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You could just run benchmarks

= |magine running a mix of
benchmarks or kernels...

= GFLOP/s alone may not be
particularly insightful

= speedup relative to a Xeon may
seem random

» We need a quantitative model
that defines Good Performance

GFLOP/s

Kernel (or apps)



What is “Good” Performance?

» Good Performance is tied to “Efficient” execution
= Two fundamental requirements ...

1. Must operate the GPU in the throughput-limited regime

not sensitive to Amdahl effects, D2H/H2D transfers, launch overheads, efc...

2. Must attain high utilization of the GPU’s compute and/or bandwidth
capabilities




Roofline Model
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= Roofline Model is a throughput-
oriented performance model

PERFORMANCE AND ALGORITHMS RESEARCH STAFF RESEARCH PUBLICATIONS

u applieS to X86, ARM, POWER Perforncn gorithms Research
CPUs, GPUs, Google TPUs', g Roofline Performance Model

RESEARCH Roofline is a visually intuitive performance model used to bound the performance of various numerical methods and operations running on

Research i or processor i Rather than simply using percent-of-peak estimates, the model can be used to
Auto-tuning assess the quality of attained performance by combining locality, idth, and different izati I into a single

S e C BeBOP performance figure. One can examine the resultant Roofline figure in order to determine both the implementation and inherent performance
el
limitations.
, " == EDGAR

HIpGISAXS Arithmetic Intensity
HPGMG The core parameter behind the Roofline model is Arithmetic Intensity. Arithmetic Intensity is the ratio of total floating-point operations to

Roofline total data movement (bytes). A BLAS-1 vector-vector increment ( x[i]+=y[i] ) would have a very low arithmetic intensity of 0.0417 (N FLOPS

[ ]
. SciDAC /24N Bytes) and would be independent of the vector size. Conversely, FFT's perform 5*N*logN flops for a N-point double complex
TOP500 transform. If out of place on a write allocate cache architecture, the transform would move at least 48N bytes. As such, FFT's
Previous Projects would have an arithmetic intensity of 0.104*logN and would grow slowly with data size. Unfortuantely, cache capacities would

limit FFT arithmetic intensity to perhaps 2 flops per byte. Finally, BLAS3 and N-Body Particle-Particle methods would have
arithmetic intensity grow very quickly.

Facebook 0.1-1.0 flops per byte Typically < 2 flops per byte 0O(10) flops per byte
A A A

T r N N\ N\

Google+
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Twitter

Particle
Stencils (PDEs) Methods
FFTs, Dense
Lattice Boltzmann Spectral Methods Linear Algebra
N Methods RN P (BLAS3) ,
Y Y Y
o(1) O(log(N)) O(N)
Rooflina Madal

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline
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'Jouppi et al, “In-Datacenter Performance Analysis of a Tensor e ...l

Processing Unit”, |SCA, 2017. BERKELEY LAB
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Reduced Model

= GPU architectures can be complex
= Don’t model / simulate full architecture

= Make assumptions on performance and
usage...




Reduced Model

= GPU architectures can be complex
= Don’t model / simulate full architecture
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= Make assumptions on performance and L1 L1 L1 L1
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Reduced Model

= GPU architectures can be complex 4 Sst rLope
= Don’t model / simulate full architecture ; 5 ; 5 ; 5 F O o
= Make assumptions on performance and ' L1 Caches |
usage... } | } : $ . t L2GBis
o Peak GFLOP/s on data in L1 Sr:hared L2 Cac:he
o Load-balanced SPMD code i i i i i E { DRAM GBI
DRAM
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Reduced Model

= GPU architectures can be complex
= Don’t model / simulate full architecture

= Make assumptions on performance and
usage...
o Peak GFLOP/s on data in L1
o Load-balanced SPMD code
o Sufficient cache bandwidth/capacity

Comfpute

GFLOP/s

Pierfect ECachefs

!

! !

} DRAMGB/s

DRAM
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Reduced Model

= GPU architectures can be complex . Comipute | CFLopis
= Don’t model / simulate full architecture
_ Perfect.Caches
= Make assumptions on performance and i i i { DRAM GBIs
usage... DRAM

Peak GFLOP/s on data in L1
Load-balanced SPMD code

Sufficient cache bandwidth/capacity
Basis for DRAM Roofline Model

vV O O O

-
A
rrrrrrr ’""

BERKELEY LAB



(DRAM) Roofline

= Any given loop nest will perform:
o Computation (e.g. FLOPSs)
o Communication (e.g. moving data to/from DRAM)

= With perfect overlap of communication
and computation...

o Run time is determined by whichever is greater

Time = max=<

/#FLOPS /| Peak GFLOP/s

\#Bytes | Peak GB/s

Comfpute

GFLOP/s

Pierfect ECachefs

!

! !

} DRAMGB/s

DRAM
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(DRAM) Roofline

= Any given loop nest will perform:
o Computation (e.g. FLOPSs)
o Communication (e.g. moving data to/from DRAM)

= With perfect overlap of communication
and computation...

Comfpute

GFLOP/s

Pierfect ECachefs

!

! !

} DRAMGB/s

DRAM

o Run time is determined by whichever is greater

"1/ Peak GFLOP/s

\#Bytes | #FLOPs / Peak GB/s




(DRAM) Roofline

= Any given loop nest will perform: . Comipute |
o Computation (e.g. FLOPS)
o Communication (e.g. moving data to/from DRAM) Perfect:Caches
. . t ! !
= With perfect overlap of communication DRAM

and computation...

GFLOP/s

} DRAMGB/s

o Run time is determined by whichever is greater

/Peak GFLOP/s

\(#FLOPS | #Bytes) * Peak GB/s




(DRAM) Roofline

= Any given loop nest will perform:

o Computation (e.g. FLOPs) ; ; ;
o Communication (e.g. moving data to/from DRAM) Perfect:Caches

- . . t t t t DRAM GB/s
= With perfect overlap of communication DRAM
and computation...

o Run time is determined by whichever is greater

Com:pute GFLOP/s

Peak GFLOP/s
Al * Peak GB/s

Al (Arithmetic Intensity) = FLOPs / Bytes (as presented to DRAM )

GFLOP/s = min
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Arithmetic Intensity

= Measure of data locality (data reuse)

= Ratio of Total Flops performed to Total Bytes moved

= For the DRAM Roofline...

Total Bytes to/from DRAM
Includes all cache and prefetcher effects

Can be very different from total loads/stores (bytes requested)

O O O O

Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)
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(DRAM) Roofline Model

Al * Peak GB/s

Al (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )

Peak GFLOP/s
GFLOP/s = min

= Plot Roofline bound using Arithmetic
Intensity as the x-axis

* Log-log scale makes it easy to
doodle, extrapolate performance
along Moore’s Law, etc...

—>

Attainable FLOP/s

Arithmetic Intensity (FLOP:Byte)



(DRAM) Roofline Model

Peak GFLOP/s
Al * Peak GB/s

Al (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )

GFLOP/s = min

= Plot Roofline bound using Arithmetic
Intensity as the x-axis

* Log-log scale makes it easy to
doodle, extrapolate performance
along Moore’s Law, etc...

Attainable FLOP/s

Peak GFLOP/s

: >
Arithmetic Intensity (FLOP:Byte)

Transition @ Al ==
Peak GFLOP/s / Peak GB/s ==
‘Machine Balance’
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(DRAM) Roofline Model

Peak GFLOP/s |
Al * Peak GB/s

Al (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )

GFLOP/s = min

Peak GFLOP/s

= Roofline tessellates this 2D view of
performance into 5 regions...

Attainable FLOP/s

>

Arithmetic Intensity (FLOP:Byte)
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Roofline Example #1

= Typical machine balance is 5-10

FLOPs per byte...
o 40-80 FLOPs per double to exploit compute capability Peak GFLOP/s
o Artifact of technology and money ) |
: : o :
o Unlikely to improve O |
™ :
@ |
3 :
= Consider STREAM Triad... S GFLOP/s <Al * HBM GBYs
#pragma omp parallel for < i
for(i=0;i<N;i++){ I I
} z[1] = x[i] + alpha*Y[i]; TRIAD! !
0.083 5.0
o 2 FLOPs per iteration Arithmetic Intensity (FLOP:Byte)

o Transfer 24 bytes per iteration (read X][i], Y[i], write Z[i])
o Al=0.083 FLOPs per byte == Memory bound
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Roofline Example #2

= Conversely, 7-point constant coefficient
stencill...

#pragma omp parallel for
for(k=1; k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1l;i<dim+1l;i++){
new[k][j]1[i] = -6.0%old[k 1[3 1[i ]
+ old[k 1[3 1[1-1]
old[k 1[j 1[i1+1]
oldfk 1[3-11[1 1]

old[k J[j+1][1
old[k-11[7 1I[i
old[k+1]1[7 1I[i

Compute

GFLOP/s

Perfect ECache

HBM GB/s

HBM
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Roofline Example #2

= Conversely, 7-point constant coefficient Comipu o L op
stencil...
o 7FLOPs Perfect.Cache
o 8 memory references (7 reads, 1 store) per point HBM GB/s
o Al=7/(8*8)=0.11 FLOPs per byte HBM

(measured at the L1)

#pragma omp parallel for
for(k=1;k<dim+1;k++) {
for(j=1;j<dim+1;j++){

v =TT L;i++)
new[k]J[JI1[1 = -64~old[k 1[J 1I[1
oldfk 1[j I[i-1]

old[k 1[j 1[i+1]
old[k 1[j-1][1 ]

old[k 1[j+1][1 ]
old[k-1][3 1[1 ]
old[k+1]1[3 1[i ]

~

A
reeeeee| M

BERKELEY LAB




Roofline Example #2

= Conversely, 7-point constant coefficient r— i
: : ompute i GFLOP/s
stencill... 5
o 7FLOPs  Perfect Cache's :
o 8 memory references (7 reads, 1 store) per point 0 0 0 0 HBM GB/s
o ldeally, cache will filter all but 1 read and 1 write per point HBM

#pragma omp parallel for
for(k=1;k<dim+1;k++) {
for(J 1; J<d1m+1,J++){

107 107 ]
107 1[0i-1]
107 1[0i+1]
107-11[07 ]
105+

UruIN =1LJ dJLt |

old[k+1]1[7 1I[i
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Roofline Example #2

= Conversely, 7-point constant coefficient r— i
: . Compute GFLOP/s
stencil...
o 7FLOPs ~ PerfectiCaches
o 8 memory references (7 reads, 1 store) per point 0 0 0 0 HBM GB/s
o Ideally, cache will filter all but 1 read and 1 write per point HBM
> 71/ (8+8) =0.44 FLOPs per byte (DRAM)

#pragma omp parallel for
for(k=1; k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1l;i++){
new[k][j][i1] = -6.0%old[k 1[3 1[i 1]
+ old[k 1[3 1[1-1]
old[k 1[j 1[i1+1]
oldfk 1[3-11[1 1]
old[k 1[j+1]1[1

]
old[k-11[7 1[1 ]
old[k+1][7 1[7 1;
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Roofline Example #2

= Conversely, 7-point constant coefficient

stencil...
o T7FLOPs Peak GFLOP/s
o 8 memory references (7 reads, 1 store) per point %
o ldeally, cache will filter all but 1 read and 1 write per point %
— *
> 71(8+8) = 0.44 FLOPs per byte (DRAM) I ) GFLOP/s <Al™ HBM GB/s
== memory bound, but 5x the FLOP rate as TRIAD 2 :
c I
#pragma omp parallel for éE I | :
for (k=1; k<dim+1; k++) { < | | 7-point
for(j=1;j<dim+l;j++){ | ! Stencill
for(i=1;i<dim+1l;i++){ RIAD: I
new[k][j1[i] = -6.0%o1d[k I[j 1[i 1] ! :
+ old[k I[j 1[i-1] : >
old[k 1[j 1[i+1] 0.083 0.44
old[k 1[j-11[i ] Arithmetic Intensity (FLOP:Byte)

old[k J[j+1]1[1 ]
old[k-11[7 1[1 ]
old[k+1][7 1[7 1;
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What is “Good” Performance?

= Think back to our mix of loop
nests (benchmarks)...

FLOP/s

Kernel




What is “Good” Performance?

= Think back to our mix of

benchmarks (kernels) |
= \We can sort kernels by their
arithmetic intensity ... a
:

Arithmetic Intensity (FLOP:Byte)




What is “Good” Performance?

= Think back to our mix of
benchmarks (kernels)

= \We can sort kernels by their
arithmetic intensity...

= .. and compare performance
relative to machine capabillities

Attainable FLOP/s

Peak GFLOP/s

Arithmetic Intensity (FLOP:Byte)




What is “Good” Performance?

= Kernels near the roofline are

making good use of |
computational resources Peak GFLOP/s
T
@)
T
o
o
Ic
g
Arithlmetic Intensity (FLOP:Byte) g
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What is “Good” Performance?

= Kernels near the roofline are
making good use of
computational resources Peak GFLOP/s

» kernels can have low performance
(GFLOP/s), but make good use
(% STREAM) of a machine

Attainable FLOP/s

4 ~ -
/7
4
4
4
4
4
4
4
4
4
4
4
4 )

Arithmetic Intensity (FLOP:Byte)
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What is “Good” Performance?

= Kernels near the roofline are
making good use of
computational resources Peak GFLOP/s

» kernels can have low performance
(GFLOP/s), but make good use
(% STREAM) of a machine

» kernels can have high performance
(GFLOP/s), but still make poor use of a
machine (%peak)

Attainable FLOP/s

>

Arithmetic Intensity (FLOP:Byte)
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How can performance be below the Roofline?

= Does one always attain either...
o Peak DRAM Bandwidth A
o Peak FLOP/s

. . Peak GFLOP/
= Theoretical vs. Empirical . ’

o Use benchmarked GFLOP/s and GB/s

o Application FLOPs can be underestimated
(how many FLOPs is a divide?)

= Bottlenecks other than DRAM
and FLOP/s...

o Insufficient cache bandwidth + locality
Didn’t use FMA / Vectors / Tensors / ... Arithmetic Intensity (FLOP:Byte)

O
o Too many non-FP instructions
o efc...

Attainable FLOP/s

>
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Memory Hierarchy

= GPUs have multiple levels of
memory/cache W

Registers

o L1 D$

o L1, L2, cache “

o HBM (GPU device memory) L2 $

o DDR (host memory) |
HBM
DRAM

-
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Memory Hierarchy

» GPUs have different bandwidths for Sanauidi
each level ) GB/SW

L1 D$

L2 GB/s ::
L2 $

HBM GB/s ::
HBM

DRAM GB/s ::
DRAM
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Memory Hierarchy

= GPUs have different bandwidths for vachine Bl

each level GFLO%W
L1GBls.

o different machine balances for each level

L1 D$

GFLOP/s 1

L2 GB/s v

L2 $

GFLOP/s 1

HBM GB/s v
HBM

GFLOP/s 1

DRAM GB/s v
DRAM

<
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Memory Hierarchy

= GPUs have different bandwidths for Hlachine Balence Data Movement

each level GFLO%W
L1 GB/s L1GB

o different machine balances for each level L1 DS
GFLOP/s 1
L2 GB/s ] L2GB
= Applications have locality in each level L2 $
. GFLOP/s 1
o different data movements for each level HBM GB/s ] HBM GB
HBM
GFLOP/s 1
DRAM GB/s v DRAM GB
DRAM
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Memory Hierarchy

- GPUS have dlfferent bandW|dthS fOF Machine Balance Arithmetic Intensity

each level GFLOP/s i GFLOPs
L1 GB/s L1 GB

o different machine balances for each level L1 DS

GFLOP/s 1 GFLOPs
L2 GB/s v L2 GB

= Applications have locality in each level L2 $
_ GFLOP/s f GFLOPs
o different data movements for each level HBM GBIs ! HBM GB

o different arithmetic intensity for each level HBM
GFLOP/s 1 GFLOPs
DRAM GB/s v DRAM GB

DRAM
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Cache Bottlenecks

= For each additional level of the memory hierarchy, we can add another
term to our model...

_ Peak GFLOP/s
GFLOP/s = min
Algram * DRAM GB/s

Aly (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )




Cache Bottlenecks

= For each additional level of the memory hierarchy, we can add another
term to our model...

Peak GFLOP/s
Algram * DRAM GB/s
Al ,* L2 GB/s

Aly (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )

GFLOP/s = min




Cache Bottlenecks

= For each additional level of the memory hierarchy, we can add another
term to our model...

Peak GFLOP/s
Algram * DRAM GB/s
Al ,* L2 GB/s
Al . * L1 GB/s

Aly (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )

GFLOP/s = min




Cache Bottlenecks

= Plot equation in a single figure...
o “Hierarchical Roofline” Model

Peak GFLOP/s

Attainable GFLOP/s

Arithmetic Intensity (FLOP:Byte)
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Cache Bottlenecks

= Plot equation in a single figure...

o “Hierarchical Roofline” Model

o Bandwidth ceiling (diagonal line) for each
level of memory

Attainable GFLOP/s

Peak GFLOP/s

Arithmetic Intensity (FLOP:Byte)
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Cache Bottlenecks

= Plot equation in a single figure...

O

O

“Hierarchical Roofline” Model

Bandwidth ceiling (diagonal line) for each
level of memory

Arithmetic Intensity (dot) for each level of
memory

Attainable GFLOP/s

Peak GFLOP/s

Arithmetic Intensity (FLOP:Byte)
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Cache Bottlenecks

= Plot equation in a single figure...

O

O

O

>

“Hierarchical Roofline” Model

Bandwidth ceiling (diagonal line) for each
level of memory

Arithmetic Intensity (dot) for each level of
memory

performance is ultimately the minimum
of these bounds

Attainable GFLOP/s

Peak GFLOP/s

L2 AI*"BW

is less than
HBM AlI*BW

Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr ""|

BERKELEY LAB



Cache Bottlenecks

= Plot equation in a single figure...
o “Hierarchical Roofline” Model

o Bandwidth ceiling (diagonal line) for each
level of memory

o Arithmetic Intensity (dot) for each level of
memory

» performance is ultimately the minimum
of these bounds

= |[f L2 bound, we see HBM dot
well below HBM ceiling

Attainable GFLOP/s

Peak GFLOP/s

\
W&
QO

o

Arithmetic Intensity (FLOP:Byte)
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Cache Bottlenecks

= Widely separated Arithmetic

Intensities indicate high reuse in |
the cache Peak GFLOP/s
o
O
0
O
o)
E
I
<
>

Arithmetic Intensity (FLOP:Byte)
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Cache Bottlenecks

= Widely separated Arithmetic
Intensities indicate high reuse Iin
the cache

= Similar Arithmetic Intensities
indicate effectively no cache
reuse (== streaming)

Attainable GFLOP/s

Peak GFLOP/s

Arithmetic Intensity (FLOP:Byte)
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Return of CISC

= Vectors have their limits (finite DLP, reqister file energy scales with VL, etc...)
= Death of Moore's Law is reinvigorating Complex Instruction Set Computing (CISC)

= Modern CPUs and GPUs are increasingly reliant on special (fused) instructions
that perform multiple operations (fuse common instruction sequences)...

o FMA (Fused Multiply Add): Z=a"x+y ...Z,X,y are vectors or scalars
o 4FMA (Quad FMA): Z=A*x+z ...A is a FP32 matrix; x,z are vectors
o WMMA (Tensor Core): /=AB+C ...A,B are FP16 matrices; Z,C are FP32

» If instructions are a mix or scalar (predicated), vector, and matrix
operations, performance is now a weighted average of them.

-
A
rrrrrrr "“l

BERKELEY LAB



Return of CISC

= Consider NVIDIA Volta GPU...

o ~100 TFLOPs for FP16 Tensor |
o 15 TFLOPS for FP32 FMA e A
o 7.5 TFLOPs for FP32 Add o
= DL applications mix Tensor, I
FP16, and FP32 3
}%3 FP32 FMA
= DL performance may be well Z
. FP32 Add
below nominal Tensor Core peak
>

Arithmetic Intensity (FLOP:Byte)
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Return of CISC

= Consider NVIDIA Volta GPU...

o ~100 TFLOPs for FP16 Tensor
o 15 TFLOPS for FP32 FMA
o .5TFLOPs for FP32 Add

= DL applications mix Tensor,
FP16, and FP32

= DL performance may be well
below nominal Tensor Core peak

= The actual mix of instructions Arithmetic Intensity (FLOP-Byte)
introduces an effective ceiling
on performance...

Effective ceiling

Attainable FLOP/s

>
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Think about classifying apps by instruction mix...

= Heavy floating-point (traditional FLOP Roofline)
= Mix of integer and floating-point (FPU starvation)

= |nteger-only (e.g. bioinformatics, graphs, etc...) Instruction Roofline
Model

= Mixed precision (e.g. deep learning)




NVIDIA GPU Instruction Roofline

= [nstructions per second? Instructions per Byte?

= \What is an ‘Instruction’ on a GPU?

o Thread-level hides issue limits?
o Warp-level hides predication effects?
o Scale non-predicated threads down by the warp size (divide by 32)

= Naively, one would think instruction intensity should use ‘bytes’

= GPUs access memory using ‘transactions’
o 32B for global/local/L2/HBM
o 128B for shared memory
> “Instructions/Transaction” preserves traditional Roofline,
but enables a new way of understanding memory access
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Instruction Roofline

Peak GFLOP/s
GFLOP/s = min

Al v * DRAM GB/s

Attainable GFLOP/s

,T

Peak GFLOP/s

Arithmetic Intensity
(FLOP:Byte)




Instruction Roofline

Al v * DRAM GB/s

¥

Peak GFLOP/s
GFLOP/s = min

_ Peak GIPS
GIPS = min
llorav ¥ DRAM GB/s

Nan Ding, Samuel Williams, "An Instruction Roofline

Attainable GIPS

,T

Peak GIPS

Instruction Intensity
(Instruction:Byte)

Model for GPUs", PMBS, November, 2019.



Instruction Roofline on GPUs

_ Peak GFLOP/s i
GFLOP/s = min
AIDRAM * DRAM GBIS Peak GIPS

¥

e

_ Peak GIPS
GIPS = min
ﬁ\IIDRA,\,I * DRAM GB/s

Attainable GIPS

Instruction Intensity
(Instruction:Byte)

Nan Ding, Samuel Williams, "An Instruction Roofline

Model for GPUs", PMBS, November, 2019.



Instruction Roofline on GPUs

Peak GFLOP/s )
AIDRAM * DRAM GBIS Peak GIPS

GFLOP/s = min

Peak GIPS
IIDRA,\,I * DRAM GB/s

Attainable GIPS

GIPS = min

Instruction Intensity

Peak GIPS (Instruction:Transaction)
Il (Instruction Intensity at level “x”) =
IIDRAM % DRAM GTXNIs ns I’.UC on in enSI}./a evel X

Instructions / Transactions (to/from level “x”)

GIPS = min

Nan Ding, Samuel Williams, "An Instruction Roofline rfrhl ’.ﬁl

Model for GPUs", PMBS, November, 2019.
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Efficiency of Global Memory Access

= (Global)LDST Instruction Intensity has a special meaning / use...

o Global LDST instructions / Global transactions

o Numerator lower than nominal |l

o Denominator can be lower than nominal L1 Il (no local or shared transactions)

= Denotes efficiency of memory access

= 3 "Walls” of interest:
o 21 transaction per LDST instruction

(all threads access same location)
o <32 transactions per LDST instruction

(gather/scatter or stride>=128B)
o Unit Stride: 1 LDST per 8 transactions

(double precision)

Nan Ding, Samuel Williams, "An Instruction Roofline

I'll“ﬁolelzrletical IPeaIk: 4896 I\);flclrp GIIPS_%

NS /
G5
w12 S :
S e Highlintensity,
I =
A % 2
= = .=
1 = (o) e
107! 10° 10!

Instuction Intensity (Warp Instructions per Transaction)
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Model for GPUs", PMBS, November, 2019.
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Efficiency of Shared Memory Access

= (Shared)LDST Instruction Intensity also has a special meaning / use

o Shared LDST instructions / Shared transactions
o Il is similarly loosely related to nominal Il

= Can be used to infer the number of bank conflicts

= 2 “Walls” of interest:

o Minimum of 1 transaction per shared & 3¢ SIS S AL N R R RS
: : . a¥ : Thoeretical Peak: 489.6 warp GIPS :
LDST instruction (no bank conflicts) 5 | :
o Maximum of 32 transactions per gloz'_ 2 o8 /
" . o < -
shared LDST instruction ETL S S\ i
- . i 4
(all threads access different lines 2 | % el Canlneveghavelless
in the same bank) glO : % than]Olbank{conflicts
S
£ o Az
10 10”! 10" 10 10
Instuction Intensity (Warp Instructions per Transaction)

Nan Ding, Samuel Williams, "An Instruction Roofline rfr}| m

Model for GPUs", PMBS, November, 2019.
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Instruction Roofline for Matrix Transpose

Instruction Hierarchy & Thread Predication Global Memory Efficiency
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Nan Ding, Samuel Williams, "An Instruction Roofline

Model for GPUs", PMBS, November, 2019.

Shared Memory Efficiency

not used

Performance (warp GIPS)

 Thoeretical Peak: 489.6 warp GIPS
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Roofline Recap

Bounds performance Arithmetic Intensity

Horizontal Lines =
Compute Ceilings
Diagonal Lines =
Bandwidth Ceilings
Bandwidth ceilings are
parallel on log-log scale

Collectively, ceilings
define an upper limit on
performance

Different intensity for each :
level of memory

Total FLOPs / Total Data :
Movement

Includes all cache effects 2

Measure of a loop’s >

temporal locality

Plotting loops...

Each loop has one dot per
level of memory
Xx-coordinate =

Al at that level
y-coordinate =

GFLOP/s

Proximity to associated
ceiling is indicative of a
performance bound

Position of dots relative to
each other is indicative of
cache locality
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Instruction Roofline Takeaway

Traditional Roofline Instruction Roofline

= Tells us about performance = Tells us about bottlenecks
(floating-point) (issue and memory)

= |ntensity based on data locality = |ntensity based on total
(FLOPs / Bytes) instructions and transactions

= Use of FMA, SIMD, vectors, = Use of FMA, SIMD, vectors,
tensors has no affect on intensity tensors decreases intensity.

= Presence of integer instructions = Presence of integer instructions
has no affect on intensity. increases intensity.

= Reducing precision (64b, 32b, = Reducing precision has no affect
16b) increases arithmetic intensity on intensity

Nan Ding, Samuel Williams, "An Instruction Roofline

Model for GPUs", PMBS, November, 2019.

Memory Walls

Tells us about efficiency
(memory access)

Intensity based on LDST
instructions and transactions

Reducing precision shifts intensity
and the unit-stride wall
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What is Roofline used for?

» Understand performance differences between Architectures,

Programming Models, implementations, etc...
o Why do some Architectures/Implementations move more data than others?
o Why do some compilers outperform others?

» Predict performance on future machines / architectures

o Set realistic performance expectations
o Drive for HW/SW Co-Design

= |dentify performance bottlenecks & motivate software optimizations

= Determine when we’re done optimizing code

o Assess performance relative to machine capabilities

o Track progress towards optimality
o Motivate need for algorithmic changes
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