
Introduction to the
Roofline Model

Samuel Williams
Computational Research Division
Lawrence Berkeley National Lab

SWWilliams@lbl.gov

mailto:SWWilliams@lbl.gov

Acknowledgements
§ This material is based upon work supported by the Advanced Scientific Computing Research Program in the

U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.
§ This material is based upon work supported by the DOE RAPIDS SciDAC Institute.
§ This research used resources of the National Energy Research Scientific Computing Center (NERSC),

which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

§ This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

You just spent 6 months porting
your application to GPUs

Are you done?

What is “Good” Performance?

4

§ Imagine profiling the mix of loop
nests in an application when
running on the GPU
o GFLOP/s alone may not be particularly

insightful

Loop nest (kernel)

o speedup relative to a Xeon may seem
random

G
FL

O
P/

s

What is “Good” Performance?

5

2. making good use of the GPU’s compute and/or bandwidth capabilities

1. Operating in the throughput-limited regime
not sensitive to Amdahl effects, D2H/H2D transfers, launch overheads, etc…

Ø Ultimately, we need a quantitative model rather than qualitative
statements like “good”

§ Two fundamental aspects to “Good” performance…

Roofline Model

§ Roofline Model is a throughput-
oriented performance model

§ Tracks rates not times
§ Independent of ISA and architecture
§ applies to CPUs, GPUs, Google

TPUs1, FPGAs, etc…
§ Helps quantify Good Performance

6
1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor
Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Simulation → Modeling

§ Superscalar architectures can be complex
§ Don’t model / simulate full architecture
§ Created simplified processor architecture

7https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

Reduced Model

§ Superscalar architectures can be complex
§ Don’t model / simulate full architecture
§ Created simplified processor architecture

o Cores can attain peak GFLOP/s on local data

8

DRAM

Network-on-Chip

core

L1

L2

core

L1

L2

core

L1

L2

core

L1

L2

Shared L3 Cache

L3 GB/s

L2 GB/s

L1 GB/s

GFLOP/s

D
R

AM
 G

B/
s

Reduced Model

§ Superscalar architectures can be complex
§ Don’t model / simulate full architecture
§ Created simplified processor architecture

o Cores can attain peak GFLOP/s on local data
o Cores execute load-balanced SPMD code

9

DRAM
DRAM GB/s

Shared L3 Cache

L2 Caches

L1 Caches

4 CPU cores

L3 GB/s

L2 GB/s

L1 GB/s

GFLOP/s

Reduced Model

§ Superscalar architectures can be complex
§ Don’t model / simulate full architecture
§ Created simplified processor architecture

o Cores can attain peak GFLOP/s on local data
o Cores execute load-balanced SPMD code
o There is sufficient cache bandwidth and capacity

such that they do not affect performance

10

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Reduced Model

§ Superscalar architectures can be complex
§ Don’t model / simulate full architecture
§ Created simplified processor architecture

o Cores can attain peak GFLOP/s on local data
o Cores execute load-balanced SPMD code
o There is sufficient cache bandwidth and capacity

such that they do not affect performance
Ø Basis for DRAM Roofline Model

11

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Data Movement or Compute?

§ Which takes longer?
o Data Movement
o Compute?

12

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

#FP ops / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s

Data Movement or Compute?

13

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

1 / Peak GFLOP/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max

§ Which takes longer?
o Data Movement
o Compute?

§ Is performance limited by compute or
data movement?

Data Movement or Compute?

14

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min

§ Which takes longer?
o Data Movement
o Compute?

§ Is performance limited by compute or
data movement?

Data Movement or Compute?

15

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (as presented to DRAM)

Data Movement or Compute?

§ Which takes longer?
o Data Movement

o Compute?

§ Is performance limited by compute or
data movement?

Arithmetic Intensity

§ Measure of data locality (data reuse)
§ Ratio of Total Flops performed to Total Bytes moved
§ For the DRAM Roofline…

o Total Bytes to/from DRAM
o Includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)

16

(DRAM) Roofline Model

§ Plot Roofline bound using Arithmetic
Intensity as the x-axis

§ Log-log scale makes it easy to
doodle, extrapolate performance
along Moore’s Law, etc…

17

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

(DRAM) Roofline Model

18

A
tt
a
in

a
b
le

 F
L
O

P
/s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’

H
B
M

 G
B
/s

Peak GFLOP/s

§ Plot Roofline bound using Arithmetic

Intensity as the x-axis

§ Log-log scale makes it easy to

doodle, extrapolate performance

along Moore’s Law, etc…

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

(DRAM) Roofline Model

19

A
tta

in
ab

le
 F

LO
P

/s

Arithmetic Intensity (FLOP:Byte)

unattainable performance
(greater than peak GFLOP/s)

unatt
ain

ab
le

perf
orm

an
ce

(in
su

ffic
ien

t b
an

dwidth)

poor

performance
HBM G

B/s

Peak GFLOP/s

§ Roofline tessellates this 2D view of
performance into 5 regions…

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

Roofline Example #1

§ Typical machine balance is 5-10
FLOPs per byte…
o 40-80 FLOPs per double to exploit compute capability

o Artifact of technology and money

o Unlikely to improve

20

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ Consider STREAM Triad…

o 2 FLOPs per iteration

o Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])

o AI = 0.083 FLOPs per byte == Memory bound

A
tta

in
ab

le
 F

LO
P

/s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

5.0

TRIAD

GFLOP/s ≤ AI * HBM GB/s

0.083

Roofline Example #2

§ Conversely, 7-point constant coefficient
stencil…

21

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

Roofline Example #2

§ Conversely, 7-point constant coefficient
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point

22

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

o AI = 7 / (8*8) = 0.11 FLOPs per byte
(measured at the L1)

Roofline Example #2

§ Conversely, 7-point constant coefficient
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point

23

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

Roofline Example #2

§ Conversely, 7-point constant coefficient
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM)

24

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

Roofline Example #2

§ Conversely, 7-point constant coefficient
stencil…
o 7 FLOPs

o 8 memory references (7 reads, 1 store) per point

o Ideally, cache will filter all but 1 read and 1 write per point

Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM)

25

A
tta

in
ab

le
 F

LO
P

/s

HBM G
B/s

TRIAD

Arithmetic Intensity (FLOP:Byte)
0.083

7-point
Stencil

GFLOP/s ≤ AI * HBM GB/s

0.44

Peak GFLOP/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

== memory bound, but 5x the FLOP rate as TRIAD

What is “Good” Performance?

§ Think back to our mix of loop
nests…

26

FL
O

P/
s

Loop nest (kernel)

What is “Good” Performance?

§ We can sort kernels by arithmetic
intensity…

27

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

What is “Good” Performance?

§ We can sort kernels by arithmetic
intensity…

§ … and compare performance
relative to machine capabilities

28

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

50
% of

 STREAM

50% of Peak

What is “Good” Performance?

§ Kernels near the roofline are
making good use of
computational resources

29

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

50% of Peak

50
%

 o
f S

TREAM

What is “Good” Performance?

§ Kernels near the roofline are
making good use of
computational resources

30

Peak GFLOP/s

A
tta

in
ab

le
 F

LO
P

/s

HBM
 G

B/s

Arithmetic Intensity (FLOP:Byte)

Ø kernels can have low performance
(GFLOP/s), but make good use
(%STREAM) of a machine

50% of Peak

50
% of

 STREAM

What is “Good” Performance?

§ Kernels near the roofline are
making good use of
computational resources

31

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Ø kernels can have low performance
(GFLOP/s), but make good use
(%STREAM) of a machine

Ø kernels can have high performance
(GFLOP/s), but still make poor use of a
machine (%peak)

Roofline is made of two components

§ Machine Model
o Lines defined by peak GB/s and GF/s

(Benchmarking)
o Unique to each architecture
o Common to all apps on that architecture

32

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

50
% of

 STREAM

Arithmetic Intensity (FLOP:Byte)

50% of Peak

Roofline is made of two components

§ Machine Model
o Lines defined by peak GB/s and GF/s

(Benchmarking)
o Unique to each architecture
o Common to all apps on that architecture

§ Application Characteristics
o Dots defined by application GFLOP’s and

GB’s (Application Instrumentation)
o Unique to each application
o Unique to each architecture

33

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

General Performance Optimization Strategy

§ Get to the Roofline

34

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

50% of Peak

HBM G
B/s

50
% of

 STREAM

General Performance Optimization Strategy

§ Get to the Roofline

35

Peak GFLOP/s

A
tt
a
in

a
b
le

 F
L
O

P
/s

Arithmetic Intensity (FLOP:Byte)

50% of Peak

H
B
M

 G
B
/s

5
0
%

 o
f
S
T
R
E
A
M

§ Increase Arithmetic Intensity

when bandwidth-limited

o Reducing data movement (denominator)

increases AI

o Spatial locality, cache blocking, data

structures, data types, etc…

How can performance ever
be below the Roofline?

How can performance be below the Roofline?

37

§ Missing lines…
There are bounds other than DRAM and
FLOPs
o Insufficient cache bandwidth + locality
o Didn’t use FMA / Vectors / Tensors / …
o Too many non-FP instructions
o etc…

HBM G
B/s

Peak GFLOP/s

§ Kernels (dots) are misplaced…
Wrong #FLOPs or wrong #Bytes
o Broken HW/SW performance counters

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

§ Lines are misplaced…
Peak HBM and FLOP/s are wrong
o Use empirical approaches to model construction
o Assumptions on load balance

Below the Roofline?
Model or Application Instrumentation

Machine Characterization

§ Theoretical performance (specs)
can be highly optimistic…
o DRAM pin bandwidth vs. sustained
o TurboMode / Underclocking
o compiler failing on high-AI loops.

39
https://bitbucket.org/berkeleylab/cs-roofline-toolkit
https://github.com/cyanguwa/nersc-roofline
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

§ Need empirical performance data
§ LBL developed the Empirical

Roofline Toolkit (ERT)…
o Characterize CPU/GPU systems
o Peak Flop rates
o Bandwidths for each level of memory
o MPI+OpenMP/CUDA == multiple GPUs

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.quadflat.2t/Run.002)

2450.0 GFLOPs/sec (Maximum)

L1
 - 6

44
2.9

 G
B/s

L2
 - 1

96
5.4

 G
B/s

DRAM - 4
12

.9
GB/s

Cori / KNL

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.summitdev.ccs.ornl.gov.02.MPI4/Run.001)

17904.6 GFLOPs/sec (Maximum)

L1
 - 6

50
6.5

 G
B/s

DRAM - 1
92

9.7
 G

B/s

SummitDev / 4GPUs

Theoretical vs. Empirical

§ Theoretical Roofline:
o Pin bandwidth
o FPUs * GHz
o 1 C++ FLOP = 1 ISA FLOP
o Data movement = Compulsory Misses

40

A
tta

in
ab

le
 F

LO
P

/s

The
or

eti
ca

l G
B/s

Arithmetic Intensity (FLOP:Byte)

Theoretical GFLOP/s

Theoretical vs. Empirical (Machine)

§ Theoretical Roofline:
o Pin bandwidth
o FPUs * GHz
o 1 C++ FLOP = 1 ISA FLOP
o Data movement = Compulsory Misses

§ Empirical Roofline:
o Measured bandwidth
o Measured Peak FLOP/s

41

A
tta

in
ab

le
 F

LO
P

/s

Empir
ica

l G
B/s

Arithmetic Intensity (FLOP:Byte)

Empirical
GFLOP/s

Theoretical vs. Empirical (Application FLOPs)

§ Theoretical Roofline:
o Pin bandwidth
o FPUs * GHz
o 1 C++ FLOP = 1 ISA FLOP
o Data movement = Compulsory Misses

§ Empirical Roofline:
o Measured bandwidth
o Measured Peak FLOP/s
o 1 C++ FLOP >= 1 ISA FLOP (e.g. divide)

42

A
tta

in
ab

le
 F

LO
P

/s

Empir
ica

l G
B/s

Arithmetic Intensity (FLOP:Byte)

Empirical
GFLOP/s

AI using
empirical FLOPs

Theoretical vs. Empirical (Application Bytes)

§ Theoretical Roofline:
o Pin bandwidth
o FPUs * GHz
o 1 C++ FLOP = 1 ISA FLOP
o Data movement = Compulsory Misses

§ Empirical Roofline:
o Measured bandwidth
o Measured Peak FLOP/s
o 1 C++ FLOP >= 1 ISA FLOP (e.g. divide)
o Measured data movement (cache effects)

43

A
tta

in
ab

le
 F

LO
P

/s

Empir
ica

l G
B/s

Arithmetic Intensity (FLOP:Byte)

Empirical
GFLOP/s

True AI using
empirical FLOPs
& empirical Bytes

Ø True Arithmetic Intensity can be higher
or lower than expected

Below the Roofline?
Memory Hierarchy and Cache Bottlenecks

Memory Hierarchy

§ Processors have multiple levels of
memory/cache
o Registers
o L1, L2, L3 cache
o HBM/HBM (KNL/GPU device memory)
o DDR (main memory)
o NVRAM (non-volatile memory)

45

CPU

L1 D$

DRAM

L2 D$

L3 D$

Memory Hierarchy

§ Processors have different bandwidths
for each level

46

CPU

L1 D$

DRAM

L2 D$

L3 D$

Bandwidth

L1 GB/s

L2 GB/s

L3 GB/s

DRAM GB/s

Memory Hierarchy

§ Processors have different bandwidths
for each level
o different machine balances for each level

47

CPU

L1 D$

DRAM

L2 D$

L3 D$

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
L3 GB/s

GFLOP/s
DRAM GB/s

Memory Hierarchy

§ Processors have different bandwidths
for each level
o different machine balances for each level

§ Applications have locality in each level
o different data movements for each level

48

CPU

L1 D$

DRAM

L2 D$

L3 D$

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
L3 GB/s

GFLOP/s
DRAM GB/s

Data Movement

L1 GB

L2 GB

L3 GB

DRAM GB

Memory Hierarchy

§ Processors have different bandwidths
for each level
o different machine balances for each level

§ Applications have locality in each level
o different data movements for each level
o different arithmetic intensity for each level

49

CPU

L1 D$

DRAM

L2 D$

L3 D$

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
L3 GB/s

GFLOP/s
DRAM GB/s

Arithmetic Intensity

GFLOPs
L1 GB

GFLOPs
L2 GB

GFLOPs
L3 GB

GFLOPs
DRAM GB

Cache Bottlenecks

§ For each additional level of the memory hierarchy, we can add another
term to our model…

50

Peak GFLOP/s
GFLOP/s = min

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

AIDRAM * DRAM GB/s

Cache Bottlenecks

§ For each additional level of the memory hierarchy, we can add another
term to our model…

51

Peak GFLOP/s
GFLOP/s = min

AIL2 * L2 GB/s
AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

AIDRAM * DRAM GB/s

Cache Bottlenecks

§ For each additional level of the memory hierarchy, we can add another
term to our model…

52

Peak GFLOP/s
GFLOP/s = min

AIL2 * L2 GB/s

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

AIDRAM * DRAM GB/s

AIL1 * L1 GB/s

Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model

53

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each

level of memory

54

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

L2
 ca

ch
e G

B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each

level of memory
o Arithmetic Intensity (dot) for each level of

memory

55

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

L2
 ca

ch
e G

B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each

level of memory
o Arithmetic Intensity (dot) for each level of

memory
Ø performance is ultimately the minimum

of these bounds

56

L2 Bound
L2 AI*BW

is less than
HBM AI*BW

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

L2
 ca

ch
e G

B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each

level of memory
o Arithmetic Intensity (dot) for each level of

memory
Ø performance is ultimately the minimum

of these bounds

57

§ If L2 bound, we see DRAM dot
well below DRAM ceiling

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

Cache Bottlenecks

§ Widely separated Arithmetic
Intensities indicate high reuse in
the cache

58

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

L2
 ca

ch
e G

B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

High Reuse

Cache Bottlenecks

§ Widely separated Arithmetic
Intensities indicate high reuse in
the cache

§ Similar Arithmetic Intensities
indicate effectively no cache
reuse (== streaming)

59

A
tta

in
ab

le
 G

F
LO

P
/s

HBM
 G

B/s

L2
 ca

ch
e

GB/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

no reuse
(streaming)§ Same concepts on GPUs

Below the Roofline?
FMA, Vectorization, Tensor Cores

Return of CISC
§ Vectors have their limits (finite DLP, register file energy scales with VL, etc…)

§ Death of Moore’s Law is reinvigorating Complex Instruction Set Computing (CISC)

61

Ø If instructions are a mix or scalar (predicated), vector, and matrix
operations, performance is now a weighted average of them.

§ Modern CPUs and GPUs are increasingly reliant on special (fused) instructions
that perform multiple operations (fuse common instruction sequences)…
o FMA (Fused Multiply Add): z=a*x+y …z,x,y are vectors or scalars
o 4FMA (Quad FMA): z=A*x+z …A is a FP32 matrix; x,z are vectors
o WMMA (Tensor Core): Z=AB+C …A,B are FP16 matrices; Z,C are FP32

Return of CISC

§ Consider NVIDIA Volta GPU…
o ~100 TFLOPs for FP16 Tensor
o 15 TFLOPS for FP32 FMA
o 7.5 TFLOPs for FP32 Add

§ DL applications mix Tensor,
FP16, and FP32

§ DL performance may be well
below nominal Tensor Core peak

62

A
tta

in
ab

le
 F

LO
P

/s

HBM G
B/s

FP16 WMMA

Arithmetic Intensity (FLOP:Byte)

FP32 FMA

FP32 Add

Return of CISC

§ Consider NVIDIA Volta GPU…
o ~100 TFLOPs for FP16 Tensor
o 15 TFLOPS for FP32 FMA
o 7.5 TFLOPs for FP32 Add

§ DL applications mix Tensor,
FP16, and FP32

§ DL performance may be well
below nominal Tensor Core peak

§ The actual mix of instructions
introduces an effective ceiling
on performance…

63

A
tta

in
ab

le
 F

LO
P

/s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Effective ceiling

Below the Roofline?
FPU Starvation

FPU Starvation

§ Processors have finite instruction fetch/decode/issue bandwidth
§ Moreover, the number of FP units dictates the FP issue rate required to

hit peak

65

Ø Ratio of these two rates is the minimum FP instruction fraction
required to hit peak

FPU Starvation

66

Peak GFLOP/s

25% FP (75% int)

A
tt
a
in

a
b
le

 F
L
O

P
/s

HBM
 G

B/s

Arithmetic Intensity (FLOP:Byte)

12% FP (88% int)

≥50% FP

§ Consider…
o 4-issue superscalar

o 2 FP data paths

Ø >50% of the instructions must be FP to
have any chance at peak performance

FPU Starvation

67

Peak GFLOP/s

50% FP (50% int)

A
t
t
a
i
n
a
b
l
e

F

L
O

P
/
s

H

B
M

 G

B
/s

Arithmetic Intensity (FLOP:Byte)

25% FP (75% int)

100% FP

§ Conversely,

o Keeping 2 FP data paths,

o but downscaling to 2-issue superscalar

Ø 100% of the instructions must be FP to
get peak performance

FPU Starvation

68

Peak GFLOP/s

50% FP (50% int)

A
tt
a
in

a
b
le

 F
L
O

P
/s

HBM
 G

B/s

Arithmetic Intensity (FLOP:Byte)

25% FP (75% int)

100% FP

§ Conversely,
o Keeping 2 FP data paths,

o but downscaling to 2-issue superscalar

Ø 100% of the instructions must be FP to
get peak performance

FPU Starvation

69

A
tta

in
ab

le
 F

LO
P

/s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

25% FP (75% int)

non-FP instructions
sap issue bandwidth
and pull performance

below the Roofline

§ Conversely,
o Keeping 2 FP data paths,
o but downscaling to 2-issue superscalar
o 100% of the instructions must be FP to

get peak performance
Ø Codes that would have been memory-

bound are now decode/issue-bound.

Instruction Roofline Model
When FLOP/s aren’t what’s important

Nan Ding, Samuel Williams, "An Instruction Roofline Model for

GPUs", Performance Modeling, Benchmarking, and Simulation

(PMBS), November, 2019.

How do we go beyond the FLOP Roofline?

§ Think about classifying applications by instruction mix…
o Heavy floating-point (rare in DOE)
o Mix of integer and floating-point
o Integer-only (e.g. bioinformatics, graphs, etc…)
o Mixed precision

71

§ FLOP/s → IntOP/s → FLOP/s+IntOP/s
o Adopted by Intel Advisor
o Useful when wanting to understand ‘performance’ rather than bottlenecks
o Instruction Fetch/Decode/Issue bottlenecks?
o Functional Unit Bottlenecks?
Ø Need instruction Roofline Model

FLOP Roofline → VUOP Roofline

72

§ On SIMD machines, one might consider vuop/s instead of flop/s…

ü vuop/s (scalar + vector) can easily be mapped to vector unit utilization
ü 100% vector unit utilization can bottleneck performance
ü Performance counters give vuop/s and not flop/s
✘ 100% vector unit utilization does not imply 100% of peak (FMA, scalar

vs. vector)

FLOP Roofline

73

Peak Flop/s

M
CDRAM

 G
B/s

A
tt
a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

3.0

Usual AI
(Flop:DRAM bytes)

Performance is
well-below the
nominal Roofline
bound

§ With performance counters alone, its
hard to deduce why performance is
well-below the FLOP Roofline.
o VL?
o Precision?
o FMA?
o Masks?
o Non-FP vector instructions

§ Moreover, one might conclude a code
is memory bound when in reality is
compute-bound

VUOP Roofline

74

Peak VUOP/s

M
CDRAM

 G
B/s

A
tt
a
in

a
b
le

 V
U

O
P

/s

Arithmetic Intensity (VUOP:Byte)

0.375

Machine
Balance

Performance
(VUOP/s) is very
close to the
VUOP Roofline

§ In a VUOP Roofline
o machine peak (VUOP/s) is lower
o machine balance (VUOP:Byte) is lower

§ FLOP/s can be low, but VUOP/s can
be high (and in the compute-bound
regime)

§ Could be used to understand FMA,
vectorization, and mixed precision

Ø Requires both performance
counters (instructions, FLOPs by
precision,) as well as dynamic code
analysis (masks, VL, etc…) 3.0

New
VUOP AI

NVIDIA GPU Instruction Roofline

§ Instructions/second? Instructions per Byte?

75

§ What is an ‘Instruction’ on a GPU?
o Thread-level hides issue limits?
o Warp-level hides predication effects?
o Scale non-predicated threads down by the warp size (divide by 32)
o Show warp instructions per second
o Break instructions into subclasses (integer, FP32, FP64, LDST, WMMA)

§ Naively, one would think instruction intensity should use ‘bytes’
o Matches well to existing Roofline; works with well-known bandwidths

§ GPUs access memory using ‘transactions’
o 32B for global/local/L2/HBM
o 128B for shared memory
Ø “Instructions/Transaction” preserves traditional Roofline,

but enables a new way of understanding memory access

Instruction Roofline

76

Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

L2
 ca

ch
e G

B/s

Arithmetic Intensity
(FLOP:Byte)

Peak GFLOP/s

Instruction Roofline

77

Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s

Peak GIPS
GIPS = min

IIDRAM * DRAM GB/s A
tt
a
in

a
b
le

 G
IP

S

H
B
M

 G
B
/s

L2
 c
ac

he
 G

B
/s

Instruction Intensity

(Instruction:Byte)

Peak GIPS

Instructions per Byte

Nan Ding, Samuel Williams, "An Instruction Roofline

Model for GPUs", PMBS, November, 2019.

Instruction Roofline on GPUs

78

Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s

Peak GIPS
GIPS = min

IIDRAM * DRAM GB/s At
ta

in
ab

le
 G

IP
S

HBM G
B/s

L2
 ca

ch
e G

B/s

Instruction Intensity
(Instruction:Byte)

Peak GIPS

Warp
Instructions

As the natural quanta for GPU
memory access is a “transaction”…

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Instruction Roofline on GPUs

79

Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s

Peak GIPS
GIPS = min

IIDRAM * DRAM GB/s At
ta

in
ab

le
 G

IP
S

HBM G
TXN/s

L2
 ca

ch
e G

TXN/s

Instruction Intensity
(Instruction:Transaction)

Peak GIPS

Peak GIPS
GIPS = min

IIDRAM * DRAM GTXN/s IIx (Instruction Intensity at level “x”) =

Instructions / Transactions (to/from level “x”)

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

10-2 10-1 100 101 102

Instruction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

HBM 25.9 GTXN/s

L2 93.6 GTXN/s

L1 437.5 GTXN/s
Thoeretical Peak: 489.6 warp GIPS

Instruction Roofline on NVIDIA GPUs

§ Instruction Intensity (II)
o (Warp or equivalent) Instructions / Transaction
o Refine into L1 (global+local+shared), L2, HBM Instruction Intensities
o Further refine based on instruction type (LDST instructions / global transaction)

§ Peak Performance and Peak Bandwidths
o Instruction:

o 80 SMs * 4 warps * 1.53GHz ~ 490 GIPS (warp-level)

o Use ERT for memory (convert from GB/s)
o L1: 80 SMs * 4 transactions/cycle * 1.53 GHz ~ 490 GTXN/s
o L2: 94 GTXN/s (empirical)
o HBM: 26 GTXN/s (empirical)

80Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Efficiency of Global Memory Access

§ (Global)LDST Instruction Intensity has a special meaning / use…

o Global LDST instructions / Global transactions

o Numerator lower than nominal II

o Denominator can be lower than nominal L1 II (no local or shared transactions)

§ Denotes efficiency of memory access

81

10-2 10-1 100 101

Instuction Intensity (Warp Instructions per Transaction)

10-1

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

St
rid

e-
0

U
ni

t S
tri

de
 (i

nt
eg

er
)

St
rid

e>
=1

28
B

Thoeretical Peak: 489.6 warp GIPS

L1 = Global 437.5 GTXN/s

Unattainably

Low Intensity

Unattainably

High Intensity

§ 3 “Walls” of interest:

o ≥1 transaction per LDST instruction

(all threads access same location)

o ≤32 transactions per LDST instruction

(gather/scatter or stride>=128B)

o Unit Stride: 1 LDST per 8 transactions

(double precision)

Nan Ding, Samuel Williams, "An Instruction Roofline

Model for GPUs", PMBS, November, 2019.

Efficiency of Shared Memory Access

§ (Shared)LDST Instruction Intensity also has a special meaning / use
o Shared LDST instructions / Shared transactions
o II is similarly loosely related to nominal II

§ Can be used to infer the number of bank conflicts

82

10-2 10-1 100 101 102

Instuction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

N
o

ba
nk

 c
on

fli
ct

32
-w

ay
 b

an
k

co
nf

lic
t

Thoeretical Peak: 489.6 warp GIPS

Shared 109.3 GTXN/s

Can never have less
than 0 bank conflicts

§ 2 “Walls” of interest:
o Minimum of 1 transaction per shared

LDST instruction (no bank conflicts)
o Maximum of 32 transactions per

shared LDST instruction
(all threads access different lines
in the same bank)

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Instruction Roofline for Smith-Waterman
§ Integer-only Alignment code on NVIDIA GPU
§ No predication effects, but inefficient global memory access

83

N
ai

ve

Instruction Hierarchy & Thread Predication Global Memory Efficiency Shared Memory Efficiency

C
oa

le
sc

ed

Gather/Scatter
becomes

Unit Stride

!Near peak

GIPS

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Instruction Roofline for Matrix Transpose

84

Tr
an

sp
os

e
in

Sh
ar

ed
A

rr
ay

Pa
dd

in
g

N
ai

ve

Instruction Hierarchy & Thread Predication Global Memory Efficiency

not used

Shared Memory Efficiency

High Stride
becomes

Unit Stride

Bank conflicts
are eliminated

Loss in L1 locality due
to use of shared memory

Improved L1 locality due
to elimination of bank conflicts

Bank conflict on
every access

High Stride
Access

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Other Uses of Instruction Roofline

§ Predication
o Individual threads can mask out execution when in branch-not-taken
o 16 FLOPs/SM/cycle… 1 FP warp every 2 cycles

–or –
1 FP warp every cycle with half threads predicated

o Use performance metrics to plot both warp GIPS and non-predicated threads (scaled by 32)

§ FMA, Tensor Cores, Mixed Precision, …
o Rather than counting FLOPs, count instructions
o Can differentiate total instruction issue bandwidth from functional unit utilization (FP32, FP64)
o n.b., some GIPS should be summed (FP16+FP32) while others are have dedicated pipelines

(FP64, TC)

85Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Instruction Roofline Takeaway

86

Instruction Roofline
§ Tells us about bottlenecks

(issue and memory)

§ Use of FMA, SIMD, vectors,
tensors decreases intensity and
may decrease “performance”

§ Presence of integer instructions
increases intensity and might
increase performance.

§ Reducing precision has no affect
on intensity

Memory Walls
§ Tells us about efficiency

(memory access)

§ Intensity based on LDST
instructions and transactions

§ Predication could affect intensity
(could have zero transactions for
a LDST instruction, but not all
LDST instructions)

§ Reducing precision shifts
intensity, and the unit-stride wall

Traditional Roofline
§ Tells us about performance

(floating-point)

§ Use of FMA, SIMD, vectors,
tensors has no affect on intensity,
but may increase performance…

§ Presence of integer instructions
has no affect on intensity, but may
decrease performance

§ Reducing precision (64b, 32b,
16b) increases arithmetic intensity

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Roofline Scaling
Trajectories

Roofline Scaling Trajectories

88

§ We often plot performance as a
function of thread concurrency
o Carries no insight or analysis
o Provides no actionable information.

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)
G

Fl
op

/s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c3

2) (1
28)

DRAM (c1
) (1

4.3)

●

●

●

●

●
●●

roofline_summary_sp_lbl

● Class A
Class B
Class C

c1

c2

c4
c8

c16c32c64

#Threads
1 2 4 8 16 32 64

Roofline Scaling Trajectories

89

§ We often plot performance as a
function of thread concurrency
o Carries no insight or analysis
o Provides no actionable information.

§ Use Roofline to analyze thread
(or process) scalability
o 2D scatter plot of performance as a

function of intensity and concurrency
o Identify loss in performance due to

increased cache pressure (data
movement)

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)
G

Fl
op

/s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c3

2) (1
28)

DRAM (c1
) (1

4.3)

●

●

●

●

●
●●

roofline_summary_sp_lbl

● Class A
Class B
Class C

c1

c2

c4
c8

c16c32c64

Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A
Method for Parallel Application and Architectural Performance Analysis",
HPBench, July 2018.

Roofline Scaling Trajectories

90

§ Insights from NPB
o Intensity (data movement) varies with

concurrency and problem size
o Large problems (green and red) move

more data per thread, and exhaust cache
capacity

o Falling Intensity → hit the bandwidth
ceiling quickly and degrade.

Ø Useful for understanding locality/BW
contention induced scaling
bottlenecks

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)
G

Fl
op

/s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c3

2) (1
28)

DRAM (c1
) (1

4.3)

●

●

●

●

●
●●

roofline_summary_sp_lbl

● Class A
Class B
Class C

c1

c2

c4
c8

c16c32c64

Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A
Method for Parallel Application and Architectural Performance Analysis",
HPBench, July 2018.

Roofline Scaling Trajectories on GPUs

91

§ More Recently applied

to GPUs (SM scaling)

§ Allows comparisons of

programming models

(OpenACC vs. CUDA)

§ Strong differences in

scalability and

performance per

thread(block).

Khaled Ibrahim, Samuel Williams, Leonid Oliker, ”Performance Analysis of GPU

Programming Models Using the Roofline Scaling Trajectories", (BEST PAPER)

Bench, 2019.

10 Khaled Z. Ibrahim, Samuel Williams, and Leonid Oliker

MG FT CG

O
p
e
n
A
C
C

0.01 0.02 0.05 0.10 0.20 0.50 1.00

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●
●●●●

roofline_summary_Total_a_MG_c_ACC

●

Class A
Class B
Class C

0.01 0.02 0.05 0.10 0.20 0.50 1.00

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●●●●●

roofline_summary_Total_a_FT_c_ACC

●

Class A
Class B
Class C

0.01 0.02 0.05 0.10 0.20 0.50 1.00

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●

●

●
●
●

roofline_summary_Total_a_CG_c_ACC

●

Class A
Class B
Class C

SP BT LU

O
p
e
n
A
C
C

0.1 0.2 0.5 1.0

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

HBM(SMs=80) (829)

HBM(SMs=2) (35)

●

●

●

●
●●
●●

roofline_summary_Total_a_SP_c_ACC

●

Class A
Class B

0.01 0.02 0.05 0.10 0.20 0.50 1.00 2.00

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●
●●●●

roofline_summary_Total_a_BT_c_ACC

●

Class A
Class B

0.1 0.2 0.5 1.0 2.0

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

HBM(SMs=80) (829)

HBM(SMs=2) (35)

●

●

●

●●●●●

roofline_summary_Total_a_LU_c_ACC

●

Class A
Class B

C
U
D
A

0.1 0.2 0.5 1.0

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●

●
●●

●

roofline_summary_Total_a_SP_c_CUDA

●

Class A
Class B
Class C

0.01 0.02 0.05 0.10 0.20 0.50 1.00 2.00

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

HBM(SMs=80) (829)

HBM(SMs=2) (35)

●

●

●

●

●

●●●

roofline_summary_Total_a_BT_c_CUDA

●

Class A
Class B
Class C

0.1 0.2 0.5 1.0 2.0

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

HBM(SMs=80) (829)

HBM(SMs=2) (35) ●

●

●

●

●
●●●

roofline_summary_Total_a_LU_c_CUDA

●

Class A
Class B
Class C

Fig. 4: Roofline Scaling Trajectories for Volta GPUs. CUDA BT and Ope-
nACC LU application are limited by warp e�ciency, while CUDA LU, Ope-
nACC SP, BT, FT are limited by GPU occupancy. The arithmetic intensity of
CUDA LU and OpenACC MG is noticeably a↵ected by strong and weak scaling.

optimal performance. As discussed in Section 5, the occupancy term a↵ects the
potential improvements while increasing the SM count. In Figure 5, we consider
the detailed SM occupancy behavior for CUDA BT and CUDA LU. For BT, we
observe a constant occupancy during both weak and strong scaling. The scaling
trajectory shows a high correlation with the measured SM occupancy behavior.

The occupancy of CUDA LU degrades with strong scaling. Increasing the
problem size improves the occupancy, and the impact is not uniform across
kernels. The jacld blts kernel is the most a↵ected by the loss of occupancy.
The Roofline Scaling Trajectories for individual kernels captures such behavior
precisely as shown in Figure 6, both for loss of occupancy for the jacld blts
kernel, and the maintenance of good occupancy for the rhs kernel *. We notice
that the rhs kernel x has a small change in arithmetic intensity during weak
scaling compared with the rhs kernel y, z. Inspecting the code, we found a unit
strided access in the x-direction and strided jumps for the y and z direction.
Applying data transposes could typically be used to tackle such bottleneck, but
require an e�cient transpose that is lower overhead than embedding the strided
access.

In general, there are two sources of loss of occupancy. One is reported by
the nvprof profiling tool as achieved occupancy during the course of executing a
kernel, and is defined as the ratio of the average active warps per active cycle to
the maximum number of warps supported on a multiprocessor [13]. We refer to

Recap

Roofline Recap

93

Arithmetic Intensity
o Unique for each loop nest
o Unique for each level of

memory
o Total FLOPs / Total Bytes
o Includes all cache effects
o Different on every

architecture
Ø Measure of a loop’s

temporal locality

Roofline bounds
performance as a
function of Arithmetic
Intensity
o Horizontal Lines =

Compute Ceilings
o Diagonal Lines =

Bandwidth Ceilings
o Bandwidth ceilings are

parallel on log-log scale
Ø Collectively, ceilings

define an upper limit on
performance

Plotting loops on the
Roofline
o Each loop has one dot per

level of memory
o x-coordinate = arithmetic

intensity at that level
o y-coordinate = performance

(e.g. GFLOP/s)
Ø Proximity to associated

ceiling is indicative of a
performance bound

Ø Position of dots relative to
each other is indicative of
cache locality

Applies equally to GPUs and

other accelerators

What is Roofline used for?

94

§ Predict performance on future machines / architectures
o Set realistic performance expectations
o Drive for HW/SW Co-Design

§ Identify performance bottlenecks & motivate software optimizations

§ Determine when we’re done optimizing code
o Assess performance relative to machine capabilities
o Track progress towards optimality
o Motivate need for algorithmic changes

§ Understand performance differences between Architectures,
Programming Models, implementations, etc…
o Why do some Architectures/Implementations move more data than others?
o Why do some compilers outperform others?

Model is just one piece of the puzzle…
§ Roofline Model defines the basic

concepts and equations.

95

Roofline
Model

(Theory)

Model is just one piece of the puzzle…
§ System Characterization defines

the shape of the Roofline (peak
bandwidths and FLOP/s)

96

Roofline
Model

(Theory)

System
Characterization
(Benchmarking)

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

L2
 ca

ch
e G

B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

No SIMD

Model is just one piece of the puzzle…
§ Application Characterization

determines…
o Intensity and Performance of each loop

o Position of any implicit ceilings

97

Roofline
Model

(Theory)

System
Characterization
(Benchmarking)

Application
Characterization
(Instrumentation)

A
tta

in
ab

le
 G

F
LO

P
/s

HBM
 G

B/s
L2

 ca
ch

e
GB/s

Arithmetic Intensity (FLOP:Byte)

Instruction mix

Model is just one piece of the puzzle…
§ Visualization tools combine all

data together and provide
analytical capability

98

Roofline
Model

(Theory)

System
Characterization
(Benchmarking)

Visualization
and

Analysis

Application
Characterization
(Instrumentation)

HBM
 G

B/s
L2

 ca
ch

e
GB/s

Arithmetic Intensity (FLOP:Byte)

Instruction mix

Bound by
HBM

Visualization
and

Analysis

Roofline
Model

(Theory)

Rest of Tutorial…
§ Charlene will demonstrate how to

construct and use Roofline model
on an NVIDIA GPU
o GPU benchmarking
o application characterization

99

System
Characterization
(Benchmarking)

Application
Characterization
(Instrumentation)

Roofline
Model

(Theory)

Rest of Tutorial…
§ Charlene will demonstrate how to

construct and use Roofline model
on an NVIDIA GPU
o GPU benchmarking
o application characterization

§ Max will demonstrate how Nsight
Compute now automates Roofline
o GPU benchmarking
o application characterization
o Visualization

100

System
Characterization
(Benchmarking)

Application
Characterization
(Instrumentation)

Visualization
and

Analysis

§ You will use Roofline in Nsight
Compute to analyze your apps.

Questions?

BACKUP

Performance
Extrapolations

Setting Realistic Expectations…

104

§ Consider 3 kernels (A,B,C)

Peak GFLOP/s

At
ta

in
ab

le
 G

FL
O

P/
s

DRAM G
B/s

Arithmetic Intensity (FLOP:Byte)

A

B
C

Ø kernels A and B are bound by
memory bandwidth

Ø kernel C is bound by peak FLOP/s

Setting Realistic Expectations…

105

§ Imagine you want to run on a
machine with twice the peak
FLOPs…

At
ta

in
ab

le
 G

FL
O

P/
s

DRAM G
B/s

Arithmetic Intensity (FLOP:Byte)

Ø kernel C’s performance could double
✘ kernels A and B will be no faster

2x GFLOP/s

A

B

C

Setting Realistic Expectations…

106

§ What if that machine also
doubled memory bandwidth…

A
tta

in
ab

le
 G

F
LO

P
/s

2x
 D

RAM
 G

B/s

Arithmetic Intensity (FLOP:Byte)

Ø kernel A and B’s performance could
also double

2x GFLOP/s

A

B
C

