
Roofline Performance Modeling for

HPC and Deep Learning Applications

Schedule
9:00am Introduction to Roofline Samuel Williams

9:30am NVProf Methodology/demo Yunsong Wang

10:00am Roofline Use Cases Charlene Yang

Samuel Williams
Computational Research Division

Lawrence Berkeley National Lab

SWWilliams@lbl.gov

Charlene Yang
NERSC

Lawrence Berkeley National Lab

CJYang@lbl.gov

Yunsong Wang
NERSC

Lawrence Berkeley National Lab

yunsongwang@lbl.govv

mailto:SWWilliams@lbl.gov
mailto:TKoskela@lbl.gov

Acknowledgements
§ This material is based upon work supported by the Advanced Scientific Computing Research Program in the

U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.
§ This material is based upon work supported by the DOE RAPIDS SciDAC Institute.
§ This research used resources of the National Energy Research Scientific Computing Center (NERSC),

which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

§ This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

Introduction to the
Roofline Model

Samuel Williams
Computational Research Division
Lawrence Berkeley National Lab

SWWilliams@lbl.gov

mailto:SWWilliams@lbl.gov

You just bought a $10,000
throughput-optimized GPU!

Are you making good use of
your investment?

You could just run benchmarks

5

§ Imagine running a mix of
benchmarks or kernels…

§ GFLOP/s alone may not be
particularly insightful

Kernel (or apps)

§ speedup relative to a Xeon may
seem random

G
FL

O
P/

s

Ø We need a quantitative model
that defines Good Performance

What is “Good” Performance?

6

2. Must attain high utilization of the GPU’s compute and/or bandwidth
capabilities

1. Must operate the GPU in the throughput-limited regime
not sensitive to Amdahl effects, D2H/H2D transfers, launch overheads, etc…

§ Good Performance is tied to “Efficient” execution
§ Two fundamental requirements …

Roofline Model

§ Roofline Model is a throughput-
oriented performance model

§ applies to x86, ARM, POWER
CPUs, GPUs, Google TPUs1,
FPGAs, etc…

§ Helps quantify Good Performance

7
1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor
Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Reduced Model

§ GPU architectures can be complex
§ Don’t model / simulate full architecture
§ Make assumptions on performance and

usage…

8

Reduced Model

§ GPU architectures can be complex
§ Don’t model / simulate full architecture
§ Make assumptions on performance and

usage…
o Peak GFLOP/s on data in L1

9

DRAM

Network-on-Chip

SM

L1

SM

L1

SM

L1

SM

L1

Shared L2 Cache

L2 GB/s

L1 GB/s

GFLOP/s

D
R

AM
 G

B/
s

Reduced Model

§ GPU architectures can be complex
§ Don’t model / simulate full architecture
§ Make assumptions on performance and

usage…
o Peak GFLOP/s on data in L1
o Load-balanced SPMD code

10

DRAM
DRAM GB/s

Shared L2 Cache

L1 Caches

4 SMs

L2 GB/s

L1 GB/s

GFLOP/s

Reduced Model

§ GPU architectures can be complex
§ Don’t model / simulate full architecture
§ Make assumptions on performance and

usage…
o Peak GFLOP/s on data in L1
o Load-balanced SPMD code
o Sufficient cache bandwidth/capacity

11

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Reduced Model

§ GPU architectures can be complex
§ Don’t model / simulate full architecture
§ Make assumptions on performance and

usage…
o Peak GFLOP/s on data in L1
o Load-balanced SPMD code
o Sufficient cache bandwidth/capacity
Ø Basis for DRAM Roofline Model

12

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

(DRAM) Roofline

§ Any given loop nest will perform:
o Computation (e.g. FLOPs)
o Communication (e.g. moving data to/from DRAM)

13

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

#FLOPs / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s

§ With perfect overlap of communication
and computation...
o Run time is determined by whichever is greater

(DRAM) Roofline

§ Any given loop nest will perform:
o Computation (e.g. FLOPs)
o Communication (e.g. moving data to/from DRAM)

§ With perfect overlap of communication
and computation...
o Run time is determined by whichever is greater

14

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

1 / Peak GFLOP/sTime
#FLOPs #Bytes / #FLOPs / Peak GB/s

= max

(DRAM) Roofline

§ Any given loop nest will perform:
o Computation (e.g. FLOPs)
o Communication (e.g. moving data to/from DRAM)

§ With perfect overlap of communication
and computation...
o Run time is determined by whichever is greater

15

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s#FLOPs
Time (#FLOPs / #Bytes) * Peak GB/s

= min

(DRAM) Roofline

§ Any given loop nest will perform:
o Computation (e.g. FLOPs)
o Communication (e.g. moving data to/from DRAM)

§ With perfect overlap of communication
and computation...
o Run time is determined by whichever is greater

16

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (as presented to DRAM)

Arithmetic Intensity

§ Measure of data locality (data reuse)
§ Ratio of Total Flops performed to Total Bytes moved
§ For the DRAM Roofline…

o Total Bytes to/from DRAM
o Includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)

17

(DRAM) Roofline Model

§ Plot Roofline bound using Arithmetic
Intensity as the x-axis

§ Log-log scale makes it easy to
doodle, extrapolate performance
along Moore’s Law, etc…

18

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

(DRAM) Roofline Model

19

A
tt
a
in

a
b
le

 F
L
O

P
/s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’

H
B
M

 G
B
/s

Peak GFLOP/s

§ Plot Roofline bound using Arithmetic

Intensity as the x-axis

§ Log-log scale makes it easy to

doodle, extrapolate performance

along Moore’s Law, etc…

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

(DRAM) Roofline Model

20

A
tta

in
ab

le
 F

LO
P

/s

Arithmetic Intensity (FLOP:Byte)

unattainable performance
(greater than peak GFLOP/s)

unatt
ain

ab
le

perf
orm

an
ce

(in
su

ffic
ien

t b
an

dwidth)

poor

performance
HBM

 G
B/s

Peak GFLOP/s

§ Roofline tessellates this 2D view of
performance into 5 regions…

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

Roofline Example #1

§ Typical machine balance is 5-10
FLOPs per byte…
o 40-80 FLOPs per double to exploit compute capability

o Artifact of technology and money

o Unlikely to improve

21

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ Consider STREAM Triad…

o 2 FLOPs per iteration

o Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])

o AI = 0.083 FLOPs per byte == Memory bound

A
tta

in
ab

le
 F

LO
P

/s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

5.0

TRIAD

GFLOP/s ≤ AI * HBM GB/s

0.083

Roofline Example #2

§ Conversely, 7-point constant coefficient
stencil…

22

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

Roofline Example #2

§ Conversely, 7-point constant coefficient
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point

23

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

o AI = 7 / (8*8) = 0.11 FLOPs per byte
(measured at the L1)

Roofline Example #2

§ Conversely, 7-point constant coefficient
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point

24

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

Roofline Example #2

§ Conversely, 7-point constant coefficient
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM)

25

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

Roofline Example #2

§ Conversely, 7-point constant coefficient
stencil…
o 7 FLOPs

o 8 memory references (7 reads, 1 store) per point

o Ideally, cache will filter all but 1 read and 1 write per point

Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM)

26

A
tta

in
ab

le
 F

LO
P

/s

HBM G
B/s

TRIAD

Arithmetic Intensity (FLOP:Byte)
0.083

7-point
Stencil

GFLOP/s ≤ AI * HBM GB/s

0.44

Peak GFLOP/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

== memory bound, but 5x the FLOP rate as TRIAD

What is “Good” Performance?

§ Think back to our mix of loop
nests (benchmarks)…

27

FL
O

P/
s

Kernel

What is “Good” Performance?

§ Think back to our mix of
benchmarks (kernels)

§ We can sort kernels by their
arithmetic intensity…

28

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

What is “Good” Performance?

§ Think back to our mix of
benchmarks (kernels)

§ We can sort kernels by their
arithmetic intensity…

§ … and compare performance
relative to machine capabilities

29

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

What is “Good” Performance?

§ Kernels near the roofline are
making good use of
computational resources

30

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

What is “Good” Performance?

§ Kernels near the roofline are

making good use of

computational resources

31

Peak GFLOP/s

A
tt
a
in

a
b
le

 F
L
O

P
/s

H
B
M

 G
B
/s

Arithmetic Intensity (FLOP:Byte)

Ø kernels can have low performance

(GFLOP/s), but make good use

(%STREAM) of a machine

What is “Good” Performance?

§ Kernels near the roofline are

making good use of

computational resources

32

Peak GFLOP/s

A
tt
a
in

a
b
le

 F
L
O

P
/s

H
B
M

 G
B
/s

Arithmetic Intensity (FLOP:Byte)

Ø kernels can have low performance

(GFLOP/s), but make good use

(%STREAM) of a machine

Ø kernels can have high performance

(GFLOP/s), but still make poor use of a

machine (%peak)

How can performance ever
be below the Roofline?

How can performance be below the Roofline?

34

§ Does one always attain either…
o Peak DRAM Bandwidth
o Peak FLOP/s

§ Bottlenecks other than DRAM
and FLOP/s…
o Insufficient cache bandwidth + locality
o Didn’t use FMA / Vectors / Tensors / …
o Too many non-FP instructions
o etc…

HBM G
B/s

Peak GFLOP/s
§ Theoretical vs. Empirical

o Use benchmarked GFLOP/s and GB/s
o Application FLOPs can be underestimated

(how many FLOPs is a divide?)

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

Below the Roofline?
Memory Hierarchy and Cache Bottlenecks

Memory Hierarchy

§ GPUs have multiple levels of
memory/cache
o Registers
o L1, L2, cache
o HBM (GPU device memory)
o DDR (host memory)

36

GPU

L1 D$

DRAM

L2 $

HBM

Memory Hierarchy

§ GPUs have different bandwidths for
each level

37

GPU

L1 D$

DRAM

L2 $

HBM

Bandwidth

L1 GB/s

L2 GB/s

HBM GB/s

DRAM GB/s

Memory Hierarchy

§ GPUs have different bandwidths for
each level
o different machine balances for each level

38

GPU

L1 D$

DRAM

L2 $

HBM

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
HBM GB/s

GFLOP/s
DRAM GB/s

Memory Hierarchy

§ GPUs have different bandwidths for
each level
o different machine balances for each level

§ Applications have locality in each level
o different data movements for each level

39

GPU

L1 D$

DRAM

L2 $

HBM

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
HBM GB/s

GFLOP/s
DRAM GB/s

Data Movement

L1 GB

L2 GB

HBM GB

DRAM GB

Memory Hierarchy

§ GPUs have different bandwidths for
each level
o different machine balances for each level

§ Applications have locality in each level
o different data movements for each level
o different arithmetic intensity for each level

40

GPU

L1 D$

DRAM

L2 $

HBM

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
HBM GB/s

GFLOP/s
DRAM GB/s

Arithmetic Intensity

GFLOPs
L1 GB

GFLOPs
L2 GB

GFLOPs
HBM GB

GFLOPs
DRAM GB

Cache Bottlenecks

§ For each additional level of the memory hierarchy, we can add another
term to our model…

41

Peak GFLOP/s
GFLOP/s = min

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

AIDRAM * DRAM GB/s

Cache Bottlenecks

§ For each additional level of the memory hierarchy, we can add another
term to our model…

42

Peak GFLOP/s
GFLOP/s = min

AIL2 * L2 GB/s
AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

AIDRAM * DRAM GB/s

Cache Bottlenecks

§ For each additional level of the memory hierarchy, we can add another
term to our model…

43

Peak GFLOP/s
GFLOP/s = min

AIL2 * L2 GB/s

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

AIDRAM * DRAM GB/s

AIL1 * L1 GB/s

Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model

44

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each

level of memory

45

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

L2
 ca

ch
e G

B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each

level of memory
o Arithmetic Intensity (dot) for each level of

memory

46

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

L2
 ca

ch
e G

B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each

level of memory
o Arithmetic Intensity (dot) for each level of

memory
Ø performance is ultimately the minimum

of these bounds

47

L2 Bound
L2 AI*BW

is less than
HBM AI*BW

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

L2
 ca

ch
e G

B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each

level of memory
o Arithmetic Intensity (dot) for each level of

memory
Ø performance is ultimately the minimum

of these bounds

48

§ If L2 bound, we see HBM dot
well below HBM ceiling

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

Cache Bottlenecks

§ Widely separated Arithmetic
Intensities indicate high reuse in
the cache

49

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

L2
 ca

ch
e G

B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

High Reuse

Cache Bottlenecks

§ Widely separated Arithmetic
Intensities indicate high reuse in
the cache

§ Similar Arithmetic Intensities
indicate effectively no cache
reuse (== streaming)

50

A
tta

in
ab

le
 G

F
LO

P
/s

HBM
 G

B/s

L2
 ca

ch
e

GB/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

no reuse
(streaming)

Below the Roofline?
FMA, Reduced Precision, Tensor Cores

Return of CISC
§ Vectors have their limits (finite DLP, register file energy scales with VL, etc…)

§ Death of Moore’s Law is reinvigorating Complex Instruction Set Computing (CISC)

52

Ø If instructions are a mix or scalar (predicated), vector, and matrix
operations, performance is now a weighted average of them.

§ Modern CPUs and GPUs are increasingly reliant on special (fused) instructions
that perform multiple operations (fuse common instruction sequences)…
o FMA (Fused Multiply Add): z=a*x+y …z,x,y are vectors or scalars
o 4FMA (Quad FMA): z=A*x+z …A is a FP32 matrix; x,z are vectors
o WMMA (Tensor Core): Z=AB+C …A,B are FP16 matrices; Z,C are FP32

Return of CISC

§ Consider NVIDIA Volta GPU…
o ~100 TFLOPs for FP16 Tensor
o 15 TFLOPS for FP32 FMA
o 7.5 TFLOPs for FP32 Add

§ DL applications mix Tensor,
FP16, and FP32

§ DL performance may be well
below nominal Tensor Core peak

53

A
tta

in
ab

le
 F

LO
P

/s

HBM G
B/s

FP16 WMMA

Arithmetic Intensity (FLOP:Byte)

FP32 FMA

FP32 Add

Return of CISC

§ Consider NVIDIA Volta GPU…
o ~100 TFLOPs for FP16 Tensor
o 15 TFLOPS for FP32 FMA
o 7.5 TFLOPs for FP32 Add

§ DL applications mix Tensor,
FP16, and FP32

§ DL performance may be well
below nominal Tensor Core peak

§ The actual mix of instructions
introduces an effective ceiling
on performance…

54

A
tta

in
ab

le
 F

LO
P

/s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Effective ceiling

Below the Roofline?
FPU Starvation and Instruction Roofline

Think about classifying apps by instruction mix…

§ Heavy floating-point (traditional FLOP Roofline)

§ Mix of integer and floating-point (FPU starvation)

§ Integer-only (e.g. bioinformatics, graphs, etc…)

§ Mixed precision (e.g. deep learning)

62

Instruction Roofline
Model

NVIDIA GPU Instruction Roofline

§ Instructions per second? Instructions per Byte?

63

§ What is an ‘Instruction’ on a GPU?
o Thread-level hides issue limits?
o Warp-level hides predication effects?
o Scale non-predicated threads down by the warp size (divide by 32)

§ Naively, one would think instruction intensity should use ‘bytes’
§ GPUs access memory using ‘transactions’

o 32B for global/local/L2/HBM
o 128B for shared memory
Ø “Instructions/Transaction” preserves traditional Roofline,

but enables a new way of understanding memory access

Instruction Roofline

64

Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

L2
 ca

ch
e G

B/s

Arithmetic Intensity
(FLOP:Byte)

Peak GFLOP/s

Instruction Roofline

65

Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s

Peak GIPS
GIPS = min

IIDRAM * DRAM GB/s At
ta

in
ab

le
 G

IP
S

HBM G
B/s

L2
 ca

ch
e G

B/s

Instruction Intensity
(Instruction:Byte)

Peak GIPS

Instructions per Byte

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Instruction Roofline on GPUs

66

Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s

Peak GIPS
GIPS = min

IIDRAM * DRAM GB/s A
tt
a
in

a
b
le

 G
IP

S

H
B
M

 G
B
/s

L2
 c
ac

he
 G

B
/s

Instruction Intensity

(Instruction:Byte)

Peak GIPS

Warp
Instructions

As the natural quanta for GPU
memory access is a “transaction”…

Nan Ding, Samuel Williams, "An Instruction Roofline

Model for GPUs", PMBS, November, 2019.

Instruction Roofline on GPUs

67

Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s

Peak GIPS
GIPS = min

IIDRAM * DRAM GB/s At
ta

in
ab

le
 G

IP
S

HBM G
TXN/s

L2
 ca

ch
e G

TXN/s

Instruction Intensity
(Instruction:Transaction)

Peak GIPS

Peak GIPS
GIPS = min

IIDRAM * DRAM GTXN/s IIx (Instruction Intensity at level “x”) =

Instructions / Transactions (to/from level “x”)

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Efficiency of Global Memory Access

§ (Global)LDST Instruction Intensity has a special meaning / use…
o Global LDST instructions / Global transactions
o Numerator lower than nominal II
o Denominator can be lower than nominal L1 II (no local or shared transactions)

§ Denotes efficiency of memory access

68

10-2 10-1 100 101

Instuction Intensity (Warp Instructions per Transaction)

10-1

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

St
rid

e-
0

U
ni

t S
tri

de
 (i

nt
eg

er
)

St
rid

e>
=1

28
B

Thoeretical Peak: 489.6 warp GIPS

L1 = Global 437.5 GTXN/s

Unattainably
Low Intensity

Unattainably
High Intensity

§ 3 “Walls” of interest:
o ≥1 transaction per LDST instruction

(all threads access same location)
o ≤32 transactions per LDST instruction

(gather/scatter or stride>=128B)
o Unit Stride: 1 LDST per 8 transactions

(double precision)

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Efficiency of Shared Memory Access

§ (Shared)LDST Instruction Intensity also has a special meaning / use
o Shared LDST instructions / Shared transactions
o II is similarly loosely related to nominal II

§ Can be used to infer the number of bank conflicts

69

10-2 10-1 100 101 102

Instuction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

N
o

ba
nk

 c
on

fli
ct

32
-w

ay
 b

an
k

co
nf

lic
t

Thoeretical Peak: 489.6 warp GIPS

Shared 109.3 GTXN/s

Can never have less
than 0 bank conflicts

§ 2 “Walls” of interest:
o Minimum of 1 transaction per shared

LDST instruction (no bank conflicts)
o Maximum of 32 transactions per

shared LDST instruction
(all threads access different lines
in the same bank)

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Instruction Roofline for Matrix Transpose

70

Tr
an

sp
os

e
in

Sh
ar

ed
A

rr
ay

Pa
dd

in
g

N
ai

ve

Instruction Hierarchy & Thread Predication Global Memory Efficiency

not used

Shared Memory Efficiency

High Stride
becomes

Unit Stride

Bank conflicts
are eliminated

Loss in L1 locality due
to use of shared memory

Improved L1 locality due
to elimination of bank conflicts

Bank conflict on
every access

High Stride
Access

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Recap

Roofline Recap

72

Arithmetic Intensity
§ Different intensity for each

level of memory
§ Total FLOPs / Total Data

Movement
§ Includes all cache effects

Ø Measure of a loop’s
temporal locality

Bounds performance
§ Horizontal Lines =

Compute Ceilings
§ Diagonal Lines =

Bandwidth Ceilings
§ Bandwidth ceilings are

parallel on log-log scale

Ø Collectively, ceilings
define an upper limit on
performance

Plotting loops…
§ Each loop has one dot per

level of memory
§ x-coordinate =

AI at that level
§ y-coordinate =

GFLOP/s

Ø Proximity to associated
ceiling is indicative of a
performance bound

Ø Position of dots relative to
each other is indicative of
cache locality

Instruction Roofline Takeaway

73

Instruction Roofline
§ Tells us about bottlenecks

(issue and memory)

§ Intensity based on total
instructions and transactions

§ Use of FMA, SIMD, vectors,
tensors decreases intensity.

§ Presence of integer instructions
increases intensity.

§ Reducing precision has no affect
on intensity

Memory Walls
§ Tells us about efficiency

(memory access)

§ Intensity based on LDST
instructions and transactions

§ Reducing precision shifts intensity
and the unit-stride wall

Traditional Roofline
§ Tells us about performance

(floating-point)

§ Intensity based on data locality
(FLOPs / Bytes)

§ Use of FMA, SIMD, vectors,
tensors has no affect on intensity

§ Presence of integer instructions
has no affect on intensity.

§ Reducing precision (64b, 32b,
16b) increases arithmetic intensity

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

What is Roofline used for?

74

§ Predict performance on future machines / architectures
o Set realistic performance expectations
o Drive for HW/SW Co-Design

§ Identify performance bottlenecks & motivate software optimizations

§ Determine when we’re done optimizing code
o Assess performance relative to machine capabilities
o Track progress towards optimality
o Motivate need for algorithmic changes

§ Understand performance differences between Architectures,
Programming Models, implementations, etc…
o Why do some Architectures/Implementations move more data than others?
o Why do some compilers outperform others?

Questions?

BACKUP

