Introduction to the

=
_%@

il [

’ " Divisioh .
""c?B‘erkeley NationalEab™ ~ |
SWW|II|ams@IbI qov :

\ @W//
J

III =74\ U.S. DEPARTMENT OF

ENERGY

BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

frreeeer

mailto:SWWilliams@lbl.gov

iStatenamie - gResearch Program

(@ P . L == f > N
CLS), \uerp)zamzmﬂrem T '// o) cre'nce under Aw =;;\
Te0 ' “amY
ThisTmateria 14 | 4 N
This a@rr 1Sec S 0f Res arch .SDIentlfIC Comp_tlng Center (NERSC), s

s i Thrs researeh used resources of the Oak Ridge Leadership Fagcility at the- OakH\Ierge

? whlch IS supported by the Office of Science of the U.S. Department of Energy under/Contract c* E"-'-*‘\((“ (
O@.R22725' Y o | Pl
-’_;(/4"‘/&.5 e f"”ﬂ"’/ /__‘ ‘ s :

%% U.S. DEPARTMENT OF

i BERKELEY LAB ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

spe 16 MORN

ication t

ths porting

oje)l

L

x xoz‘? o z
~f BERK

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

U.S. DEPARTMENT OF

) ENERGY

What is “Good” Performance?

= |magine profiling the mix of loop t
nests in an application when
running on the GPU

o GFLOP/s alone may not be particularly
insightful

GFLOP/s

o speedup relative to a Xeon may seem
random

Loop nest (kernel)

-
A
rrrrrrr ""|

BERKELEY LAB

What is “Good” Performance?

= Two fundamental aspects to “Good” performance...

1. Operating in the throughput-limited regime

not sensitive to Amdahl effects, D2H/H2D transfers, launch overheads, efc...

2. making good use of the GPU’s compute and/or bandwidth capabilities

» Ultimately, we need a quantitative model rather than qualitative
statements like “good”

Roofline Model

= Roofline Model is a throughput-
oriented performance model

= Tracks rates not times
* Independent of ISA and architecture

= applies to CPUs, GPUs, Google
TPUs', FPGAs, etc...

= Helps quantify Good Performance

1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor
Processing Unit”, ISCA, 2017.

e COMPUTATIONAL RESEARCH

BERKELEY LAB

e
(£
m)

+

crd.lbl.gov

FE, U5 DEPARTMENT OF

{(3) ENERGY

CAREERS | PHONE BOOK | A - Z INDEX

PERFORMANCE AND ALGORITHMS RESEARCH STAFF RESEARCH PUBLICATIONS

Performance and Algorithms Research

PERFORMANCE
AND
ALGORITHMS
RESEARCH

Research
Auto-tuning
BeBOP
EDGAR
HipGISAXS
HPGMG
Roofline
SciDAC
TOP500

Previous Projects

Facebook
g
Google+
1

Twitter

Roofline Performance Model

Roofline is a visually intuitive performance model used to bound the performance of various numerical methods and operations running on
multicore, manycore, or accelerator processor architectures. Rather than simply using percent-of-peak estimates, the model can be used to
assess the quality of attained performance by combining locality, and different i into a single
performance figure. One can examine the resultant Roofline figure in order to determine both the implementation and inherent performance
limitations.

Arithmetic Intensity

The core parameter behind the Roofline model is Arithmetic Intensity. Arithmetic Intensity is the ratio of total floating-point operations to
total data movement (bytes). A BLAS-1 vector-vector increment (x[iJ+=y[i]) would have a very low arithmetic intensity of 0.0417 (N FLOPS
/24N Bytes) and would be independent of the vector size. Conversely, FFT's perform 5*N*logN flops for a N-point double complex
transform. If out of place on a write allocate cache architecture, the transform would move at least 48N bytes. As such, FFT's
would have an arithmetic intensity of 0.104*logN and would grow slowly with data size. Unfortuantely, cache capacities would
limit FFT arithmetic intensity to perhaps 2 flops per byte. Finally, BLAS3 and N-Body Particle-Particle methods would have
arithmetic intensity grow very quickly.

0.1-1.0 flops per byte Typically < 2 flops per byte 0O(10) flops per byte
A A A

N\ r N N

Intenglty

Particle
Stencils (PDEs) Methods
FFTs, Dense
Lattice Boltzmann Spectral Methods Linear Algebra
N Methods , ((BLAsY) ,
Y Y Y
o(1) O(log(N)) O(N)
Rooflina Madal

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

~

A

frreeeer I"l

BERKELEY LAB

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Simulation — Modeling

Front End Instructi
QSC%UJT';’S L1 Instruction Cache

= Superscalar architectures can be complex o] e [

Branch
Predictor ’ Instruction Fetch & PreDecode ‘

(BPU) (16 B window)

= Don’t model / simulate full architecture XXX EX:

3P /g9

[] [] u L] MicroCode S-Way Decode
. Seq;:gcer Complex || Simple Simple Simple Simple
(MS ROM) Decoder [|Decoder || Decoder || Decoder || Decoder Stack
1-4 pOP: oP oP oP oP q
e g L L Engine
4 uoPs (SE)
5 pOPs
Decoded Stream Buffer (DSB)
(HOP Cache) 6 noPs
(1.5k LOPs; B-Way)
(64 B window) Mux

Loop Stream ;i
Allocation Queue (IDQ) (128, 2x64 POPs) ‘

2 pOP pOP pOP pOP pOP pOP Branch Order Buffer
| Reqgister Alias Table (RAT) | *”lo (BOB) (48-entry)
el

Load

a | ;
g : 5 Rename / Allocate / Retirement n i
3 —IFP MovelElimination ReOrder Buffer (224 entries) I Ones dioms l [zemmg Idmmsl
H
HIE nop nopP noP poP nopP noP poP nop
] -
Il hedul
H Scheduler
- Integer Physical Register File| o . . Vector Physical Register File
8|l (180 Registers) Unified Resewatmr‘ Station (RS) (168 Registers)
3 | Srord (97 entries)
Port 0 Port 1 [Ports | [Port6 | [Portz | [Port3 | [Portd | [Port7]
pop pop pop pop nopP nop pop pop
=
INT AL INT ALU [INTAW] INTAW | [AGU][AGU | [Store Data
INT DIV INT MUL |_Branch | [Load Data| [Load Data S = 5 648 |
oo ; 3 == cycle
NT Vect ALU| [INT Vect AL E @ A Y
512bit/cycle g ; g Tol3
e e e e = = = S 3
512b fused 512b (zmm only) EU w Soa
ACS {optionall S)
Vect Strin <
FP DIV
Branch

Execution Engine .
Store Buffer & Forwardlng

(56 entries) g
GaBleycle \ &
s <
k Data TLB =
Load Buffer E L1 D.ata Cache ®
(72 entries) | § 32KiB 8-Way
g Line Fill Buffers (LFB)

(10 entries)

Memory Subsystem

~

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server) 7 .ﬁ|

BERKELEY LAB

Reduced Model

= Superscalar architectures can be complex core | | core | | core | [core | crLops
= Don’t model / simulate full architecture i i i § ot ows
= Created simplified processor architecture L1 L1 L1 L1
o Cores can attain peak GFLOP/s on local data ! ! ! } 2o
L2 L2 L2 L2
} } } $L3 GBS
Network-on-Chip
I T T A
i i i Q
Shared L3 Cache =
i i i z
DRAM

-
A
rrrrrrr ’""

BERKELEY LAB

Reduced Model

= Superscalar architectures can be complex
= Don’t model / simulate full architecture

= Created simplified processor architecture

o Cores can attain peak GFLOP/s on local data
o Cores execute load-balanced SPMD code

4 CPUE coresg GFLOP/s
! $ § $ LicBis
' L1 Caches !
} I } LocBrs
L2 Cai\ches
f 1 1§ soss
Srihared L3 Cacihe
} | } | } | } DRAMGBIs
DRAM

-
A
rrrrrrr ’""

BERKELEY LAB

Reduced Model

= Superscalar architectures can be complex ' Compute | Lom
= Don’t model / simulate full architecture
: - _ Perfect.Caches
= Created simplified processor architecture i i i T DRAM GBIs
o Cores can attain peak GFLOP/s on local data DRAM

o Cores execute load-balanced SPMD code

o There is sufficient cache bandwidth and capacity
such that they do not affect performance

-
A
rrrrrrr ’""

BERKELEY LAB

Reduced Model

= Superscalar architectures can be complex ' Compute | Lom
= Don’t model / simulate full architecture
: - _ Perfect.Caches
= Created simplified processor architecture i i i T DRAM GBIs
o Cores can attain peak GFLOP/s on local data DRAM

o Cores execute load-balanced SPMD code

o There is sufficient cache bandwidth and capacity
such that they do not affect performance

> Basis for DRAM Roofline Model

-
A
rrrrrrr ’""

BERKELEY LAB

Data Movement or Compute?

= Which takes longer?

o Data Movement
o Compute?

Time = max=<

(HFP ops / Peak GFLOP/s

_#Bytes / Peak GB/s

Comfpute

GFLOP/s

Pierfect ECachefs

!

! !

} DRAMGB/s

DRAM

Data Movement or Compute?

= Which takes longer?
o Data Movement

Comfpute

GFLOP/s

o Compute?

Pierfect ECachefs

! !

} DRAMGB/s

* |s performance limited by compute or t

DRAM

data movement?

_
Time N 1/ Peak GFLOP/s
#FP ops

_#Bytes / #FP ops / Peak GB/s

Data Movement or Compute?

GFLOP/s

} DRAMGB/s

» Which takes longer? Compute |
o Data Movement
o Compute? Perfect Caches

_ t t t
= |s performance limited by compute or DRAM

data movement?

/‘
#FPops _ . Peak GFLOP/s
: = min=<
Time

_(#FP ops / #Bytes) * Peak GB/s

Data Movement or Compute?

= Which takes longer?

o Data Movement
o Compute?

* |s performance limited by compute or
data movement?

Peak GFLOP/s
GFLOP/s = min
Al * Peak GB/s

Al (Arithmetic Intensity) = FLOPs / Bytes (as presented to DRAM)

Comfpute

GFLOP/s
Pierfect ECachefs
} } } } DRAMGBIs
DRAM

Arithmetic Intensity

= Measure of data locality (data reuse)

= Ratio of Total Flops performed to Total Bytes moved

= For the DRAM Roofline...

Total Bytes to/from DRAM
Includes all cache and prefetcher effects

Can be very different from total loads/stores (bytes requested)

O O O O

Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)

-
A
rrrrrrr "“l

BERKELEY LAB

(DRAM) Roofline Model

Al * Peak GB/s

Al (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

Peak GFLOP/s
GFLOP/s = min

= Plot Roofline bound using Arithmetic
Intensity as the x-axis

* Log-log scale makes it easy to
doodle, extrapolate performance
along Moore’s Law, etc...

—>

Attainable FLOP/s

Arithmetic Intensity (FLOP:Byte)

(DRAM) Roofline Model

Peak GFLOP/s
Al * Peak GB/s

Al (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

GFLOP/s = min

= Plot Roofline bound using Arithmetic
Intensity as the x-axis

* Log-log scale makes it easy to
doodle, extrapolate performance
along Moore’s Law, etc...

Attainable FLOP/s

Peak GFLOP/s

: >
Arithmetic Intensity (FLOP:Byte)

Transition @ Al ==
Peak GFLOP/s / Peak GB/s ==
‘Machine Balance’

-
A
rrrrrrr "“l

BERKELEY LAB

(DRAM) Roofline Model

Peak GFLOP/s |
Al * Peak GB/s

Al (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

GFLOP/s = min

Peak GFLOP/s

= Roofline tessellates this 2D view of
performance into 5 regions...

Attainable FLOP/s

>

Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr "“l

BERKELEY LAB

Roofline Example #1

= Typical machine balance is 5-10

FLOPs per byte...
o 40-80 FLOPs per double to exploit compute capability Peak GFLOP/s
o Artifact of technology and money) |
: : o :
o Unlikely to improve O |
™ :
@ |
3 :
= Consider STREAM Triad... S GFLOP/s <Al * HBM GBYs
#pragma omp parallel for < i
for(i=0;i<N;i++){ I I
} z[1] = x[i] + alpha*Y[i]; TRIAD! !
0.083 5.0
o 2 FLOPs per iteration Arithmetic Intensity (FLOP:Byte)

o Transfer 24 bytes per iteration (read X][i], Y[i], write Z[i])
o Al=0.083 FLOPs per byte == Memory bound

~

A
reeeeee| M

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant coefficient
stencill...

#pragma omp parallel for
for(k=1; k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1l;i<dim+1l;i++){
new[k][j]1[i] = -6.0%old[k 1[3 1[i]
+ old[k 1[3 1[1-1]
old[k 1[j 1[i1+1]
oldfk 1[3-11[1 1]

old[k J[j+1][1
old[k-11[7 1I[i
old[k+1]1[7 1I[i

Compute

GFLOP/s

Perfect ECache

HBM GB/s

HBM

~

A
reeeeee| M

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant coefficient Comipu o L op
stencil...
o 7FLOPs Perfect.Cache
o 8 memory references (7 reads, 1 store) per point HBM GB/s
o Al=7/(8*8)=0.11 FLOPs per byte HBM

(measured at the L1)

#pragma omp parallel for
for(k=1;k<dim+1;k++) {
for(j=1;j<dim+1;j++){

v =TT L;i++)
new[k]J[JI1[1 = -64~old[k 1[J 1I[1
oldfk 1[j I[i-1]

old[k 1[j 1[i+1]
old[k 1[j-1][1]

old[k 1[j+1][1]
old[k-1][3 1[1]
old[k+1]1[3 1[i]

~

A
reeeeee| M

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant coefficient r— i
: : ompute i GFLOP/s
stencill... 5
o 7FLOPs Perfect Cache's :
o 8 memory references (7 reads, 1 store) per point 0 0 0 0 HBM GB/s
o ldeally, cache will filter all but 1 read and 1 write per point HBM

#pragma omp parallel for
for(k=1;k<dim+1;k++) {
for(J 1; J<d1m+1,J++){

107 107]
107 1[0i-1]
107 1[0i+1]
107-11[07]
105+

UruIN =1LJ dJLt |

old[k+1]1[7 1I[i

~

A
reeeeee| M

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant coefficient r— i
: . Compute GFLOP/s
stencil...
o 7FLOPs ~ PerfectiCaches
o 8 memory references (7 reads, 1 store) per point 0 0 0 0 HBM GB/s
o Ideally, cache will filter all but 1 read and 1 write per point HBM
> 71/ (8+8) =0.44 FLOPs per byte (DRAM)

#pragma omp parallel for
for(k=1; k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1l;i++){
new[k][j][i1] = -6.0%old[k 1[3 1[i 1]
+ old[k 1[3 1[1-1]
old[k 1[j 1[i1+1]
oldfk 1[3-11[1 1]
old[k 1[j+1]1[1

]
old[k-11[7 1[1]
old[k+1][7 1[7 1;

~

A
reeeeee| M

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant coefficient

stencil...
o T7FLOPs Peak GFLOP/s
o 8 memory references (7 reads, 1 store) per point %
o ldeally, cache will filter all but 1 read and 1 write per point %
— *
> 71(8+8) = 0.44 FLOPs per byte (DRAM) I) GFLOP/s <Al™ HBM GB/s
== memory bound, but 5x the FLOP rate as TRIAD 2 :
c I
#pragma omp parallel for éE I | :
for (k=1; k<dim+1; k++) { < | | 7-point
for(j=1;j<dim+l;j++){ | ! Stencill
for(i=1;i<dim+1l;i++){ RIAD: I
new[k][j1[i] = -6.0%o1d[k I[j 1[i 1] ! :
+ old[k I[j 1[i-1] : >
old[k 1[j 1[i+1] 0.083 0.44
old[k 1[j-11[i] Arithmetic Intensity (FLOP:Byte)

old[k J[j+1]1[1]
old[k-11[7 1[1]
old[k+1][7 1[7 1;

~

A
reeeeee| M

BERKELEY LAB

What is “Good” Performance?

= Think back to our mix of loop
nests...

FLOP/s

Loop nest (kernel)

What is “Good” Performance?

= We can sort kernels by arithmetic
intensity...

Attainable FLOP/s

Arithmetic Intensity (FLOP:Byte)

What is “Good” Performance?

= We can sort kernels by arithmetic
intensity...

= .. and compare performance
relative to machine capabillities

Attainable FLOP/s

Peak GFLOP/s

>
Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr "“l

BERKELEY LAB

What is “Good” Performance?

= Kernels near the roofline are

making good use of |
computational resources Peak GFLOP/s
g RN 0
E__I) ' | 50% of Peak
o e
o
Ic
g
Arithlmetic Intensity (FLOP:Byte) g

-
A
rrrrrrr "“l

BERKELEY LAB

What is “Good” Performance?

= Kernels near the roofline are
making good use of
computational resources Peak GFLOP/s

» kernels can have low performance
(GFLOP/s), but make good use
(% STREAM) of a machine

S m—_————— -

' 50% of Peak

Attainable FLOP/s

/’ >

Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr "“l

BERKELEY LAB

What is “Good” Performance?

= Kernels near the roofline are

making good use of |
computational resources Peak GFLOP/s
> kernels can have low performance & | boulld
(GFLOPY/s), but make good use 5 ¥ g1 o Peak
(%STREAM) of a machine o
» kernels can have high performance %
(GFLOP/s), but still make poor use of a Z
machine (%peak)
Arithlmetic Intensity (FLOP:Byte) g

-
A
rrrrrrr "“l

BERKELEY LAB

Roofline is made of two components

Machine Model

O

Lines defined by peak GB/s and GF/s
(Benchmarking)

Unique to each architecture
Common to all apps on that architecture

Attainable FLOP/s

Peak GFLOP/s

50% of Peak

Arithmetic Intensity (FLOP:Byte)

>

-
A
rrrrrrr "“l

BERKELEY LAB

Roofline is made of two components

= Machine Model

o Lines defined by peak GB/s and GF/s
(Benchmarking)

o Unique to each architecture
o Common to all apps on that architecture

= Application Characteristics

o Dots defined by application GFLOP’s and
GB'’s (Application Instrumentation)

o Unique to each application
o Unique to each architecture

Attainable FLOP/s

>

Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr "“l

BERKELEY LAB

General Performance Optimization Strategy

= Get to the Roofline

Peak GFLOP/s

50% of Peak

Attainable FLOP/s

,’/ >
Arithmetic Intensity (FLOP:Byte)

General Performance Optimization Strategy

= Get to the Roofline

,T
* Increase Arithmetic Intensity
when bandwidth-limited Peak GFLOPIs
o Reducing data movement (denominator) g ------- _ 50% of Peak
increases Al i
)
o Spatial locality, cache blocking, data g
structures, data types, etc... S
<
Arithlmetic Intensity (FLOP:Byte) g

-
A
rrrrrrr "“l

BERKELEY LAB

P

Lm? P =
= A
-« BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

ié‘m""% U.S. DEPARTMENT OF

ENERGY

How can performance be below the Roofline?

= Kernels (dots) are misplaced...

Wrong #FLOPs or wrong #Bytes 0

o Broken HW/SW performance counters
Peak GFLOP/s

= Lines are misplaced...

Peak HBM and FLOP/s are wrong
o Use empirical approaches to model construction
o Assumptions on load balance

= Missing lines...
There are bounds other than DRAM and

FLOPs
o Insufficient cache bandwidth + locality Arithmetic Intensity (FLOP:Byte)
o Didn’'t use FMA/ Vectors / Tensors / ...

o Too many non-FP instructions

o efc...

Attainable FLOP/s

>

-
A
rrrrrrr "“l

BERKELEY LAB

e W
T =

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

U.S. DEPARTMENT OF

) ENERGY

Machine Characterization

Cori/ KNL

= Theoretical performance (specs)

can be highly optimistic... o
o DRAM pin bandwidth vs. sustained i
® TurboMode_ / Underc_:locklng 5 Jr [SummitDev] 4GPUs
o compiler failing on high-Al loops.

004.6.GELOPs/sec (Maximum)

= Need empirical performance data 1

« LBL developed the Empirical

Roofline Toolkit (ERT)...

o Characterize CPU/GPU systems
Peak Flop rates

O
o Bandwidths for each level of memory o
O

/
Q,
23,
X

1000

GFLOPs / sec
S

0.01 0.1 1 10 100

MPI+OpenMP/CUDA == multiple GPUs

https://bitbucket.org/berkeleylab/cs-roofline-toolkit = A
https://github.com/cyanguwa/nersc-roofline rjr}| ’ |

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline BERKELEY LAB

Theoretical vs. Empirical

= Theoretical Roofline: A

Pin bandwidth
FPUs * GHz Theoretical GFLOP/s

1 C++ FLOP =1 ISA FLOP

O
O
O
o Data movement = Compulsory Misses

Attainable FLOP/s

: >
Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr "“l

BERKELEY LAB

Theoretical vs. Empirical (Machine)

= Theoretical Roofline:

o Pin bandwidth
o FPUs * GHz
o 1C++FLOP =1ISAFLOP
o Data movement = Compulsory Misses
= Empirical Roofline:
o Measured bandwidth

o Measured Peak FLOP/s

Attainable FLOP/s

Empirical
GFLOP/s

>
Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr "“l

BERKELEY LAB

Theoretical vs. Empirical (Application FLOPSs)

= Theoretical Roofline: A

Pin bandwidth

FPUs * GHz

1 C++ FLOP =1 ISA FLOP

Data movement = Compulsory Misses

Empirical

O
O
o GFLOP/s
O

. . . LAl using

- EmplrlCal Roofline: ? empirical FLOPs
o Measured bandwidth
o Measured Peak FLOP/s

o 1 C++FLOP >=1ISA FLOP (e.g. divide)

Attainable FLOP/s

: >
Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr "“l

BERKELEY LAB

Theoretical vs. Empirical (Application Bytes)

= Theoretical Roofline: A

Pin bandwidth

FPUs * GHz

1 C++ FLOP =1 ISA FLOP

Data movement = Compulsory Misses

Empirical

O
O
o GFLOP/s
O

True Al using
empirical FLOPs
& empirical Bytes

= Empirical Roofline:

o Measured bandwidth

o Measured Peak FLOP/s

o 1C++ FLOP >=1ISA FLOP (e.g. divide)
o Measured data movement (cache effects)
>

Attainable FLOP/s

>

Arithmetic Intensity (FLOP:Byte)

True Arithmetic Intensity can be higher
or lower than expected

-
A
rrrrrrr "“l

BERKELEY LAB

“™j BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

SRy U-S.
st

Memory Hierarchy

= Processors have multiple levels of

memory/cache

o Registers L1 D$

o L1, L2, L3 cache |

o HBM/HBM (KNL/GPU device memory) L2 D$

o DDR (main memory) |

o NVRAM (non-volatile memory) L3"D$
DRAM

-
A
rrrrrrr "“l

BERKELEY LAB

Memory Hierarchy

Bandwidth

= Processors have different bandwidths
for each level o W

L1 D$

L2 GB/s

L2 D$

L3 GB/s

L3 D$

DRAM GB/s

DRAM

-
A
rrrrrrr "“l

BERKELEY LAB

Memory Hierarchy

Machine Balance

= Processors have different bandwidths
for each level GFLOP/SW

L1 GB/s

o different machine balances for each level

L1 D$

GFLOP/s 1

L2 GB/s v
L2 D$

GFLOP/s 1

L3 GB/s v
L3 D$

GFLOP/s 1

DRAM GB/s v
DRAM

-
A
rrrrrrr "“l

BERKELEY LAB

Memory Hierarchy

» Processors have different bandwidths ™M=z Data Movement
for each level GFLO%W
o different machine balances for each level -1 GBS -
L1 D$
GFLOP/s 1
L2 GB/s | L2 GB
= Applications have locality in each level L2 D$
o different data movements for each level 3685 } L3 GB
L3 D$
GFLOP/s 1
DRAM GB/s | DRAM GB
DRAM

-
A
rrrrrrr "“l

BERKELEY LAB

Memory Hierarchy

Machine Balance Arithmetic Intensity

= Processors have different bandwidths
for each level GFLOP/SEFGFLOPS

L1 GB/s L1 GB

o different machine balances for each level L1 DS
GFLOP/s 1 GFLOPs
L2 GB/s v L2 GB
= Applications have locality in each level L2 D$
_ GFLOP/s f GFLOPs
o different data movements for each level L3 GB/s ! L3 GB
o different arithmetic intensity for each level L3 D$
GFLOP/s 1 GFLOPs
DRAM GB/s v DRAM GB
DRAM

-
A
rrrrrrr "“l

BERKELEY LAB

Cache Bottlenecks

= For each additional level of the memory hierarchy, we can add another
term to our model...

_ Peak GFLOP/s
GFLOP/s = min
Algram * DRAM GB/s

Aly (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

Cache Bottlenecks

= For each additional level of the memory hierarchy, we can add another
term to our model...

Peak GFLOP/s
Algram * DRAM GB/s
Al ,* L2 GB/s

Aly (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

GFLOP/s = min

Cache Bottlenecks

= For each additional level of the memory hierarchy, we can add another
term to our model...

Peak GFLOP/s
Algram * DRAM GB/s
Al ,* L2 GB/s
Al . * L1 GB/s

Aly (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

GFLOP/s = min

Cache Bottlenecks

= Plot equation in a single figure...
o “Hierarchical Roofline” Model

Peak GFLOP/s

Attainable GFLOP/s

Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr "“l

BERKELEY LAB

Cache Bottlenecks

= Plot equation in a single figure...

o “Hierarchical Roofline” Model

o Bandwidth ceiling (diagonal line) for each
level of memory

Attainable GFLOP/s

Peak GFLOP/s

Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr "“l

BERKELEY LAB

Cache Bottlenecks

= Plot equation in a single figure...

O

O

“Hierarchical Roofline” Model

Bandwidth ceiling (diagonal line) for each
level of memory

Arithmetic Intensity (dot) for each level of
memory

Attainable GFLOP/s

Peak GFLOP/s

Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr "“l

BERKELEY LAB

Cache Bottlenecks

= Plot equation in a single figure...

O

O

O

>

“Hierarchical Roofline” Model

Bandwidth ceiling (diagonal line) for each
level of memory

Arithmetic Intensity (dot) for each level of
memory

performance is ultimately the minimum
of these bounds

Attainable GFLOP/s

Peak GFLOP/s

L2 AI*"BW

is less than
HBM AlI*BW

Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr ""|

BERKELEY LAB

Cache Bottlenecks

= Plot equation in a single figure...
o “Hierarchical Roofline” Model

o Bandwidth ceiling (diagonal line) for each
level of memory

o Arithmetic Intensity (dot) for each level of
memory

» performance is ultimately the minimum
of these bounds

= |f L2 bound, we see DRAM dot
well below DRAM ceiling

Attainable GFLOP/s

Peak GFLOP/s

\
W&
QO

o

Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr ""|

BERKELEY LAB

Cache Bottlenecks

= Widely separated Arithmetic

Intensities indicate high reuse in |
the cache Peak GFLOP/s
o
O
0
O
o)
E
I
<
>

Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr "“l

BERKELEY LAB

Cache Bottlenecks

= Widely separated Arithmetic
Intensities indicate high reuse Iin
the cache Peak GFLOP/s

= Similar Arithmetic Intensities
indicate effectively no cache
reuse (== streaming)

Attainable GFLOP/s

= Same concepts on GPUs

Arithmetic Intensity (FLOP:Byte)

. > .
JOOCCECOOONRCUUL LU AL S
[garse / 38

S, | ry

o o
A

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

<«

U.S. DEPARTMENT OF

) ENERGY

Return of CISC

= Vectors have their limits (finite DLP, reqister file energy scales with VL, etc...)
= Death of Moore's Law is reinvigorating Complex Instruction Set Computing (CISC)

= Modern CPUs and GPUs are increasingly reliant on special (fused) instructions
that perform multiple operations (fuse common instruction sequences)...

o FMA (Fused Multiply Add): Z=a"x+y ...Z,X,y are vectors or scalars
o 4FMA (Quad FMA): Z=A*x+z ...A is a FP32 matrix; x,z are vectors
o WMMA (Tensor Core): /=AB+C ...A,B are FP16 matrices; Z,C are FP32

» If instructions are a mix or scalar (predicated), vector, and matrix
operations, performance is now a weighted average of them.

-
A
rrrrrrr "“l

BERKELEY LAB

Return of CISC

= Consider NVIDIA Volta GPU...

o ~100 TFLOPs for FP16 Tensor |
o 15 TFLOPS for FP32 FMA e A
o 7.5 TFLOPs for FP32 Add o
= DL applications mix Tensor, I
FP16, and FP32 3
}%3 FP32 FMA
= DL performance may be well Z
. FP32 Add
below nominal Tensor Core peak
>

Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr "“l

BERKELEY LAB

Return of CISC

= Consider NVIDIA Volta GPU...

o ~100 TFLOPs for FP16 Tensor
o 15 TFLOPS for FP32 FMA
o .5TFLOPs for FP32 Add

= DL applications mix Tensor,
FP16, and FP32

= DL performance may be well
below nominal Tensor Core peak

= The actual mix of instructions Arithmetic Intensity (FLOP-Byte)
introduces an effective ceiling
on performance...

Effective ceiling

Attainable FLOP/s

>

-
A
rrrrrrr "“l

BERKELEY LAB

v/

ol
VEP.

Z

2

i /V RG>
1'214' ;.L"_ "__‘

| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

f“w% U.S. DEPARTMENT OF

ENERGY

FPU Starvation

= Processors have finite instruction fetch/decode/issue bandwidth

= Moreover, the number of FP units dictates the FP issue rate required to
hit peak

> Ratio of these two rates is the minimum FP instruction fraction
required to hit peak

FPU Starvation

Consider...
o 4-issue superscalar

o 2 FP data paths

» >50% of the instructions must be FP to
have any chance at peak performance

Attainable FLOP/s

Peak GFLOP/s
>50% FP

25% FP (75(yo int)
12% FP (88% int)

>
Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr ""|

BERKELEY LAB

FPU Starvation

= Conversely,
o Keeping 2 FP data paths,

o but downscaling to 2-issue superscalar

> 100% of the instructions must be FP to
get peak performance

Attainable FLOP/s

Peak GFLOP/s
100% FP

50% FP (50(yo int)

25% FP (75(yo int)

>
Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr ""|

BERKELEY LAB

FPU Starvation

= Conversely,

o Keeping 2 FP data paths,
o but downscaling to 2-issue superscalar Peak GFLOPIs)
0
» 100% of the instructions must be FP to 2 |
O 50% FP (50(yo |nt)
get peak performance -
= 25% FP (75% int)
re
©
k=
g
<
: >
Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr ""|

BERKELEY LAB

FPU Starvation

= Conversely,

o Keeping 2 FP data paths,
o but downscaling to 2-issue superscalar
o 100% of the instructions must be FP to 2
get peak performance - 2
H- © 25% FP (75% int)
» Codes that would have been memory- 2
bound are now decode/issue-bound. %
g
non-FP instructions
sap issue bandwidth
and pull performance
Arithmetic Int

below the Roofline

/

-
A
rrrrrrr ""|

BERKELEY LAB

~

‘Jo.".’(‘ =5
= BER

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

How do we go beyond the FLOP Roofline?

= Think about classifying applications by instruction mix...
o Heavy floating-point (rare in DOE)
o Mix of integer and floating-point
o Integer-only (e.g. bioinformatics, graphs, etc...)
o Mixed precision

» FLOP/s — IntOP/s — FLOP/s+IntOP/s
Adopted by Intel Advisor

O

o Useful when wanting to understand ‘performance’ rather than bottlenecks
o Instruction Fetch/Decode/lssue bottlenecks?

o Functional Unit Bottlenecks?
>

Need instruction Roofline Model

-
A
rrrrrrr ""|

BERKELEY LAB

FLOP Roofline — VUOP Roofline

= On SIMD machines, one might consider vuop/s instead of flop/s...

v" vuop/s (scalar + vector) can easily be mapped to vector unit utilization

v" 100% vector unit utilization can bottleneck performance

v Performance counters give vuop/s and not flop/s

X 100% vector unit utilization does not imply 100% of peak (FMA, scalar
VS. vector)

FLOP Roofline

With performance counters alone, its

hard to deduce why performance is

well-below the FLOP Roofline.
o VL?

o Precision?

o FMA?

o Masks?

o Non-FP vector instructions

Moreover, one might conclude a code
IS memory bound when in reality is
compute-bound

Attainable Flop/s

Peak Flop/s

/

Performance is
well-below the
nominal Roofline
bound

. Usual Al
. (Flop:DRAM bytes)

>
3.0

Arithmetic Intensity (Flop:Byte)

-
A
rrrrrrr "“l

BERKELEY LAB

VUOP Roofline

In a VUOP Roofline

o machine peak (VUOP/s) is lower
o machine balance (VUOP:Byte) is lower

FLOP/s can be low, but VUOP/s can
be high (and in the compute-bound
regime)

Could be used to understand FMA,
vectorization, and mixed precision
Requires both performance
counters (instructions, FLOPs by
precision,) as well as dynamic code
analysis (masks, VL, etc...)

Peak VUOP/s
§ ! Q Performance
O ! ' (VUOP/s) is very
:>) ! ' close to the
Q@ ! ' VUOP Roofline
[o
C
T | |
< Machine . i Now
Balance i r_VUOP Al
| |)
0.375 3.0

Arithmetic Intensity (VUOP:Byte)

-
A
rrrrrrr ""|

BERKELEY LAB

NVIDIA GPU Instruction Roofline

» |nstructions/second? Instructions per Byte?

= \What is an ‘Instruction’ on a GPU?

o Thread-level hides issue limits?

o Warp-level hides predication effects?

o Scale non-predicated threads down by the warp size (divide by 32)
o Show warp instructions per second

o Break instructions into subclasses (integer, FP32, FP64, LDST, WMMA)

= Naively, one would think instruction intensity should use ‘bytes’
o Matches well to existing Roofline; works with well-known bandwidths

= GPUs access memory using ‘transactions’
o 32B for global/local/L2/HBM
o 128B for shared memory

> “Instructions/Transaction” preserves traditional Roofline,
but enables a new way of understanding memory access

-
A
rrrrrrr "“l

BERKELEY LAB

Instruction Roofline

Peak GFLOP/s
GFLOP/s = min

Al v * DRAM GB/s

Attainable GFLOP/s

,T

Peak GFLOP/s

Arithmetic Intensity
(FLOP:Byte)

Instruction Roofline

Al v * DRAM GB/s

¥

Peak GFLOP/s
GFLOP/s = min

_ Peak GIPS
GIPS = min
llorav ¥ DRAM GB/s

Nan Ding, Samuel Williams, "An Instruction Roofline

Attainable GIPS

,T

Peak GIPS

Instruction Intensity
(Instruction:Byte)

Model for GPUs", PMBS, November, 2019.

Instruction Roofline on GPUs

_ Peak GFLOP/s i
GFLOP/s = min
AIDRAM * DRAM GBIS Peak GIPS

¥

e

_ Peak GIPS
GIPS = min
ﬁ\IIDRA,\,I * DRAM GB/s

Attainable GIPS

Instruction Intensity
(Instruction:Byte)

Nan Ding, Samuel Williams, "An Instruction Roofline

Model for GPUs", PMBS, November, 2019.

Instruction Roofline on GPUs

Peak GFLOP/s)
AIDRAM * DRAM GBIS Peak GIPS

GFLOP/s = min

Peak GIPS
IIDRA,\,I * DRAM GB/s

Attainable GIPS

GIPS = min

Instruction Intensity

Peak GIPS (Instruction:Transaction)
Il (Instruction Intensity at level “x”) =
IIDRAM % DRAM GTXNIs ns I’.UC on in enSI}./a evel X

Instructions / Transactions (to/from level “x”)

GIPS = min

Nan Ding, Samuel Williams, "An Instruction Roofline rfrhl ’.ﬁl

Model for GPUs", PMBS, November, 2019.

BERKELEY LAB

Instruction Roofline on NVIDIA GPUs

= |nstruction Intensity (1)

o (Warp or equivalent) Instructions / Transaction
o Refine into L1 (global+local+shared), L2, HBM Instruction Intensities
o Further refine based on instruction type (LDST instructions / global transaction)

OS]

10 RS NTIAN T SR ATy B A Rt TP
. N Thoeretical Peak: 489.6 warp GIPS
" Peak Performance and Peak Bandwidths & :
o Instruction: o
o 80 SMs * 4 warps * 1.53GHz ~ 490 GIPS (warp-level) g
o Use ERT for memory (convert from GB/s) e
o L1: 80 SMs * 4 transactions/cycle * 1.53 GHz ~ 490 GTXN/s &
o L2:94 GTXN/s (empirical) S 100
o HBM: 26 GTXN/s (empirical) = :
T
A0

[E—
)

107 107! 10° 10 10
Instruction Intensity (Warp Instructions per Transaction)

Nan Ding, Samuel Williams, "An Instruction Roofline rfr}| ’.ﬁl

Model for GPUs", PMBS, November, 2019.
BERKELEY LAB

Efficiency of Global Memory Access

= (Global)LDST Instruction Intensity has a special meaning / use...

o Global LDST instructions / Global transactions

o Numerator lower than nominal |l

o Denominator can be lower than nominal L1 Il (no local or shared transactions)

= Denotes efficiency of memory access

= 3 "Walls” of interest:
o 21 transaction per LDST instruction

(all threads access same location)
o <32 transactions per LDST instruction

(gather/scatter or stride>=128B)
o Unit Stride: 1 LDST per 8 transactions

(double precision)

Nan Ding, Samuel Williams, "An Instruction Roofline

I'll“ﬁolelzrletical IPeaIk: 4896 I\);flclrp GIIPS_%

NS /
G5
w12 S :
S e Highlintensity,
I =
A % 2
= = .=
1 = (o) e
107! 10° 10!

Instuction Intensity (Warp Instructions per Transaction)

-
A
rrrrrrr "“l

Model for GPUs", PMBS, November, 2019.

BERKELEY LAB

Efficiency of Shared Memory Access

= (Shared)LDST Instruction Intensity also has a special meaning / use

o Shared LDST instructions / Shared transactions
o Il is similarly loosely related to nominal Il

= Can be used to infer the number of bank conflicts

= 2 “Walls” of interest:

o Minimum of 1 transaction per shared & 3¢ SIS S AL N R R RS
: : . a¥ : Thoeretical Peak: 489.6 warp GIPS :
LDST instruction (no bank conflicts) 5 | :
o Maximum of 32 transactions per gloz'_ 2 o8 /
" . o < -
shared LDST instruction ETL S S\ i
- . i 4
(all threads access different lines 2 | % el Canlneveghavelless
in the same bank) glO : % than]Olbank{conflicts
S
£ o Az
10 10”! 10" 10 10
Instuction Intensity (Warp Instructions per Transaction)

Nan Ding, Samuel Williams, "An Instruction Roofline rfr}| m

Model for GPUs", PMBS, November, 2019.
BERKELEY LAB

Instruction Roofline for Smith-Waterman

» [nteger-only Alignment code on NVIDIA GPU
= No predication effects, but inefficient global memory access
Instructlon Hlerarchy & Thread Predication Global Memory Efficiency Shared Memory Efficiency

107 ¢ Thoeretlcal Peak: 489.6 warp GIPS _10°F ‘Thoeretical Peak: 489.6 warp GIPS - 10°F ~ Thoeretical Peak: 489.6 warp (GIPS 3
%) F [i o~ i
CI Ul st nn iRt duil, ol gfinit, aEun iR O 10° ¢ 3 3 10°¢
o & [& 1|
]
< < \° .
g’ 2 3 3 10" @@ 5 3 E X
"= i8 E8 [,\56 éh 9 & 13}
®C = i & 0L) £] 2 S = 1
< : 210 & al o f g > £ :
5 ® LI (tot_inst) 5 ,1© N S 5 = <
< L2 (tot_inst) Al b @ 2 E 5 3 §
= B HBM (ioL_inst)| athe atte | | & O Global(dstinsy) = E 0 Shared (dst_inst)
Ll Lo Lo . o ® " - » L L L L vl S adan Lo TN P Lol Lo Lo
102 104 10 10" 10* 10* 10° 10% 10*
3 AL A T Thoetetical Peak: 489.6 warp GIPS 2 _10°F ‘ "Thoeretical Peak: 489.6 warp GIPS
gy | ~ [W [1
N] % i =
E =10 ¢ 5 10%F ;
b ©)] @) ; o, ;
il e 1L] g r s
8 3 510 ¢ S 10 2 :
o z E PO SE 3
O o g 107 > % oL & g = __
— bt = f E10 N = S
m < < - 00) b= \\ 5
E 3 E 10 ¢ & 2 3 3 -1 .\ﬁ\‘} S =
o =5 LI (tot_inst) | é i i g s : €10k o : : _;
O 5 L2 (totinst) |- 5102t gl al] & i E O Shared (idst_insD)
B HBM (tot_inst) ' = z 5 O Global (Idst_inst)| 102 e e 2 e
L I P R R el B =1, 12 o o i 10—4 10—2 l00 102 104
4 2 0 2 4 4 2 0 2 4
10 10 10 10 10 10 10 10 10 10 Instuction Intensity (Warp Instructions per Transaction)

~

Nan Ding, Samuel Williams, "An Instruction Roofline rfr}| .ﬁl

Model for GPUs", PMBS, November, 2019.

BERKELEY LAB

Instruction Roofline for Matrix Transpose

Instruction Hierarchy & Thread Predication Global Memory Efficiency

3L T 30 T T

2 10 " Thoeretical Peak: 4896 warp GIPS__1 £ 10 Thoeretical Peak: 489.6 warp GIPS
e 1 P
O] O
20 s =< 4
12 B A o
.y P ~ 1L G\O‘OA M 0 .b 4
© 3 8 10 %
= Lo : S
é L1 (tot_rnst)] g ol I o C C‘,]
RS B L2 (tot_inst) gm T % o <
E | o L MG LRI 515 (8 Global i in)
)] DeCO s
107 10" 10" 10’ 1 10 10’ 102
Instuction Intensrty (Warp Instructions per Transaction) m o [<Instfction Intensny (Warp Instructions per Transaction)
~ 3[T oo T T] —_~ T
: g 10 Thoeretlcal Peak 489 6 Warp GIPS gz 1()3 3 Thoeretlcal Peak 489 6 warp GIPS 3
n — — L
—~ O] O 7§$\$
g : 3 §102 3 % J
2 f z Uk L) g ‘
8_ g LA 3 N~ B
= = o
(7)) B LI (tot_inst) | 7 = 10’ T E = 3
% S B L2 (tot_inst)] é i k> m2 .g]
|: (‘ O B HBM (tot_inst)| | B ol E E 2 O Global (ldst_irlsr)"
107 10" 10" 10’ 10% 10 10” 10 10! 107
Instuction Intensity (Warp Instructions per Transaction) Instuction Intensrty (Warp Instructions per Transactron)
;V-’_: Thoeretical Peak: 489.6 warp GIPS Thoeretlcal Peak 489 6 warp GIPS
< A
> : =]]
S]
= - S i
i~ I
S 5
< ®° Z |
5 2T N=]
Q 5 |2 [9 Global (dstinsy |
10! 10° 10’ 107

Instuction Intensity (Warp Instructions per Transaction)

Nan Ding, Samuel Williams, "An Instruction Roofline

Model for GPUs", PMBS, November, 2019.

Shared Memory Efficiency

not used

Performance (warp GIPS)

 Thoeretical Peak: 489.6 warp GIPS

nflict

O Shared (Idst_inst)

10! 10

7R 103k

% T: are ellmlnate 4 Peak: 4896warpGIPS

e [3

< = &= 3

ERR 3

3 < =

g g S

gl o 2 3

s £ S]

5 [A ° O Shared (Idst_inst) |

Q—4100 .M’ Ll ..4 Lol R .
10 107! 10° 10! 10

Instuction Intensity (Warp Instructions per Transaction)

~

A
frreeeee l"|

BERKELEY LAB

Other Uses of Instruction Roofline

= Predication
o Individual threads can mask out execution when in branch-not-taken
o 16 FLOPs/SM/cycle... 1 FP warp every 2 cycles
1 FP warp every cycle with half threads predicated
o Use performance metrics to plot both warp GIPS and non-predicated threads (scaled by 32)

= FMA, Tensor Cores, Mixed Precision, ...
o Rather than counting FLOPs, count instructions
o Can differentiate total instruction issue bandwidth from functional unit utilization (FP32, FP64)
o n.b., some GIPS should be summed (FP16+FP32) while others are have dedicated pipelines
(FP64, TC)

Nan Ding, Samuel Williams, "An Instruction Roofline rfr}| ’.ﬁl

Model for GPUs", PMBS, November, 2019.
BERKELEY LAB

Instruction Roofline Takeaway

Traditional Roofline

= Tells us about performance
(floating-point)

= Use of FMA, SIMD, vectors,
tensors has no affect on intensity,
but may increase performance...

= Presence of integer instructions
has no affect on intensity, but may
decrease performance

= Reducing precision (64b, 32b,
16b) increases arithmetic intensity

Nan Ding, Samuel Williams, "An Instruction Roofline

Model for GPUs", PMBS, November, 2019.

Instruction Roofline

Tells us about bottlenecks
(issue and memory)

Use of FMA, SIMD, vectors,
tensors decreases intensity and
may decrease “performance”

Presence of integer instructions
increases intensity and might
increase performance.

Reducing precision has no affect
on intensity

Memory Walls

Tells us about efficiency
(memory access)

Intensity based on LDST
instructions and transactions

Predication could affect intensity
(could have zero transactions for
a LDST instruction, but not all
LDST instructions)

Reducing precision shifts
intensity, and the unit-stride wall

~

A
reeeeee| M

BERKELEY LAB

= A
-« BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

U.S. DEPARTMENT OF

) ENERGY

Roofline Scaling Trajectories

roofline_summary_sp_Ibl

= \We often plot performance as a

function of thread concurrency 2
o Carries no insight or analysis =
o Provides no actionable information. =
S |
g ——
S |
g |

1 2 4 8 16 32 64
#Threads

-
A
rrrrrrr "“l

BERKELEY LAB

Roofline Scaling Trajectories

roofline_summary_sp_Ibl

= \We often plot performance as a

function of thread concurrency S | |~ ClassA VFMA (1229)
S | |4 ClassB
o Carries no insight or analysis = = cézzc
o Provides no actionable information. o
8 (c32) (77)
. — .\cb4:3 {16
= Use Roofline to analyze thread 8 A
(or process) scalability S ‘/\’iDD 2.0
o 2D scatter plot of performance as a ’
function of intensity and concurrency Q
o ldentify loss in performance due to
increased cache pressure (data _
movement) c- [I I I I I I I
0.01 0.05 0.50 5.00 50.00

Arithmetic Intensity (Flops/Byte)

Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A > A
Method for Parallel Application and Architectural Performance Analysis", r:}| "“l

HPBench, July 2018. BERKELEY LAB

Roofline Scaling Trajectories

roofline_summary_sp_Ibl

= |nsights from NPB

o Intensity (data movement) varies with S | |~ Class A VFMA (1229)
concurrency and problem size 8 | |4 ClassB
- m Class C

o Large problems (green and red) move
more data per thread, and exhaust cache
capacity

100.0

o Falling Intensity — hit the bandwidth
ceiling quickly and degrade.

» Useful for understanding locality/BW
contention induced scaling
bottlenecks

GFlop/s
10.0

1.0

0.1

I I I I
0.01 0.05 0.50 5.00 50.00

Arithmetic Intensity (Flops/Byte)

Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A /—‘\| A

Method for Parallel Application and Architectural Performance Analysis",
HPBench, July 2018. BERKELEY LAB

Roofline Scaling Trajectories on GPUs

—=— Class A
—e— Class B
—4— ClassC

—=— Class A
—e— Class B
—4— ClassC

—=— Class A
—e— Class B
—4— ClassC

= More Recently applied

to GPUs (SM scaling) i

OpenACC
GFlop/s
50
GFlop/s

= Allows comparisons of
programming models

S [Classa 829) S [Ca Classa S [a Classa 829)
(O p e nA VS DA) Q © 1 |+ classB «BN\QSMS%O“ ® | |- classB B Classn =
(:(: . (: l J | |
2 - :
o b | vonenedS
[] u _
= Strong differences in g - -
o,
S
n n O A T T T T A T T T T T T T T T T T T T T
S C a | a bl I Ity a n d 0.1 0.2 0.5 1.0 001 002 005 010 020 050 1.00 2.00 0.1 0.2 0.5 1.0 2.0
8| |= ClassA 8| |-= ClassA 8. | = ClassA
0 —e— ClassB ©29) ® | |—e— ClassB ® | |—e— ClassB \\gzg\
performance per Tt =t =t

< [
a8 |/ 281 2
th d(block =L x &’ E
0} _ (35 G} 0]
re a O C n D \f\BN\\SN\S’%
O - ?
- - - o -
0.1 0.2 0.5 1.0 0.01 002 005 010 020 050 1.00 2.00 0.1 0.2 0.5 1.0 2.0
Arithmetic Intensity (Flops/Byte) Arithmetic Intensity (Flops/Byte) Arithmetic Intensity (Flops/Byte)

Programming Models Using the Roofline Scaling Trajectories”, (BEST PAPER)
Bench, 2019. BERKELEY LAB

Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Performance Analysis of GPU /—‘\| A

& S
‘M.v‘

o0

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

U.S. DEPARTMENT OF

.0/ENERGY

Roofline Recap

Roofline bounds Arithmetic Intensity Plotting loops on the
performance as a o Unique for eachloop nest Roofline
function of Arithmetic °© " 'oreachievelol o Eachloop has one dot per
Intensit y level of memory

sity o Total FLOPs/Total Bytes | oordinate = arithmetic
o Horizontal Lines = o Includes all cache effects intensity at that level

| Compu’fe Ceilings e lefe.rent on every o y-coordinate = performance

o Diagonal Lines = architecture (e.g. GFLOP/

Bandwidth Ceilings » Measure of a loop’s - iated
o Bandwidth ceilings are temporal locality i Sative of a

parallel on log-log scale
» Collectively, ceilings

define an upper limit on

performance

ormance bound
> Pasition of dots relative to

‘5 ther is indicative of

~

A
rrrrrrr ’"'|

BERKELEY LAB

What is Roofline used for?

» Understand performance differences between Architectures,

Programming Models, implementations, etc...
o Why do some Architectures/Implementations move more data than others?
o Why do some compilers outperform others?

» Predict performance on future machines / architectures

o Set realistic performance expectations
o Drive for HW/SW Co-Design

= |dentify performance bottlenecks & motivate software optimizations

= Determine when we’re done optimizing code

o Assess performance relative to machine capabilities

o Track progress towards optimality
o Motivate need for algorithmic changes

-
A
rrrrrrr "“l

BERKELEY LAB

Model is just one piece of the puzzle...

= Roofline Model defines the basic

concepts and equations. Roofline

Model
(Theory)

Model is just one piece of the puzzle...

= System Characterization defines
the shape of the Roofline (peak

_ Roofline
bandwidths and FLOP/s) Model
(Theory)
,T
§ Peak GFLOP/s
S
L
e @Céb//\lo SIMD System
§ Characterization
g (Benchmarking)
Arithmetic Intensity (FLOP:Byte)

Model is just one piece of the puzzle...

= Application Characterization
determines... :
. Roofline Application
o Intensity and Performance of each loop Model aracterization
o Position of any implicit ceilings (Theory) nstrumentation)
,T
X
9 Instruction mix U
&
9 System
= Characterization
= (Benchmarking)

-
A
rrrrrrr ""|

BERKELEY LAB

Model is just one piece of the puzzle...

= Visualization tools combine all
data together and provide
analytical capabillity

Roofline pplication
Model Characterization
(Theory) (Instrumentation)

Instruction mix

System Visualization
Characterization and

(Benchmarking) Analysis

-
A
rrrrrrr ""|

BERKELEY LAB

Rest of Tutorial...

= Charlene will demonstrate how to
construct and use Roofline model

g Application
on an NVIDIA GPU BN icrization
o GPU benchmarking sWrstrumentation)

o application characterization

-

System
Characterization
(Benchmarking)

-
A
rrrrrrr "“l

BERKELEY LAB

Rest of Tutorial...

= Charlene will demonstrate how to
construct and use Roofline model

gipApplication
on an NVIDIA GPU I e
o GPU benchmarking sifStrumentation)

o application characterization

= Max will demonstrate how Nsight
Compute now automates Roofline

o GPU benchmarking System Visualization

o application characterization Characterization and
(Benchmarking) Analysis

o Visualization

* You will use Roofline in Nsight
Compute to analyze your apps.

-
A
rrrrrrr ""|

BERKELEY LAB

g - .. 5 . N
2,

f*“'”% U.S. DEPARTMENT OF

{v) ENERGY

|\

| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

A
frecoee

" BERKELEY LAB

-~

frreeeer

U.S. DEPARTMENT OF

ENERGY

LAWRENCE BERKELEY NATIONAL LABORATORY

BERKELEY LAB

— o

o ¥
A
rreeerer

f*‘”% U.S. DEPARTMENT OF

{v) ENERGY

|\

| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Setting Realistic Expectations...

= Consider 3 kernels (A,B,C)

» kernels A and B are bound by |
memory bandwidth ok GELOP/
» kernel C is bound by peak FLOP/s 2
O
o
O
o
s
IS
<
Arithmetic Intensity (FLdP:Byte) g

-
A
rrrrrrr "“l

BERKELEY LAB

Setting Realistic Expectations...

= |magine you want to run on a

machine with twice the peak I GFLOP/s
FLOPs...
> kernel C’s performance could double é
X kernels A and B will be no faster (LT'B

o

s

S

<

Arithmetic Intensity (FLdP:Byte) g

-
A
rrrrrrr "“l

BERKELEY LAB

Setting Realistic Expectations...

= \What if that machine also

doubled memory bandwidth... | C oy GFLOP/s
> kernel A and B’s performance could .
also double 3 :
O . .
o : :
O : :
Q@ - !
E i i
IS : :
< :

Arithmetic Intensity (FLOP:Byte)

-
A
rrrrrrr "“l

BERKELEY LAB

