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You just bought a $10,000 
throughput-optimized GPU!

Are you making good use of 
your investment?



You could just run benchmarks
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§ Imagine running a mix of 
benchmarks or kernels…

§ GFLOP/s alone may not be 
particularly insightful

Kernel (or apps)

§ speedup relative to a Xeon may 
seem random

G
FL

O
P/

s

Ø We need a quantitative model 
that defines Good Performance



What is “Good” Performance?
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2. Must attain high utilization of the GPU’s compute and/or bandwidth
capabilities

1. Must operate the GPU in the throughput-limited regime
not sensitive to Amdahl effects, D2H/H2D transfers, launch overheads, etc…

§ Good Performance is tied to “Efficient” execution
§ Two fundamental requirements …



Roofline Model

§ Roofline Model is a throughput-
oriented performance model

§ applies to x86, ARM, POWER 
CPUs, GPUs, Google TPUs1, 
FPGAs, etc…

§ Helps quantify Good Performance

7
1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor 
Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/


Reduced Model

§ GPU architectures can be complex
§ Don’t model / simulate full architecture
§ Make assumptions on performance and 

usage…

8



Reduced Model

§ GPU architectures can be complex
§ Don’t model / simulate full architecture
§ Make assumptions on performance and 

usage…
o Peak GFLOP/s on data in L1
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Reduced Model

§ GPU architectures can be complex
§ Don’t model / simulate full architecture
§ Make assumptions on performance and 

usage…
o Peak GFLOP/s on data in L1
o Load-balanced SPMD code
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Reduced Model

§ GPU architectures can be complex
§ Don’t model / simulate full architecture
§ Make assumptions on performance and 

usage…
o Peak GFLOP/s on data in L1
o Load-balanced SPMD code
o Sufficient cache bandwidth/capacity
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Reduced Model

§ GPU architectures can be complex
§ Don’t model / simulate full architecture
§ Make assumptions on performance and 

usage…
o Peak GFLOP/s on data in L1
o Load-balanced SPMD code
o Sufficient cache bandwidth/capacity
Ø Basis for DRAM Roofline Model
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DRAM
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Perfect Caches

Compute GFLOP/s



(DRAM) Roofline

§ Any given loop nest will perform:
o Computation (e.g. FLOPs)
o Communication (e.g. moving data to/from DRAM)
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DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

#FLOPs / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s

§ With perfect overlap  of communication 
and computation...
o Run time is determined by whichever is greater



(DRAM) Roofline

§ Any given loop nest will perform:
o Computation (e.g. FLOPs)
o Communication (e.g. moving data to/from DRAM)

§ With perfect overlap  of communication 
and computation...
o Run time is determined by whichever is greater
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Compute GFLOP/s
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(DRAM) Roofline

§ Any given loop nest will perform:
o Computation (e.g. FLOPs)
o Communication (e.g. moving data to/from DRAM)

§ With perfect overlap  of communication 
and computation...
o Run time is determined by whichever is greater
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DRAM
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Perfect Caches

Compute GFLOP/s

Peak GFLOP/s#FLOPs
Time (#FLOPs / #Bytes) * Peak GB/s

= min



(DRAM) Roofline

§ Any given loop nest will perform:
o Computation (e.g. FLOPs)
o Communication (e.g. moving data to/from DRAM)

§ With perfect overlap  of communication 
and computation...
o Run time is determined by whichever is greater
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DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (as presented to DRAM )



Arithmetic Intensity

§ Measure of data locality (data reuse)
§ Ratio of Total Flops performed to Total Bytes moved
§ For the DRAM Roofline…

o Total Bytes to/from DRAM 
o Includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)

17



(DRAM) Roofline Model

§ Plot Roofline bound using Arithmetic 
Intensity as the x-axis

§ Log-log scale makes it easy to 
doodle, extrapolate performance 
along Moore’s Law, etc…
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(DRAM) Roofline Model
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§ Plot Roofline bound using Arithmetic 

Intensity as the x-axis

§ Log-log scale makes it easy to 

doodle, extrapolate performance 

along Moore’s Law, etc…

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )



(DRAM) Roofline Model
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§ Roofline tessellates this 2D view of 
performance into 5 regions…

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )



Roofline Example #1

§ Typical machine balance is 5-10 
FLOPs per byte…
o 40-80 FLOPs per double to exploit compute capability

o Artifact of technology and money

o Unlikely to improve
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ Consider STREAM Triad…

o 2 FLOPs per iteration

o Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])

o AI = 0.083 FLOPs per byte == Memory bound
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5.0

TRIAD

GFLOP/s ≤ AI * HBM GB/s

0.083



Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s



Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

o AI = 7 / (8*8) = 0.11 FLOPs per byte
(measured at the L1)



Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
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#pragma omp parallel for
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Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM) 
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Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs

o 8 memory references (7 reads, 1 store) per point

o Ideally, cache will filter all but 1 read and 1 write per point

Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM)
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

== memory bound, but 5x the FLOP rate as TRIAD



What is “Good” Performance?

§ Think back to our mix of loop 
nests (benchmarks)…
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What is “Good” Performance?

§ Think back to our mix of 
benchmarks (kernels)

§ We can sort kernels by their 
arithmetic intensity…

28
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What is “Good” Performance?

§ Think back to our mix of 
benchmarks (kernels)

§ We can sort kernels by their 
arithmetic intensity…

§ … and compare performance 
relative to machine capabilities
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What is “Good” Performance?

§ Kernels near the roofline are 
making good use of 
computational resources
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What is “Good” Performance?

§ Kernels near the roofline are 

making good use of 

computational resources
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(%STREAM) of a machine



What is “Good” Performance?

§ Kernels near the roofline are 

making good use of 

computational resources

32

Peak GFLOP/s
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Ø kernels can have low performance 

(GFLOP/s), but make good use 

(%STREAM) of a machine

Ø kernels can have high performance 

(GFLOP/s), but still make poor use of a 

machine (%peak)



How can performance ever 
be below the Roofline?



How can performance be below the Roofline?
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§ Does one always attain either…
o Peak DRAM Bandwidth
o Peak FLOP/s

§ Bottlenecks other than DRAM 
and FLOP/s…
o Insufficient cache bandwidth + locality
o Didn’t use FMA / Vectors / Tensors / …
o Too many non-FP instructions
o etc…

HBM G
B/s

Peak GFLOP/s
§ Theoretical vs. Empirical 

o Use benchmarked GFLOP/s and GB/s
o Application FLOPs can be underestimated

(how many FLOPs is a divide?)
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Below the Roofline?
Memory Hierarchy and Cache Bottlenecks



Memory Hierarchy

§ GPUs have multiple levels of 
memory/cache
o Registers
o L1, L2, cache
o HBM (GPU device memory)
o DDR (host memory)
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Memory Hierarchy

§ GPUs have different bandwidths for 
each level
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Memory Hierarchy

§ GPUs have different bandwidths for 
each level
o different machine balances for each level
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Memory Hierarchy

§ GPUs have different bandwidths for 
each level
o different machine balances for each level

§ Applications have locality in each level
o different data movements for each level
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Memory Hierarchy

§ GPUs have different bandwidths for 
each level
o different machine balances for each level

§ Applications have locality in each level
o different data movements for each level
o different arithmetic intensity for each level
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Cache Bottlenecks

§ For each additional level of the memory hierarchy, we can add another 
term to our model…
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Peak GFLOP/s
GFLOP/s = min

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )

AIDRAM * DRAM GB/s



Cache Bottlenecks

§ For each additional level of the memory hierarchy, we can add another 
term to our model…
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Peak GFLOP/s
GFLOP/s = min

AIL2 * L2 GB/s
AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )

AIDRAM * DRAM GB/s



Cache Bottlenecks

§ For each additional level of the memory hierarchy, we can add another 
term to our model…
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Peak GFLOP/s
GFLOP/s = min

AIL2 * L2 GB/s

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )

AIDRAM * DRAM GB/s

AIL1 * L1 GB/s



Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
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Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each 

level of memory
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Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each 

level of memory
o Arithmetic Intensity (dot) for each level of 

memory
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Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each 

level of memory
o Arithmetic Intensity (dot) for each level of 

memory
Ø performance is ultimately the minimum 

of these bounds

47

L2 Bound
L2 AI*BW
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HBM AI*BW
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Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each 

level of memory
o Arithmetic Intensity (dot) for each level of 

memory
Ø performance is ultimately the minimum 

of these bounds
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§ If L2 bound, we see HBM dot 
well below HBM ceiling
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Cache Bottlenecks

§ Widely separated Arithmetic 
Intensities indicate high reuse in 
the cache
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Cache Bottlenecks

§ Widely separated Arithmetic 
Intensities indicate high reuse in 
the cache

§ Similar Arithmetic Intensities 
indicate effectively no cache 
reuse (== streaming)
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Below the Roofline?
FMA, Reduced Precision, Tensor Cores



Return of CISC
§ Vectors have their limits (finite DLP, register file energy scales with VL, etc…)

§ Death of Moore’s Law is reinvigorating Complex Instruction Set Computing (CISC)
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Ø If instructions are a mix or scalar (predicated), vector, and matrix 
operations, performance is now a weighted average of them.

§ Modern CPUs and GPUs are increasingly reliant on special (fused) instructions 
that perform multiple operations (fuse common instruction sequences)…
o FMA (Fused Multiply Add): z=a*x+y …z,x,y are vectors or scalars
o 4FMA (Quad FMA): z=A*x+z …A is a FP32 matrix; x,z are vectors
o WMMA (Tensor Core): Z=AB+C …A,B are FP16 matrices; Z,C are FP32



Return of CISC

§ Consider NVIDIA Volta GPU… 
o ~100 TFLOPs for FP16 Tensor
o 15 TFLOPS for FP32 FMA
o 7.5 TFLOPs for FP32 Add

§ DL applications mix Tensor, 
FP16, and FP32 

§ DL performance may be well 
below nominal Tensor Core peak

53
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Return of CISC

§ Consider NVIDIA Volta GPU… 
o ~100 TFLOPs for FP16 Tensor
o 15 TFLOPS for FP32 FMA
o 7.5 TFLOPs for FP32 Add

§ DL applications mix Tensor, 
FP16, and FP32 

§ DL performance may be well 
below nominal Tensor Core peak

§ The actual mix of instructions 
introduces an effective ceiling
on performance…
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Below the Roofline?
FPU Starvation and Instruction Roofline



Think about classifying apps by instruction mix…

§ Heavy floating-point (traditional FLOP Roofline)

§ Mix of integer and floating-point (FPU starvation)

§ Integer-only (e.g. bioinformatics, graphs, etc…)

§ Mixed precision (e.g. deep learning)

62

Instruction Roofline
Model



NVIDIA GPU Instruction Roofline

§ Instructions per second?  Instructions per Byte?

63

§ What is an ‘Instruction’ on a GPU?
o Thread-level hides issue limits?
o Warp-level hides predication effects?
o Scale non-predicated threads down by the warp size (divide by 32)

§ Naively, one would think instruction intensity should use ‘bytes’
§ GPUs access memory using ‘transactions’

o 32B for global/local/L2/HBM
o 128B for shared memory
Ø “Instructions/Transaction” preserves traditional Roofline,

but enables a new way of understanding memory access



Instruction Roofline
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Instruction Roofline
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Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s
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Instructions per Byte

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.



Instruction Roofline on GPUs
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Peak GFLOP/s
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As the natural quanta for GPU 
memory access is a “transaction”…

Nan Ding, Samuel Williams, "An Instruction Roofline

Model for GPUs", PMBS, November, 2019.



Instruction Roofline on GPUs
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Peak GFLOP/s
GFLOP/s = min
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Peak GIPS
GIPS = min

IIDRAM * DRAM GTXN/s IIx (Instruction Intensity at level “x”) = 

Instructions / Transactions (to/from level “x” )

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.



Efficiency of Global Memory Access

§ (Global)LDST Instruction Intensity has a special meaning / use…
o Global LDST instructions / Global transactions
o Numerator lower than nominal II
o Denominator can be lower than nominal L1 II (no local or shared transactions)

§ Denotes efficiency of memory access
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L1 = Global 437.5 GTXN/s

Unattainably
Low Intensity

Unattainably
High Intensity

§ 3 “Walls” of interest:
o ≥1 transaction per LDST instruction

(all threads access same location)
o ≤32 transactions per LDST instruction

(gather/scatter or stride>=128B)
o Unit Stride: 1 LDST per 8 transactions

(double precision)

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.



Efficiency of Shared Memory Access

§ (Shared)LDST Instruction Intensity also has a special meaning / use
o Shared LDST instructions / Shared transactions
o II is similarly loosely related to nominal II

§ Can be used to infer the number of bank conflicts
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Shared 109.3 GTXN/s

Can never have less
than 0 bank conflicts

§ 2 “Walls” of interest:
o Minimum of 1 transaction per shared

LDST instruction (no bank conflicts)
o Maximum of 32 transactions per

shared LDST instruction
(all threads access different lines
in the same bank)

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.



Instruction Roofline for Matrix Transpose
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Loss in L1 locality due
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Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.



Recap



Roofline Recap
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Arithmetic Intensity
§ Different intensity for each 

level of memory
§ Total FLOPs / Total Data 

Movement
§ Includes all cache effects

Ø Measure of a loop’s 
temporal locality

Bounds performance
§ Horizontal Lines = 

Compute Ceilings
§ Diagonal Lines =

Bandwidth Ceilings
§ Bandwidth ceilings are 

parallel on log-log scale

Ø Collectively, ceilings 
define an upper limit on 
performance

Plotting loops…
§ Each loop has one dot per 

level of memory
§ x-coordinate = 

AI at that level
§ y-coordinate = 

GFLOP/s

Ø Proximity to associated 
ceiling is indicative of a 
performance bound

Ø Position of dots relative to 
each other is indicative of 
cache locality



Instruction Roofline Takeaway
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Instruction Roofline
§ Tells us about bottlenecks 

(issue and memory)

§ Intensity based on total
instructions and transactions

§ Use of FMA, SIMD, vectors, 
tensors decreases intensity.

§ Presence of integer instructions 
increases intensity.

§ Reducing precision has no affect 
on intensity

Memory Walls
§ Tells us about efficiency 

(memory access)

§ Intensity based on LDST 
instructions and transactions

§ Reducing precision shifts intensity 
and the unit-stride wall

Traditional Roofline
§ Tells us about performance

(floating-point)

§ Intensity based on data locality 
(FLOPs / Bytes)

§ Use of FMA, SIMD, vectors, 
tensors has no affect on intensity

§ Presence of integer instructions 
has no affect on intensity.

§ Reducing precision (64b, 32b, 
16b) increases arithmetic intensity

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.



What is Roofline used for?
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§ Predict performance on future machines / architectures
o Set realistic performance expectations
o Drive for HW/SW Co-Design

§ Identify performance bottlenecks & motivate software optimizations

§ Determine when we’re done optimizing code
o Assess performance relative to machine capabilities
o Track progress towards optimality
o Motivate need for algorithmic changes

§ Understand performance differences between Architectures, 
Programming Models, implementations, etc…
o Why do some Architectures/Implementations move more data than others?
o Why do some compilers outperform others?



Questions?
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