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Abstract—Newly developed machine learning technology is
promising to profoundly impact high-performance computing,
with the potential to significantly accelerate scientific discoveries.
However, scientific machine learning performance is often con-
strained by data movement overheads, particularly on existing
and emerging hardware-accelerated systems. In this work, we fo-
cus on optimizing the data movement across storage and memory
systems, by developing domain-specific data encoder/decoders.
These plugins have the dual benefit of significantly reducing
communication while enabling efficient decoding on the acceler-
ated hardware. We explore detailed performance analysis for two
important scientific learning workloads from cosmology and cli-
mate analytics, CosmoFlow and DeepCAM, on the GPU-enabled
Summit and Cori supercomputers. Results demonstrate that our
optimizations can significantly improve overall performance by
up to 10x compared with the default baseline, while preserving
convergence behavior. Overall, this methodology can be applied to
various machine learning domains and emerging Al technologies.

Index Terms—Deep Neural Network, Pytorch, TensorFlow,
Preprocessing, Compression, CosmoFlow, DeepCAM

I. INTRODUCTION

Scientific machine learning (SciML) is promising to radi-
cally transform the frontiers of scientific discovery. The combi-
nation of high-performance computing systems, unprecedented
data sets from scientific facilities, and new generation of
predictive algorithms have the potential for significant break-
throughs that will impact almost every scientific domain. Addi-
tionally, the commercial success of machine learning methods
is driving hardware vendors to incorporate special architectural
designs to accelerate key learning computations. Examples
include NVIDIA GPUs [1], Google TPUs [2], GraphCore [3],
Cerebras [4] and Sambanova [5].

However, despite the tremendous computational potential of
these hardware technologies, the cost of data movement often
remains a significant bottleneck. This has become increasingly
exacerbated in recent years, where computational nodes can
deliver multi-peta flop half-precision arithmetic, which dwarfs
the data transfer bandwidths at various levels of the deep
memory hierarchy. For instance, to amortize the overhead of
moving the data from a node-local NVMe disk to the GPU-
accelerator, the workloads need three orders of magnitude of
computational flops for each moved byte, which is unattainable
for even high arithmetic intensity workloads such as deep
neural networks (DNN).

To mitigate the cost of this disparity, applications should
carefully minimize data movement and orchestrate data mi-

gration in a way that reduces or hides their cost. This study
addresses this challenge by exploring techniques to reduce the
data movement from the storage system to the deep learning
compute engine. This is accomplished via the development
of domain-specific encoding and decoding plugins, which
have the advantages of reducing the required data movement,
thus allowing a larger set to fit in the memory system,
and accelerating data prepossessing execution on the learning
engine. Our encoders also apply fusion and reordering of the
decompression steps with application-specific preprocessing
computations to reduce computation and data movement.
Additionally, our approach enables a data decoding scheme
implemented on the hardware accelerators, further reducing
the overall runtime.

We demonstrate the impact of our optimization scheme
on two important scientific deep learning workloads from
the HPC MLPerf benchmark [6], CosmoFlow [7] and Deep-
CAM [8], in the domains of cosmology and climate analyt-
ics. Results show that our methodology for optimized pre-
processing significantly reduces communication requirements
and improves performance by up to 10x, while preserving
convergence behavior. Overall our contributions include:

o Analyzing the contents of samples data for two scientific
deep learning workloads, CosmoFlow and DeepCAM, to
devise a compressed format suitable for execution on
GPU-accelerated architectures.

o Implementing specialized preprocessing plugin to im-
prove the speed of feeding data to the deep learning
pipeline for the two applications.

« Demonstrating the preservation (or improvement) of con-
vergence properties.

o Evaluating our implemented schemes on three HPC plat-
forms, using a variety of configurations, and demonstrat-
ing speedups of up to 3x and 10x for DeepCAM and
CosmoFlow, respectively, compared with the baseline.

II. DATA MOVEMENT AND PREPROCESSING CHALLENGE
FOR DEEP LEARNING WORKLOADS

Although deep learning workloads are known to have a
high computational intensity, significant time can be spent in
migrating the data into the accelerator’s memory system. In
an HPC environment shown in Figure 1.a, a training sample
could originate from a shared file system traversing multiple
hops until reaching the accelerator optimized for conducting a



training or inference task. For training, a sample is repeatedly
accessed, proportional to the number of training epochs. The
ability to cache the training set depends on the number of
samples assigned to a node and the capacity of the storage or
memory hierarchy. For instance, if the samples assigned to a
node fit in the host CPU memory, a sample traverses step )
& 9 once, while step 9 & 0 are repeated throughout
the training session. If the dataset per node fits in the node
NVMe, but not in memory, the step @ « € « @ are
repeated.

A challenge associated with this migration path is the
potentially large arithmetic intensity required to hide the
memory latency. For example, the NERSC Cori GPU, the
NVMe node bandwidth is 3.2GB/s shared across 8 GPU,
thus the cost of moving a single byte is 2250x the cost of
moving a byte from the GPU’s local HBM memory. If the
dataset fits in memory, the cost moving data is reduced to
approximately 56x. Feeding four GPUs concurrently makes
the cost for moving a byte across the PCle bus 224X that
of the accelerator memory. The potential of caching data in
the memory systems depends on the sample size and the
number of samples assigned to a node. In general, reducing the
input sample size, for instance through compression, enables
caching more samples in the host CPU memory.

The preprocessing logic, step e may involve decom-
pression of a sample or applying some augmentation opera-
tors. For instance, in CosmoFlow, the preprocessing involves
applying a log operator to all points within a sample. In
image classification applications, preprocessing of an image
may involve rotating, resizing, flipping, etc. Some of these
preprocessing steps carry serialization logic and as such can
be executed more efficiently on the CPU. However, when pos-
sible, efficiency can be increased by offloading preprocessing
computations to the accelerators.

Figure 1.b shows the optimized migration path developed
in this work. The samples are initially encoded in step
b.@ to enable efficient migration and processing on the
target accelerator architecture. This enables reducing the data
movement, allowing the dataset caching on the nearest level
of the memory system, and enabling efficient decoding (or
decompressing samples) on the accelerator. Additionally, we
perform complex preprocessing operators on the GPU, moving
step a.e to step b.e for accelerated preprocessing.
Comparing Figure 1.a&b, a reduced sample size potentially
lower the impact of the bottleneck transfer at step a.@ and
increase the frequency of performing step b. o, leveraging
bandwidth that is one to two orders of magnitude larger.
Moreover, offloading the sample decoding and preprocessing
to GPUs adds the additional benefit of fewer data moved across
the bandwidth-constrained system resources (PCle, NVLink,
etc.). It also leverages the accelerator computational power in
preprocessing samples.

III. RELATED WORK

Machine learning (ML) algorithms are data-intensive appli-
cations targeting various domains in our daily life, including

b) optimized migration path of a sample before processing

Fig. 1. In deep learning workload, a sample migrates from the storage system
to the highest level of the memory hierarchy, where the capacity allows
holding all the samples accessed by the compute node. In the optimized
workflow, the samples are encoded to reduce their size and to improve the
chance of having them reside in a memory level closer to the accelerator.
Encoded samples are then decoded by the accelerator.

image classification, natural language processing, and health
care. The use of ML in high-performance scientific computing
has a long history [9] and has recently been targeting new
areas in scientific computing, including predictive, design,
modeling, and analytic. Example applications include the use
of ML techniques [9] in the design for new material, cancer
research, and protein folding. In particular, the benchmarks we
are considering in this study results from community efforts
to implement a full scientific machine learning benchmark,
MLPerf HPC [6]. Similar to the standard ML, the scientific
ML (SciML) landscape is rapidly evolving, and the suite of
benchmarks is expected to grow in future releases.

The use of high-level productivity frameworks [10] (e.g.,
PyTorch, TensorFlow, MXNet, LBANN), mixed precision,
vendor libraries (NVIDIA CUDNN, Intel OneDNN), com-
plicates the performance analysis for application developers,
who write their model using a relatively high-level declarative
language, which improves productivity.

With the evolution of computational architecture, re-
searchers continually revisit the performance benchmark-
ing [11]-[16], modeling [17], [18], and optimizations [19],
[20]. Modeling IO [21], in particular, has special importance
for these workloads due to the volume of data they typically
process. Ultimately, the performance of these applications is
defined by the time to a desired accuracy, which intertwines
multiple performance contributing factors, including statistical
efficiency, hardware efficiency, and runtime efficiency. The
significant impact of data movement on the performance of



deep-learning workload both within accelerator and at the
system level has recently been characterized [22]. Moreover,
recent studies [23] shows the importance of optimizing data
movement within the accelerator to improve performance.
Compression of data can reduce the volume of data transfer
across the memory hierarchy. In particular, compression of
scientific data based on floating-point arithmetic has also
been studied intensively [24]-[27], using both lossy and
lossless compression targeting a range of applications, such
as visualization and scientific computation. Unfortunately, they
do not provide mixed-precision solutions, specifically targeting
16-bit floating-point representation, and the support on ac-
celerator architecture is limited. Moreover, most compression
frameworks do not provide the flexibility to fuse or reorder
user-level compute operations with the decompression process.
In this work, we aim to accelerate the data loading pipeline
for scientific applications by leveraging custom encoding that
enables efficient decoding on accelerator architectures. Our
encoders leverage compression techniques interleaved with
preprocessing functionalities and exploit domain-specific op-
timization to improve the efficiency of processing. Moreover,
we designed our decoder to provide the deep learning training
cycle half-precision input samples, a floating-point format not
supported by the decompression frameworks we are aware of.

IV. SCIENTIFIC MACHINE LEARNING WORKLOADS

In this study we consider two scientific machine learning ap-
plications from the MLPerf HPC benchmark suite: DeepCAM,
which analyzes 2D weather images to find extreme weather
phenomena, and CosmoFlow, which predicts cosmological
parameters that describe the evolution of the universe by
observing 3D images associated with four redshifts.

The DeepCAM climate benchmark [8] leverages deep learn-
ing to predict extreme weather phenomena, such as cyclones,
from weather images such as those shown in Figure 2.
This code is based on the Exascale Deep Learning for
Climate Analytics paper, which won the 2018 SC Gordon
Bell prize [28]. The model uses PyTorch framework and
Google’s Deeplabv3+ [29] to perform semantic segmentation.
DeepCAM analyzes images of the size 1152x768 from the
Community Atmosphere Model (CAMS) [30] climate data.
A climate sample is composed of 16 images (or channels)—
describing temperature, wind speeds, pressure values, humid-
ity, etc.—stored in HDF5 files using 32-bit floating-point
format (FP32). The PyTorch framework [31] leverages system-
specific libraries for optimized performance. For instance,
it uses NVIDIA’s NCCL for distributed implementation and
NVIDIA’s CUDNN for efficient execution of the neural net-
work computation.

The CosmoFlow benchmark aims at predicting four cos-
mological parameters that describe the evolution of the uni-
verse. CosmoFlow neural network uses the TensorFlow [32]
framework to implement five layers of 3D convolutional layers
and three fully connected layers. For distributed implemen-
tation, TensorFlow leverages the NCCL library to provide
efficient inter-GPU and inter-node performance through the

Horovod [33] library. In addition, TensorFlow installation
leverages system optimized CUDNN for efficient execution
on NVIDIA GPUs.

The CosmoFlow dataset uses the 128% decomposition of the
5123 [34] samples. Figure 3 shows the dark matter evolution
(at four redshifts) within a sample. The original data files
are stored as HDFS5 files, while the decomposed data uses
TFRecord format [35] for efficient processing by TensorFlow.
The latest release of the dataset [7] provides a compressed
variant of the dataset using gzip, which reduces the required
storage space by 5x.

V. COMPRESSABILITY OF SCIENTIFIC DATA

The process of data compression/encoding could be either
domain-specific or general-purpose. In the domain-specific
case, such as audio or image format, spatial or temporal
properties could be leveraged to achieve fast compression and
decoding. The use of general-purpose compression such as
gzip in compressing TFRecord [36], on the other hand, focuses
on balancing the compression ratio and the compression
overhead without a particular target application. For example,
the imagenet dataset [37] uses the industry-standard image
JPEG [38] format for encoding and decoding images. Vendors
provide specialized decoders to allow efficient processing of
sample data. For instance, on NVIDIA GPU architectures,
nvjpeg library [39] provides an accelerated functionality to
decode and apply various operators on images written with
this format.

However, Scientific Machine Learning (SciML) workloads
lack similar standards for efficient encoding of scientific im-
ages. Unfortunately, it is often not possible to leverage industry
encoding tools because scientific images can have different
requirements. For example, DeepCAM is based on 32-bit
floating-point data with 16 channels per image (compared with
the standard 8-bit 4 channels representation).

Thus our work explores the potential of developing
custom encoding/decoding strategies encompassing com-
pression/decompression fused with computational operators
specifically for preprocessing scientific images — enabling
efficient decoding on GPUs, supporting FP16 precision to
feed data to mixed-precision pipeline, and allowing accelerated
operator preprocessing.

A. DeepCAM Sample Compressibility

The DeepCAM datset is composed of samples containing 16
channel images. Each image is 1152 x 768 32-bit floating-point
values. As shown in Figure 2, the DeepCAM images within
a sample typically have large areas with smooth changes.
The target of the machine learning process is to find extreme
weather phenomenona, which are typically associated with
abrupt changes. Our analysis of these samples recognized
that the z-direction contains the smoothest changes in values.
We leveraged this smooth change to construct differential
encoded segments within a line using a lossy compression
technique, which effectively removes noises resulting from
sensor measurement of smooth areas without significantly
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Fig. 2. Three of the sixteen channels (describing temperature, wind speeds, pressure values, and humidity at different altitudes) within a sample for the
DeepCAM ML application, which analyzes 2D weather images for extreme weather phenomena. We observe spacial locality in most of these images, especially

along the latitude, except at extreme weather phenomenona.
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Fig. 3. A sample of CosmoFlow with universe at four
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redshifts, size of the dot is proportional to the

log(count of dark matter particles + 1). CosmoFlow analyzes dark matter images to predict cosmological parameters that describe the evolution of the
universe. We notice progressive clustering with localized evolution as we approach the redshift of 0.0 (today).

affecting the quality. Areas with abrupt changes are kept
uncompressed in our scheme because they potentially carry
interesting climate phenomena.

Figure 4 illustrates the differential encoding scheme that
we developed for DeepCAM. A sequence of values with
smooth transitions has pivot value, relative to which encoding
is done. We record the sequence of differences each value
from its neighboring value. The exponent of these differences
is clustered into groups of close values. The group of values
is defined by an arbitrary number of bits, 3 in our case. The
minimum is of these exponents is stored for each segment.
We use 4 bits for the mantissa and reserve a bit for sign,
with such a A of an 8-bit per difference. Our scheme allows
better handling of floating-point denormalization because the
exponent is interpreted depending on the meta-data associated
with each segment. However, for lines with abrupt transitions
or where the number of segments is large, we do not compress
these lines. We also have a special encoding for the case where
all neighboring values are similar. Depending on the content
of the line, we use the encoding that enables the best space-
saving. Additionally, we use metadata that enables indepen-
dent decoding of lines, thus enabling efficient execution on
accelerator architectures.

The decode process involves software emulated addition for
floating-point numbers. While we emit half-precision (FP16)
values, the computation is conducted in single-precision
(FP32) precision resulting in a slightly lossy encoding. Overall
we notice roughly 3% of the values with larger than 10% error,
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Fig. 4. The floating-point encoding/decoding mechanism that we used in
DeepCAM. A line of values is split into segments. A sequence of values
close in the range is encoded using differential encoding. We store the head
value of a segment and encode the difference using special encoding.

primarily for small values close to zero due to floating-point
denormalization.

B. CosmoFlow Sample Compressibility

The CosmoFlow dataset [34] results from from the sim-
ulation [40] of the evolution of cosmological N-body dark
matter using pyCOLA-based implementation [41] under initial
conditions generated from the MUSIC [42] framework. The



simulation output is particle counts in a 3D 5123-voxel his-
togram for 4 different redshifts. The governing cosmological
parameters of interest are used as the labels associated with
these samples. The full dataset represents the simulation of
10017 universes for different values of four cosmological
parameters varied uniformly over a 30% spread of the mean
values for four redshift snapshots per universe. Samples are
decomposed into 1283 voxel sub-volume to fit into GPU
memories.

To develop a domain-specific encoding/decoding scheme,
we first analyzed the contents of the CosmoFlow samples,
an example of which is shown in Figure 3. We observed
that the number of unique values per sample is relatively
small, in the range of few hundreds, as shown in Figure 5.
The frequency associated with these unique values follows a
power-law distribution, Figure 5.a. Our analysis of the full
dataset shows that the particles count associated with the
four redshifts, under the same cosmological parameters, are
highly coupled, making the number of unique groups of values
significantly less than the permutation of all unique values.
For instance, in the samples shown in Figure 5.b&c, with
558 unique values, only 36944 unique groups of four values
exist out of a potential 1.2 x 10! possibilities. These data
attributes result from spatial and temporal evolution of the
dark-matter particle distribution. Having few groups of these
values simplifies the development of an encoding scheme
using localized lookup tables. The use of these tables resulted
in a compression factor of roughly 4, compared with a 5x
compression using the general-purpose gzip. However, the
advantage of our scheme is that, unlike gzip, our decoder can
be efficiently implemented on accelerators, such as NVIDIA
GPUs.

Another important optimization enabled by our analysis is
that complex preprocessing operations, such as computing
a log operator to the particle count within a point, are
applied to the unique set of values within the sample. Cos-
moFlow samples have 8M values, but the number of unique
values within that data is three orders of magnitude smaller. As
such in the decoding phase, applying the log operator before
decompression is advantageous. Analyzing the full dataset,
roughly 0.5M samples, we found the unique set of values and
permutations vary from one sample to the other, and therefore
implement a lookup table for each sample. For larger than
1283 decompositions, multiple lookup tables are required.

VI. INTEGRATION OF DECODER/ENCODER INTO THE DEEP
LEARNING PIPELINE

To offload the decoder to the accelerator, we leveraged
the NVIDIA data loading library DALI [43]. DALI provides
a mechanism for loading and preprocessing data and sup-
ports multiple frameworks including PyTorch, TensorFlow,
and MXNet. The preprocessing is either simple operators
provided by the framework, or a complex function provided by
a third-party library, such as JPEG decoding via nvjpeg [39].
Images, audio, and video codecs typically leverage domain-
specific knowledge of the spatial and temporal locality for

data to provide multiple levels of compression ratio, retrieval
quality, and playback performance.

For our study we implemented two variants for decoding
(decompression overlapped with preprocessing computation
logic) the DeepCAM and CosmoFlow samples, one for the
CPU and another for the GPU. Our decoders support multiple
compression formats, ranging from simple lookup tables to
differential encoding. We use keys of width 1 or 2 bytes for
lookup tables, with lookup values of 8 bytes. These operations
are highly parallelizable since there are no dependencies
between threads due to the use of single key width per table.
Similarly, for repeated values, we efficiently parallelize the
broadcasting of constants. Thus the only difference between
the CPU and GPU implementations is that the work to con-
struct a sample on GPUs is split between threads preserving
coalesced access to the memory. In contrast, on the CPU we
assign different samples to different threads.

For differential encoding, the loop carried dependencies
complicate the GPU implementation. Our GPU version uses
hierarchical parallelism, where we assign a warp' of threads a
copy or broadcast tasks and assign tasks that create control
divergence to different warps. This hierarchical assignment
allows keeping as many warps active as possible, while threads
within a warp cooperatively execute inner loop tasks.

Our DALI plugins feed the sample data into the Pytorch
and Tensorflow frameworks with no model changes. Thus
only the data feeding module in both applications needs to
be modified, while the model and its interface to the data
feeder is maintained. Our data-feeder plugins provide FP16
samples, which are compatible with the automatic mixed-
precision engine for PyTorch and TensorFlow. We rely on
auto-casting to support mixed precision, and performed our
experiments using PyTorch v.1.8.0+ and Tensorflow 2.5+2.

VII. EXPERIMENTAL SETUP

We use Summit [44], a GPU supercomputer at Oak Ridge
National Laboratory composed of 4,600 nodes. Each node
has two IBM POWERY9 CPUs with 512 GB memory and six
NVIDIA V100 GPUs each with 16 GB memory connected
to the CPU with NVLink. Each node has two dual-rail EDR
InfiniBand connected to the infiniband switches. Each node
also has an attached 1.6TB NVME storage.

We also used two special clusters within NERSC Cori sys-
tem [45]. The first is cluster is Cori-V100, which has two Intel
Xeon Gold 6148 CPU, with 384 GB DDR4 memory. Each
CPU is accelerated with four V100 GPUs. While the GPUs
are interconnected using NVLink, the connection between the
CPU and GPU is through a PCle 3 switch. Each node has
four dual-rail EDR InfiniBand NIC, and has an attached 1 TB
NVME storage. The second is based two AMD EPYC CPU

IFor improved efficiency, a warp of threads in NVIDIA GPU execute
instructions in a lock-step fashion.

2In our experiments, the availability of optimized libraries differed by the
system. As such, the choice of optimized libraries are system dependant,
especially as the use of containers is limited to specific system architectures.
For instance, on OLCF we used opence 1.5.0 with the set of packages
optimized for it.
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Fig. 5. Each CosmoFlow sample has a power-law distribution of the frequency of appearance for each value, as shown in (a). The number of unique values
in the order of hundreds, as shown in (b), but varies from one sample to another. (c) Locality makes the number of unique groups small, enabling the use
of localized lookup tables for encoding. For instance, for groups of four values, corresponding to the four redshifts in the simulation, we have few tens of

thousands of permutations that can indexed with 16-bit integers.

TABLE I
SYSTEM ARCHITECTURE FOR EVALUATED SYSTEMS

TABLE 11
SOFTWARE ENVIRONMENT FOR COSMOFLOW AND DEEPCAM

Summit Cori V100 Cori A100 CosmoFlow DeepCAM
Host Processor (CPU) IBM P9  Intel Xeon Gold AMD EPYC Summit CoriV100 CoriA100 | Summit CoriV100 CoriA100
6148 7742 Framework  TF 2.5 TF 2.5 TF 2.5 |PT 1.10 PT 1.8 PT 1.9
CPU Freq (Ghz) 3.1 2.4 2.25 torchvision 0.11.1 0.8.1 0.10.0
Host Memory (GB) 512 384 1056 python 3.8 3.8 3.8 3.8 3.8 3.8
CPU-GPU Interconnect ~ NVLink PCIe Gen 3.0 PCle Gen 4.0 horovod  0.21.0 0.22.1 0.23.0
GPU V100 V100 A100 CUDA 11.0.221 11.2.2 11.4.0 11.0.3 11.2.2 11.4.0
GPUs per node 6 8 8 CUDNN 8.04 8.1.0 8.24 8.1.1 8.1.0 8.24
L2 Cache (MB) 6 6 40 NCCL 2.7.8 2.84 2.114| 2114 2.84 2.114
SM 80 80 104 DALI 1.9.0 1.9.0 1.9.0 1.9.0 1.9.0 1.9.0
Mem Capacity (GB) 16 16 40 gce 7.3.0 7.3.0 8.3.0 8.2.0 7.3.0 8.3.0
BW to GPU Mem (TB/s) 0.9 0.9 1.6
GPU FP32 TF/s 15.7 15.7 19.5
Tensorcore TF/s 120 120 312 VIII. OPTIMIZED PREPROCESSING PIPELINE EVALUATION
NVMe Capacity (TB)) 1.0 1.6 154
NVMe Read BW (GiB/s) 5.5 32 243 In deep-learning workloads, the time to accuracy is a

accelerated, each accelerated by four A100 GPUs. A summary
of the characteristics of the compute systems is provided in
Table I.

For the workloads, we used the MLPerf version of Cos-
moFlow, which is written in TensorFlow, and the DeepCAM,
which is written in PyTorch. Both applications leverage auto-
matic mixed precision to accelerate computation. The software
stack used in this study is composed of multiple layers,
starting from the framework layer (TensorFlow, and pyTorch)
to system-specific libraries, detailed in Table II. For NVIDIA
GPU-based systems, these frameworks leverage NVIDIA op-
timized libraries such as CUDNN for convolutional layer
computation, NCCL for synchronizing the distributed model,
etc. We modified only the components required for compati-
bility with the introduced decoder plugin based on NVIDIA
DALI [43]. For Summit, we built our compute environment
through cloning the opence-1.5.0 environment.

function of the number of epochs required for convergence
and the time to perform a single epoch. We, therefore, evaluate
our optimized plugin for its impact on convergence and
performance.

A. Convergence Behavior with Plugins

Since our decoded samples are primarily in FP16 format,
while the baseline uses FP32, we begin by examining the
convergence behavior between these two formats. Note that
both of our SciML codes are processed in mixed precision
with auto-casting, and each DNN framework performs mixed
precision with per task determination of the computation
precision. As a first step, we compare the base and decoded
samples with respect to the limits of precision. Our Cos-
moFlow decoder is not lossy when casting to FP16, while for
DeepCAM compression is lossy especially for values close to
zero affecting approximately 3% of the values per sample. For
both applications, we use lossless compression of the labels.
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Fig. 6. DeepCAM change in the loss function (for learning samples) with the
base and the decoded samples on a single GPU. Our decoded samples show
identical convergence behavior to the base case.

Figure 6 shows the loss function associated with the training
of 1536 samples as the learning steps progress (with two
samples processed per step), using a single GPU with the
learning schedule parameters of the reference implementation.
We observe that the base and decoded samples result in
identical convergence behavior. The same behavior is also seen
in the the loss function of the validation samples, which is
omitted for brevity.

CosmoFlow results, shown in Figure 7, track the conver-
gence for 16 repetitions of the learning tasks with similar
learning schedule on a single GPU, using 128 samples. We
tracked the loss of learning samples across different epochs
(full traversal of the full set of samples), and repeated the
experiments following the MLPerf HPC submission guidelines
that require results across multiple runs. For CosmoFlow, the
convergence is known to vary widely between runs [6]. Such
change in convergence behavior is related to the traversal
of samples, which uses random shuffling, and internal DNN
processing, such as random weight drop-offs.

Figure 7 highlights the surprising property of better conver-
gence for our decoded samples. This advantage is visible not
only in the lower loss values, but also in reduced variability.
This is likely an artifact of TensorFlow’s internal logic that
processes FP16 and FP32 differently. However, our study does
not leverage these improved convergence properties to gain a
performance advantage via reducing the number of epochs for
our decoding strategy since we have not fully conducted a
hyperparameter optimization to tune for the base or decoded
samples. We merely used the same learning schedule (warm-
up, learning rate change with rank count and phases, etc.) for
both classes of samples. Such parameter search is influenced
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Fig. 7. CosmoFlow change in the loss function (for learning samples) with
base and decoded samples on a single GPU. Our decoded samples show
better convergence properties, likely due to the framework logic that addresses
mixed-precision differently for 16-bit vs. 32-bit floating-point samples.

by the target the level of concurrency in processing samples
(global batch size), the learning schedule, the selected opti-
mizer, in addition to the precision of computation.

Thus for the remainder of the discussion, we compare
performance per computation step, while fixing the learning
schedule and optimizer, and using mixed precision for both
sample types. Finding optimal hyperparameters for learning,
which is out of the scope of our study, is equally crucial for
achieving the best time to solution.

IX. PERFORMANCE EVALUATION

This section summarizes the performance evaluation of
CosmoFlow and DeepCAM in the MLPerf HPC training
benchmark suite [6] from the MLPerf benchmark suite [13]
on the studied platforms.

A. DeepCAM Performance with Optimized Preprocessing

For the DeepCAM plugin, we present the performance of
our decoder on both CPUs and GPUs. Note that the irregular
pattern for decoding has the potential for a more efficient CPU
implementation. Additionally, some DALI plugins use mixed
architecture (CPU+GPU) version to optimize performance.

The baseline for our experiments is the CAMS dataset
distributed. We use two dataset assignments per node, a
smaller 1536 samples per node case, which can be cached in
the memory system. The bigger data set is 8 x larger (12,288)
and less likely to fit in memory. These two datasets were
chosen because the number of samples assigned to a node in
HPC environments depends on the node count and the number
of samples used in training.



Our work also explores the performance difference between
staged data within the attached node storage (local NVMe)
versus unstaged streaming from the network storage system.
We explored this option because some HPC systems have
nodes containing locally attached NVMe, while other systems
rely solely on shared storage attached to the interconnect.
Exploring these design alternatives enables the exploration
of architectural configurations outside the studied systems.
Moreover, by exploring different batch sizes, we investigate
cases where data scientists may choose a small global batch
size to improve convergence, thus reducing local batch size
per GPU.

As shown in Figure 8, the baseline configuration performs
slightly better with batching and data staging, but suffers
a significant slowdown of 1.2 — 2.4x for a large dataset.
These performance characteristics highlight the performance
dependency on data movement. Note that the baseline per-
formance does not improve when migrating from the Cori-
V100 (middle) to the faster Cori-A100 system (right), due
to similar CPU-GPU bandwidth for both platforms for the
sample transfer sizes. While for Cori-based experiments, both
cpu-based and gpu-based plugin improves the performance,
for Summit only gpu-based plugin improves the performance.

We measured for Cori-V100 node and Cori-A100 a peak
PCle host-to-device transfer bandwidth of 12.4 GB/s, and 24.7
GB/s, respectively. For the range of transfer sizes of 4 to
64 MB, corresponding to our sample sizes, where memory
is pageable’, the bandwidth range is 4-8 GB/s for the V100
node and 6-8 GB/s for the A100 node. Effectively, both
nodes have close bandwidths for transferring samples to the
accelerator, which hinders the opportunity to benefit from the
computational capabilities of the new A100 accelerator.

The decoder plugin results show that our approach signifi-
cantly accelerates performance, especially for the Cori-A100
where throughput increases by up to 3.1x compared with
the baseline. Performance generally improves with increasing
batch size, although Cori-A100 system (with larger memory
capacity) suffers a small degradation with a batch size of 8.
Our profiling analysis indicates that the framework choice of
the computational kernels, which is impacted by the batch size,
is the cause of such behavior. In general, the GPU version of
the decoder outperforms the CPU counterpart, due its efficient
implementation as well as the reduced pressure on the system
bus in moving data between the host and the GPU memories.
As a result, the GPU plugin is up to 1.5x faster than the CPU
for unstaged data. Additionally, our plugin also leverages the
increased capability of the A100, resulting in a speedup of
up to 2.2x compared with the older generation V100. The
decode operation overhead is small taking roughly 4% of the
processing time per sample.

The performance improvement with the plugin on Summit
is quite lower than what we observed on Cori systems.
The nvlink connection between the host processor and the

3Deep learning frameworks typically use pageable memory to avoid running
out-of-memory with pinned memory.

accelerator reduces the potential gain with the plugin as the
baseline is higher for Summit. At batch size of 4, the 6-
V100 Summit node outperforms an 8-V100 Cori node, while
expected performance should be around 75%. Meanwhile, the
ability of host processor to process the software stack and
the level of optimization for the software stack appears to
be lower for Summit as compared with CoriGPU. As such,
we notice the lower performance of the cpu-based plugin and
limited improvement with gpu-plugin (limited to 1.3x). With
the gpu-plugin, a Summit node delivers at best 60% of the
Cori-V100 performance.

Figure 9 breaks down the performance profile for processing
a sample on the Cori V100 and A100 nodes. We present key
grouped activities for two timelines during the execution, the
host CPU timeline and the accelerator GPU timeline. Results
show that for the baseline, despite the efficient execution on
the A100, the cost of host CPU preprocessing and host—
device data movement did not improve. Using our loader
plugin, not only improves data transfer time but also speeds up
CPU preprocessing while reducing the fluctuations captured
during the model synchronization allreduce in the back
propagation phase.

B. CosmoFlow Performance with Optimized Preprocessing

For the CosmoFlow plugin, the overall speedup of our
GPU decoder implementation achieves up to 10x speedup.
We compare performance with an uncompressed tfrecord
baseline and the compressed tfrecord, using gzip, which is
part of the standard benchmark implementation. This com-
pression version is intended to reduce the impact of the well
known CosmoFlow IO bottleneck [19]. Although the gzipped
files are roughly 75% the size of our encoded samples, the
decompression can only be performed on the host CPU, since
there is no existing GPU version for gunzip.

We explore the performance of three systems, OLCF Sum-
mit, Cori-V100, and Cori-A100. Similar to DeepCAM, we
used two datasets sizes consisting of 128 and 2048 samples
per GPU. The constant number of samples per GPU allows
us to normalize performance between Cori and Summit. Our
experiment ran 100 and 15 epochs for the small and large
set, respectively. Our GPU plugin significantly outperforms the
CPU implementation, and its results are omitted for brevity.

Figure 10 presents results for the small data set, with batches
sizes ranging from 1 to 8. Note that the difference between
the Cori-V100 and Summit-V100 and is mainly due to the use
of 8- vs 6-GPUs per node for Cori and Summit, respectively.
Observe that the base case does not change significantly with
the batch size. Additionally, on most systems, the use of
gzipped formatting reduces throughput by up to 1.5, where
the benefit of reduced IO pressure is negatively offset by
increased decompression time.

For the small dataset, our encoder has the greatest impact
on Summit, where speedup improves by 5-8 x, where samples
are likely cached in memory. This improvement is largest for a
batch size of one and gets smaller with the batch size increase.
Acceleration on Cori-V100 and Cori-A100 is also significant,
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data directly from the interconnect. On Cori, our CPU and GPU decoder plugins deliver up to 2.5x and 3x speedup, respectively.
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Fig. 9. Time breakdown of DeepCAM performance on the Cori V100 and
A100, comparing our CPU- and GPU-plugin implementations, using the small
sample set with a batch size of four. Improving preprocessing reduces CPU
overhead and the variability captured by the model synchronization during
the allreduce operation.

achieving a 3-4x speedup. The decode operation overhead is
negligible, taking less than 1% of the total processing time of a
sample. The presented improvements are due to the reduction
of data movement and GPU offloading of the log operator
and applying it only to unique values within a sample. For
the baseline, we note that the performance for Cori-V100
and Cori-A100 is quite close despite the different hardware
capabilities due to the bottleneck of moving the samples files
from the file system to the accelerator memory. Finally, staging
slightly improves performance for small datasets. For the
larger dataset of 2048 samples per GPU in Figure 11, staging

improves node performance by up to 1.5x for Cori-V100 and
A100. The difference for Summit is within 10%. The speedup
for the large dataset is up to an order of magnitude.

Figure 12 presents the Summit and Cori-V100 execution
time profile of CosmoFlow, highlighting the time breakdown
on the host CPU and GPU for the small data set. Observe
that performance is dominated by the CPU preprocessing
activities for the baseline, hindering efficient accelerator ex-
ecution. The data movement cost between the host memory
is higher for Cori-V100 because of the PCle 3.0 bus con-
necting the CPU and GPU. Summit, on the other hand, uses
NVLINK, which roughly provides 3x the bandwidth of the
PCle 3.0. Our analysis also shows that decompression of
gzipped TFRecord is more efficient on Cori-GPU systems,
but nonetheless slowdowns the overall runtime. Finally, we
observe that our developed plugin reduces the preprocessing
overhead significantly, revealing the raw performance of the
V100&A100 accelerators.

X. CONCLUSIONS

The Al revolution has a profound impact on scientific
discovery in important scientific disciplines, including cos-
mology, material science, and bioinformatics. Unfortunately,
there is a growing disparity between the rapidly evolving
computational capabilities of specialized hardware accelerators
and the ability to feed data for processing through the deep
and complex memory hierarchy. To successfully address these
challenges, the community needs to develop data reduction
and mitigation techniques that can be integrated into existing
software ecosystems to leverage broad functionality and porta-
bility. We present a methodology that incorporates domain-
specific application analysis and architectural insight to de-
velop successful data reduction and accelerator-preprocessing
techniques for the DeepCAM and CosmoFlow benchmarks on
three HPC platforms.

Our approach successfully preserves the convergence char-
acteristics, even for the cases where we adopt lossy com-
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decoder plugin vs. base and gzip compressed samples on three platforms.

pression. We also leverage the application convergence under
mixed-precision processing to achieve a higher compression
ratio. Additionally, our study presents detailed experiments
that examine a variety of critical parameters, including data
and batch size, and the impact of staging on node-local
memory to explore system architectures beyond those investi-
gated in this study. The developed custom encoder leveraged
the reordering of computation with decompression to apply
operators on on unique values of the data, and also the fusion
of data transpose with decompression thus achieving higher
efficiency for preparing the data for computation.

Overall our detailed analysis of CPU and GPU behavior,
shows performance gains of up to 10x relative to the base-
line approach. Comparison with traditional gzip compression
results in an execution slowdown, highlighting the limitations
of using off-the-shelf solutions for complex machine learning
workloads and underlying architectures.

We believe that our approach can be used as a template to
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Fig. 12. CosmoFlow execution time breakdown for the small sample set with
batch size of four. The base version underutilizes the GPU, while our plugin
reduces host CPU preprocessing overhead.

optimize a wide variety of SciML codes and can be incor-
porated into a variety of emerging architectural accelerators.
Future work will explore other classes of scientific workloads
and their datasets as well as emerging system architectures,
with a focus on specialized deep learning accelerators.
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