Al, but
don’t hit the bandwidth ceiling =
; [I I I I I I I
0.01 0.05 0.50 5.00 50.00

.. Arithmetic Intensity (Flops/Byte)

= A
57 ceeer

BERKELEY LAB

Driving Performance Optimization

= Broadly speaking, there are three
approaches to improving
performance: Peak Flop/s

Attainable Flop/s

68

Driving Performance Optimization

= Broadly speaking, there are three
approaches to improving
performance: Peak Flop/s

= Maximize in-core performance
(e.g. get compiler to vectorize)

Attainable Flop/s

69

Driving Performance Optimization

= Broadly speaking, there are three
approaches to improving
performance: Peak Flop/s

= Maximize in-core performance
(e.g. get compiler to vectorize)

= Maximize memory bandwidth
(e.g. NUMA-aware, unit-stride)

Attainable Flop/s

70

Driving Performance Optimization

= Broadly speaking, there are three

approaches to improving I
performance: Peak Flop/s
= Maximize in-core performance 8
(e.g. get compiler to vectorize) %
= Maximize memory bandwidth < <
(e.g. NUMA-aware, unit stride) < {NE
= Minimize data movement § S X
(e.g. CaChe blOCklng) Arithmetic Intensity (Flop:Byte)

71

SH%% U.S. DEPARTMENT OF

i BERKELEY LAB) ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Summary

Summary

* |n this talk, we introduced several concepts...

Basic terminology (bandwidth, flop/s, arithmetic intensity)

How to refine the Roofline to account for the memory hierarchy

How to refine the Roofline to account for complex core architectures

How to map the 3Cs of Caches onto the Roofline model

General approaches to constructing a Roofline model for a machine and application

O O O O O O

How to use the Roofline model

~
Roofline Webinar — August 16 2017 73 rr/r>| "“|

BERKELEY LAB

SH%% U.S. DEPARTMENT OF

i BERKELEY LAB) ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Questions?

SH%% U.S. DEPARTMENT OF

i BERKELEY LAB) ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Backup

