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You just spent 6 months porting 
your application to GPUs

Are you done?



What is “Good” Performance?

4

§ Imagine profiling the mix of loop 
nests in an application when 
running on the GPU
o GFLOP/s alone may not be particularly 

insightful

Loop nest (kernel)

o speedup relative to a Xeon may seem 
random

G
FL

O
P/

s



What is “Good” Performance?
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2. making good use of the GPU’s compute and/or bandwidth capabilities

1. Operating in the throughput-limited regime
not sensitive to Amdahl effects, D2H/H2D transfers, launch overheads, etc…

Ø Ultimately, we need a quantitative model rather than qualitative 
statements like “good”

§ Two fundamental aspects to “Good” performance…



Roofline Model

§ Roofline Model is a throughput-
oriented performance model

§ Tracks rates not times
§ Independent of ISA and architecture
§ applies to CPUs, GPUs, Google 

TPUs1, FPGAs, etc…
§ Helps quantify Good Performance

6
1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor 
Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/


Simulation → Modeling

§ Superscalar architectures can be complex
§ Don’t model / simulate full architecture
§ Created simplified processor architecture

7https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)



Reduced Model

§ Superscalar architectures can be complex
§ Don’t model / simulate full architecture
§ Created simplified processor architecture

o Cores can attain peak GFLOP/s on local data
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Reduced Model

§ Superscalar architectures can be complex
§ Don’t model / simulate full architecture
§ Created simplified processor architecture

o Cores can attain peak GFLOP/s on local data
o Cores execute load-balanced SPMD code
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Reduced Model

§ Superscalar architectures can be complex
§ Don’t model / simulate full architecture
§ Created simplified processor architecture

o Cores can attain peak GFLOP/s on local data
o Cores execute load-balanced SPMD code
o There is sufficient cache bandwidth and capacity 

such that they do not affect performance

10
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Reduced Model

§ Superscalar architectures can be complex
§ Don’t model / simulate full architecture
§ Created simplified processor architecture

o Cores can attain peak GFLOP/s on local data
o Cores execute load-balanced SPMD code
o There is sufficient cache bandwidth and capacity 

such that they do not affect performance
Ø Basis for DRAM Roofline Model
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Data Movement or Compute?

§ Which takes longer?
o Data Movement
o Compute?
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Perfect Caches
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#FP ops / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s



Data Movement or Compute?
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DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

1 / Peak GFLOP/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max

§ Which takes longer?
o Data Movement
o Compute?

§ Is performance limited by compute or 
data movement?



Data Movement or Compute?

14

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min

§ Which takes longer?
o Data Movement
o Compute?

§ Is performance limited by compute or 
data movement?



Data Movement or Compute?
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DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (as presented to DRAM )

Data Movement or Compute?

§ Which takes longer?
o Data Movement

o Compute?

§ Is performance limited by compute or 
data movement?



Arithmetic Intensity

§ Measure of data locality (data reuse)
§ Ratio of Total Flops performed to Total Bytes moved
§ For the DRAM Roofline…

o Total Bytes to/from DRAM 
o Includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)

16



(DRAM) Roofline Model

§ Plot Roofline bound using Arithmetic 
Intensity as the x-axis

§ Log-log scale makes it easy to 
doodle, extrapolate performance 
along Moore’s Law, etc…
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(DRAM) Roofline Model
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§ Plot Roofline bound using Arithmetic 

Intensity as the x-axis

§ Log-log scale makes it easy to 

doodle, extrapolate performance 

along Moore’s Law, etc…

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )



(DRAM) Roofline Model
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§ Roofline tessellates this 2D view of 
performance into 5 regions…

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )



Roofline Example #1

§ Typical machine balance is 5-10 
FLOPs per byte…
o 40-80 FLOPs per double to exploit compute capability

o Artifact of technology and money

o Unlikely to improve
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ Consider STREAM Triad…

o 2 FLOPs per iteration

o Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])

o AI = 0.083 FLOPs per byte == Memory bound
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Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s



Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

o AI = 7 / (8*8) = 0.11 FLOPs per byte
(measured at the L1)



Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}
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Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM) 
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}
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Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs

o 8 memory references (7 reads, 1 store) per point

o Ideally, cache will filter all but 1 read and 1 write per point

Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM)
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

== memory bound, but 5x the FLOP rate as TRIAD



What is “Good” Performance?

§ Think back to our mix of loop 
nests…
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What is “Good” Performance?

§ We can sort kernels by arithmetic 
intensity…
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What is “Good” Performance?

§ We can sort kernels by arithmetic 
intensity…

§ … and compare performance 
relative to machine capabilities
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50
% of

 STREAM

50% of Peak

What is “Good” Performance?

§ Kernels near the roofline are 
making good use of 
computational resources
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50% of Peak

50
%

 o
f S

TREAM

What is “Good” Performance?

§ Kernels near the roofline are 
making good use of 
computational resources
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Peak GFLOP/s
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Ø kernels can have low performance 
(GFLOP/s), but make good use 
(%STREAM) of a machine



50% of Peak

50
% of

 STREAM

What is “Good” Performance?

§ Kernels near the roofline are 
making good use of 
computational resources

31
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Ø kernels can have low performance 
(GFLOP/s), but make good use 
(%STREAM) of a machine

Ø kernels can have high performance 
(GFLOP/s), but still make poor use of a 
machine (%peak)



Roofline is made of two components

§ Machine Model
o Lines defined by peak GB/s and GF/s 

(Benchmarking)
o Unique to each architecture
o Common to all apps on that architecture
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Roofline is made of two components

§ Machine Model
o Lines defined by peak GB/s and GF/s 

(Benchmarking)
o Unique to each architecture
o Common to all apps on that architecture

§ Application Characteristics
o Dots defined by application GFLOP’s and 

GB’s (Application Instrumentation)
o Unique to each application
o Unique to each architecture
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General Performance Optimization Strategy

§ Get to the Roofline
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General Performance Optimization Strategy

§ Get to the Roofline
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§ Increase Arithmetic Intensity 

when bandwidth-limited

o Reducing data movement (denominator) 

increases AI

o Spatial locality, cache blocking, data

structures, data types, etc…



How can performance ever 
be below the Roofline?



How can performance be below the Roofline?
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§ Missing lines…
There are bounds other than DRAM and 
FLOPs
o Insufficient cache bandwidth + locality
o Didn’t use FMA / Vectors / Tensors / …
o Too many non-FP instructions
o etc…

HBM G
B/s

Peak GFLOP/s

§ Kernels (dots) are misplaced…
Wrong #FLOPs or wrong #Bytes
o Broken HW/SW performance counters
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§ Lines are misplaced…
Peak HBM and FLOP/s are wrong
o Use empirical approaches to model construction
o Assumptions on load balance



Below the Roofline?
Model or Application Instrumentation



Machine Characterization

§ Theoretical performance (specs) 
can be highly optimistic…
o DRAM pin bandwidth vs. sustained
o TurboMode / Underclocking
o compiler failing on high-AI loops.

39
https://bitbucket.org/berkeleylab/cs-roofline-toolkit
https://github.com/cyanguwa/nersc-roofline
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

§ Need empirical performance data
§ LBL developed the Empirical 

Roofline Toolkit (ERT)…
o Characterize CPU/GPU systems
o Peak Flop rates
o Bandwidths for each level of memory
o MPI+OpenMP/CUDA == multiple GPUs
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Theoretical vs. Empirical

§ Theoretical Roofline:
o Pin bandwidth
o FPUs * GHz
o 1 C++ FLOP = 1 ISA FLOP
o Data movement = Compulsory Misses 
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Theoretical vs. Empirical (Machine)

§ Theoretical Roofline:
o Pin bandwidth
o FPUs * GHz
o 1 C++ FLOP = 1 ISA FLOP
o Data movement = Compulsory Misses 

§ Empirical Roofline:
o Measured bandwidth
o Measured Peak FLOP/s
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Theoretical vs. Empirical (Application FLOPs)

§ Theoretical Roofline:
o Pin bandwidth
o FPUs * GHz
o 1 C++ FLOP = 1 ISA FLOP
o Data movement = Compulsory Misses 

§ Empirical Roofline:
o Measured bandwidth
o Measured Peak FLOP/s
o 1 C++ FLOP >= 1 ISA FLOP (e.g. divide)
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Theoretical vs. Empirical (Application Bytes)

§ Theoretical Roofline:
o Pin bandwidth
o FPUs * GHz
o 1 C++ FLOP = 1 ISA FLOP
o Data movement = Compulsory Misses 

§ Empirical Roofline:
o Measured bandwidth
o Measured Peak FLOP/s
o 1 C++ FLOP >= 1 ISA FLOP (e.g. divide)
o Measured data movement (cache effects)
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Ø True Arithmetic Intensity can be higher 
or lower than expected



Below the Roofline?
Memory Hierarchy and Cache Bottlenecks



Memory Hierarchy

§ Processors have multiple levels of 
memory/cache
o Registers
o L1, L2, L3 cache
o HBM/HBM (KNL/GPU device memory)
o DDR (main memory)
o NVRAM (non-volatile memory)

45

CPU

L1 D$

DRAM

L2 D$

L3 D$



Memory Hierarchy

§ Processors have different bandwidths 
for each level
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Memory Hierarchy

§ Processors have different bandwidths 
for each level
o different machine balances for each level
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Memory Hierarchy

§ Processors have different bandwidths 
for each level
o different machine balances for each level

§ Applications have locality in each level
o different data movements for each level
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Memory Hierarchy

§ Processors have different bandwidths 
for each level
o different machine balances for each level

§ Applications have locality in each level
o different data movements for each level
o different arithmetic intensity for each level
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Cache Bottlenecks

§ For each additional level of the memory hierarchy, we can add another 
term to our model…
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Peak GFLOP/s
GFLOP/s = min

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )

AIDRAM * DRAM GB/s



Cache Bottlenecks

§ For each additional level of the memory hierarchy, we can add another 
term to our model…
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Peak GFLOP/s
GFLOP/s = min

AIL2 * L2 GB/s
AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )

AIDRAM * DRAM GB/s



Cache Bottlenecks

§ For each additional level of the memory hierarchy, we can add another 
term to our model…
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Peak GFLOP/s
GFLOP/s = min

AIL2 * L2 GB/s

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )

AIDRAM * DRAM GB/s

AIL1 * L1 GB/s



Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
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Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each 

level of memory
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Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each 

level of memory
o Arithmetic Intensity (dot) for each level of 

memory
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Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each 

level of memory
o Arithmetic Intensity (dot) for each level of 

memory
Ø performance is ultimately the minimum 

of these bounds
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L2 Bound
L2 AI*BW

is less than
HBM AI*BW
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Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each 

level of memory
o Arithmetic Intensity (dot) for each level of 

memory
Ø performance is ultimately the minimum 

of these bounds
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§ If L2 bound, we see DRAM dot 
well below DRAM ceiling
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Cache Bottlenecks

§ Widely separated Arithmetic 
Intensities indicate high reuse in 
the cache
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Cache Bottlenecks

§ Widely separated Arithmetic 
Intensities indicate high reuse in 
the cache

§ Similar Arithmetic Intensities 
indicate effectively no cache 
reuse (== streaming)
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(streaming)§ Same concepts on GPUs



Below the Roofline?
FMA, Vectorization, Tensor Cores



Return of CISC
§ Vectors have their limits (finite DLP, register file energy scales with VL, etc…)

§ Death of Moore’s Law is reinvigorating Complex Instruction Set Computing (CISC)

61

Ø If instructions are a mix or scalar (predicated), vector, and matrix 
operations, performance is now a weighted average of them.

§ Modern CPUs and GPUs are increasingly reliant on special (fused) instructions 
that perform multiple operations (fuse common instruction sequences)…
o FMA (Fused Multiply Add): z=a*x+y …z,x,y are vectors or scalars
o 4FMA (Quad FMA): z=A*x+z …A is a FP32 matrix; x,z are vectors
o WMMA (Tensor Core): Z=AB+C …A,B are FP16 matrices; Z,C are FP32



Return of CISC

§ Consider NVIDIA Volta GPU… 
o ~100 TFLOPs for FP16 Tensor
o 15 TFLOPS for FP32 FMA
o 7.5 TFLOPs for FP32 Add

§ DL applications mix Tensor, 
FP16, and FP32 

§ DL performance may be well 
below nominal Tensor Core peak
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Return of CISC

§ Consider NVIDIA Volta GPU… 
o ~100 TFLOPs for FP16 Tensor
o 15 TFLOPS for FP32 FMA
o 7.5 TFLOPs for FP32 Add

§ DL applications mix Tensor, 
FP16, and FP32 

§ DL performance may be well 
below nominal Tensor Core peak

§ The actual mix of instructions 
introduces an effective ceiling
on performance…
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Below the Roofline?
FPU Starvation



FPU Starvation

§ Processors have finite instruction fetch/decode/issue bandwidth
§ Moreover, the number of FP units dictates the FP issue rate required to 

hit peak

65

Ø Ratio of these two rates is the minimum FP instruction fraction 
required to hit peak 



FPU Starvation 
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§ Consider…
o 4-issue superscalar

o 2 FP data paths

Ø >50% of the instructions must be FP to 
have any chance at peak performance



FPU Starvation 
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§ Conversely, 

o Keeping 2 FP data paths, 

o but downscaling to 2-issue superscalar

Ø 100% of the instructions must be FP to 
get peak performance



FPU Starvation 
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Peak GFLOP/s
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§ Conversely, 
o Keeping 2 FP data paths, 

o but downscaling to 2-issue superscalar

Ø 100% of the instructions must be FP to 
get peak performance



FPU Starvation 
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non-FP instructions 
sap issue bandwidth 
and pull performance 

below the Roofline

§ Conversely, 
o Keeping 2 FP data paths, 
o but downscaling to 2-issue superscalar
o 100% of the instructions must be FP to 

get peak performance
Ø Codes that would have been memory-

bound are now decode/issue-bound.



Instruction Roofline Model
When FLOP/s aren’t what’s important

Nan Ding, Samuel Williams, "An Instruction Roofline Model for

GPUs", Performance Modeling, Benchmarking, and Simulation

(PMBS), November, 2019.



How do we go beyond the FLOP Roofline?

§ Think about classifying applications by instruction mix…
o Heavy floating-point (rare in DOE)
o Mix of integer and floating-point
o Integer-only (e.g. bioinformatics, graphs, etc…)
o Mixed precision

71

§ FLOP/s → IntOP/s → FLOP/s+IntOP/s
o Adopted by Intel Advisor
o Useful when wanting to understand ‘performance’ rather than bottlenecks
o Instruction Fetch/Decode/Issue bottlenecks?
o Functional Unit Bottlenecks?
Ø Need instruction Roofline Model



FLOP Roofline → VUOP Roofline
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§ On SIMD machines, one might consider vuop/s instead of flop/s…

ü vuop/s (scalar + vector) can easily be mapped to vector unit utilization
ü 100% vector unit utilization can bottleneck performance
ü Performance counters give vuop/s and not flop/s
✘ 100% vector unit utilization does not imply 100% of peak (FMA, scalar 

vs. vector)



FLOP Roofline
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Performance is
well-below the
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bound

§ With performance counters alone, its 
hard to deduce why performance is 
well-below the FLOP Roofline.
o VL?
o Precision?
o FMA?
o Masks?
o Non-FP vector instructions

§ Moreover, one might conclude a code 
is memory bound when in reality is 
compute-bound



VUOP Roofline
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§ In a VUOP Roofline
o machine peak (VUOP/s) is lower
o machine balance (VUOP:Byte) is lower

§ FLOP/s can be low, but VUOP/s can 
be high (and in the compute-bound 
regime)

§ Could be used to understand FMA, 
vectorization, and mixed precision 

Ø Requires both performance 
counters (instructions, FLOPs by
precision, ) as well as dynamic code 
analysis (masks, VL, etc…) 3.0

New 
VUOP AI



NVIDIA GPU Instruction Roofline

§ Instructions/second?  Instructions per Byte?

75

§ What is an ‘Instruction’ on a GPU?
o Thread-level hides issue limits?
o Warp-level hides predication effects?
o Scale non-predicated threads down by the warp size (divide by 32)
o Show warp instructions per second
o Break instructions into subclasses (integer, FP32, FP64, LDST, WMMA)

§ Naively, one would think instruction intensity should use ‘bytes’
o Matches well to existing Roofline; works with well-known bandwidths

§ GPUs access memory using ‘transactions’
o 32B for global/local/L2/HBM
o 128B for shared memory
Ø “Instructions/Transaction” preserves traditional Roofline,

but enables a new way of understanding memory access



Instruction Roofline
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Instruction Roofline
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Nan Ding, Samuel Williams, "An Instruction Roofline

Model for GPUs", PMBS, November, 2019.



Instruction Roofline on GPUs
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As the natural quanta for GPU 
memory access is a “transaction”…

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.



Instruction Roofline on GPUs
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Peak GFLOP/s
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Peak GIPS
GIPS = min

IIDRAM * DRAM GTXN/s IIx (Instruction Intensity at level “x”) = 

Instructions / Transactions (to/from level “x” )

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.
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L2 93.6 GTXN/s

L1 437.5 GTXN/s
Thoeretical Peak: 489.6 warp GIPS

Instruction Roofline on NVIDIA GPUs

§ Instruction Intensity (II)
o (Warp or equivalent) Instructions / Transaction
o Refine into L1 (global+local+shared), L2, HBM Instruction Intensities
o Further refine based on instruction type (LDST instructions / global transaction)

§ Peak Performance and Peak Bandwidths
o Instruction: 

o 80 SMs * 4 warps * 1.53GHz ~ 490 GIPS (warp-level)

o Use ERT for memory (convert from GB/s)
o L1: 80 SMs * 4 transactions/cycle * 1.53 GHz ~ 490 GTXN/s
o L2: 94 GTXN/s (empirical)
o HBM: 26 GTXN/s (empirical)

80Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.



Efficiency of Global Memory Access

§ (Global)LDST Instruction Intensity has a special meaning / use…

o Global LDST instructions / Global transactions

o Numerator lower than nominal II

o Denominator can be lower than nominal L1 II (no local or shared transactions)

§ Denotes efficiency of memory access
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§ 3 “Walls” of interest:

o ≥1 transaction per LDST instruction

(all threads access same location)

o ≤32 transactions per LDST instruction

(gather/scatter or stride>=128B)

o Unit Stride: 1 LDST per 8 transactions

(double precision)

Nan Ding, Samuel Williams, "An Instruction Roofline

Model for GPUs", PMBS, November, 2019.



Efficiency of Shared Memory Access

§ (Shared)LDST Instruction Intensity also has a special meaning / use
o Shared LDST instructions / Shared transactions
o II is similarly loosely related to nominal II

§ Can be used to infer the number of bank conflicts
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Can never have less
than 0 bank conflicts

§ 2 “Walls” of interest:
o Minimum of 1 transaction per shared

LDST instruction (no bank conflicts)
o Maximum of 32 transactions per

shared LDST instruction
(all threads access different lines
in the same bank)

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.



Instruction Roofline for Smith-Waterman
§ Integer-only Alignment code on NVIDIA GPU
§ No predication effects, but inefficient global memory access
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Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.



Instruction Roofline for Matrix Transpose
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Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.



Other Uses of Instruction Roofline

§ Predication
o Individual threads can mask out execution when in branch-not-taken
o 16 FLOPs/SM/cycle… 1 FP warp every 2 cycles 

–or –
1 FP warp every cycle with half threads predicated

o Use performance metrics to plot both warp GIPS and non-predicated threads (scaled by 32)

§ FMA, Tensor Cores, Mixed Precision, …
o Rather than counting FLOPs, count instructions
o Can differentiate total instruction issue bandwidth from functional unit utilization (FP32, FP64)
o n.b., some GIPS should be summed (FP16+FP32) while others are have dedicated pipelines 

(FP64, TC)

85Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.



Instruction Roofline Takeaway
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Instruction Roofline
§ Tells us about bottlenecks 

(issue and memory)

§ Use of FMA, SIMD, vectors, 
tensors decreases intensity and 
may decrease “performance”

§ Presence of integer instructions 
increases intensity and might 
increase performance.

§ Reducing precision has no affect 
on intensity

Memory Walls
§ Tells us about efficiency 

(memory access)

§ Intensity based on LDST 
instructions and transactions

§ Predication could affect intensity 
(could have zero transactions for 
a LDST instruction, but not all 
LDST instructions)

§ Reducing precision shifts 
intensity, and the unit-stride wall

Traditional Roofline
§ Tells us about performance

(floating-point)

§ Use of FMA, SIMD, vectors, 
tensors has no affect on intensity, 
but may increase performance…

§ Presence of integer instructions 
has no affect on intensity, but may 
decrease performance

§ Reducing precision (64b, 32b, 
16b) increases arithmetic intensity

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.



Roofline Scaling 
Trajectories



Roofline Scaling Trajectories
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§ We often plot performance as a 
function of thread concurrency
o Carries no insight or analysis
o Provides no actionable information.

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)
G

Fl
op

/s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c3

2) (1
28)

DRAM (c1
) (1

4.3)

●

●

●

●

●
●●

roofline_summary_sp_lbl

● Class A
Class B
Class C

c1

c2

c4
c8

c16c32c64

#Threads
1 2 4 8 16 32 64



Roofline Scaling Trajectories
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§ We often plot performance as a 
function of thread concurrency
o Carries no insight or analysis
o Provides no actionable information.

§ Use Roofline to analyze thread 
(or process) scalability
o 2D scatter plot of performance as a 

function of intensity and concurrency
o Identify loss in performance due to 

increased cache pressure (data 
movement)
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Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A 
Method for Parallel Application and Architectural Performance Analysis", 
HPBench, July 2018.



Roofline Scaling Trajectories
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§ Insights from NPB
o Intensity (data movement) varies with 

concurrency and problem size
o Large problems (green and red) move 

more data per thread, and exhaust cache 
capacity

o Falling Intensity → hit the bandwidth 
ceiling quickly and degrade.

Ø Useful for understanding locality/BW 
contention induced scaling 
bottlenecks
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Roofline Scaling Trajectories on GPUs
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§ More Recently applied 

to GPUs (SM scaling)

§ Allows comparisons of 

programming models 

(OpenACC vs. CUDA)

§ Strong differences in 

scalability and 

performance per 

thread(block).

Khaled Ibrahim, Samuel Williams, Leonid Oliker, ”Performance Analysis of GPU 

Programming Models Using the Roofline Scaling Trajectories", (BEST PAPER) 

Bench, 2019.

10 Khaled Z. Ibrahim, Samuel Williams, and Leonid Oliker
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Fig. 4: Roofline Scaling Trajectories for Volta GPUs. CUDA BT and Ope-
nACC LU application are limited by warp e�ciency, while CUDA LU, Ope-
nACC SP, BT, FT are limited by GPU occupancy. The arithmetic intensity of
CUDA LU and OpenACC MG is noticeably a↵ected by strong and weak scaling.

optimal performance. As discussed in Section 5, the occupancy term a↵ects the
potential improvements while increasing the SM count. In Figure 5, we consider
the detailed SM occupancy behavior for CUDA BT and CUDA LU. For BT, we
observe a constant occupancy during both weak and strong scaling. The scaling
trajectory shows a high correlation with the measured SM occupancy behavior.

The occupancy of CUDA LU degrades with strong scaling. Increasing the
problem size improves the occupancy, and the impact is not uniform across
kernels. The jacld blts kernel is the most a↵ected by the loss of occupancy.
The Roofline Scaling Trajectories for individual kernels captures such behavior
precisely as shown in Figure 6, both for loss of occupancy for the jacld blts
kernel, and the maintenance of good occupancy for the rhs kernel *. We notice
that the rhs kernel x has a small change in arithmetic intensity during weak
scaling compared with the rhs kernel y, z. Inspecting the code, we found a unit
strided access in the x-direction and strided jumps for the y and z direction.
Applying data transposes could typically be used to tackle such bottleneck, but
require an e�cient transpose that is lower overhead than embedding the strided
access.

In general, there are two sources of loss of occupancy. One is reported by
the nvprof profiling tool as achieved occupancy during the course of executing a
kernel, and is defined as the ratio of the average active warps per active cycle to
the maximum number of warps supported on a multiprocessor [13]. We refer to
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Roofline Recap
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Arithmetic Intensity
o Unique for each loop nest
o Unique for each level of 

memory
o Total FLOPs / Total Bytes
o Includes all cache effects
o Different on every 

architecture
Ø Measure of a loop’s 

temporal locality

Roofline bounds 
performance as a 
function of Arithmetic 
Intensity
o Horizontal Lines = 

Compute Ceilings
o Diagonal Lines = 

Bandwidth Ceilings
o Bandwidth ceilings are 

parallel on log-log scale
Ø Collectively, ceilings 

define an upper limit on 
performance

Plotting loops  on the 
Roofline
o Each loop has one dot per 

level of memory
o x-coordinate = arithmetic 

intensity at that level
o y-coordinate = performance 

(e.g. GFLOP/s)
Ø Proximity to associated 

ceiling is indicative of a 
performance bound

Ø Position of dots relative to 
each other is indicative of 
cache locality

Applies equally to GPUs and 

other accelerators



What is Roofline used for?

94

§ Predict performance on future machines / architectures
o Set realistic performance expectations
o Drive for HW/SW Co-Design

§ Identify performance bottlenecks & motivate software optimizations

§ Determine when we’re done optimizing code
o Assess performance relative to machine capabilities
o Track progress towards optimality
o Motivate need for algorithmic changes

§ Understand performance differences between Architectures, 
Programming Models, implementations, etc…
o Why do some Architectures/Implementations move more data than others?
o Why do some compilers outperform others?



Model is just one piece of the puzzle…
§ Roofline Model defines the basic 

concepts and equations.  

95
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Model is just one piece of the puzzle…
§ System Characterization defines 

the shape of the Roofline (peak 
bandwidths and FLOP/s)
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Model is just one piece of the puzzle…
§ Application Characterization 

determines…
o Intensity and Performance of each loop

o Position of any implicit ceilings
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Model is just one piece of the puzzle…
§ Visualization tools combine all 

data together and provide 
analytical capability
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Visualization
and

Analysis

Roofline
Model

(Theory)

Rest of Tutorial…
§ Charlene will demonstrate how to 

construct and use Roofline model 
on an NVIDIA GPU
o GPU benchmarking
o application characterization
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Roofline
Model

(Theory)

Rest of Tutorial…
§ Charlene will demonstrate how to 

construct and use Roofline model 
on an NVIDIA GPU
o GPU benchmarking
o application characterization

§ Max will demonstrate how Nsight
Compute now automates Roofline
o GPU benchmarking
o application characterization
o Visualization
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System 
Characterization
(Benchmarking)

Application
Characterization
(Instrumentation)

Visualization
and

Analysis

§ You will use Roofline in Nsight
Compute to analyze your apps.



Questions?



BACKUP



Performance 
Extrapolations



Setting Realistic Expectations…
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§ Consider 3 kernels (A,B,C)

Peak GFLOP/s
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Arithmetic Intensity (FLOP:Byte)

A

B
C

Ø kernels A and B are bound by 
memory bandwidth

Ø kernel C is bound by peak FLOP/s



Setting Realistic Expectations…
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§ Imagine you want to run on a 
machine with twice the peak 
FLOPs…

At
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DRAM G
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Arithmetic Intensity (FLOP:Byte)

Ø kernel C’s performance could double
✘ kernels A and B will be no faster
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Setting Realistic Expectations…
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§ What if that machine also 
doubled memory bandwidth…
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Ø kernel A and B’s performance could 
also double
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