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Abstract. With energy-efficient architectures, including accelerators and
many-core processors, gaining traction, application developers face the
challenge of optimizing their applications for multiple hardware features
including many-core parallelism, wide processing vector-units and on-
chip high-bandwidth memory. In this paper, we discuss the development
and utilization of a new application performance tool based on an exten-
sion of the classical roofline-model for simultaneously profiling multiple
levels in the cache-memory hierarchy. This tool presents a powerful visual
aid for the developer and can be used to frame the many-dimensional
optimization problem in a tractable way. We show case studies of real sci-
entific applications that have gained insights from the Integrated Roofline
Model.
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1 Introduction

As HPC systems move towards exascale computing, the growing complexity in
processor micro-architecture makes it more and more challenging to develop per-
formant and energy-efficient applications. As an example, the Intel many-core
Xeon Phi processor architecture has introduced a large number of relatively low-
frequency cores per chip with additions of on-package high-bandwidth memory
and wide vector units. It offers increased computing power for algorithms that
can leverage high parallelism and vectorization, at a lower energy cost. Although
optimizing (e.g. more parallelism) applications is beneficial on most platforms, a
metric is required to guide application developers in their performance optimiza-
tion efforts so that applications can be optimized for the correct performance



bounds. Guiding users through this optimization process is a challenge that many
HPC facilities around the world are facing as they transition their communities
to energy-efficient architectures.

As the Mission HPC facility for the United States Department of Energy’s
(DOE) Office of Science, the National Energy Research Scientific Computing
Center (NERSC), located at Lawrence Berkeley National Lab, is addressing this
challenge with its broad user community of over 6000 users from 600 projects
spanning a wide range of computational science domains. NERSC recently de-
ployed the Cori system — a Cray XC-30 system comprising over 9600 Xeon-Phi
7250 processors (code-named “Knights Landing” or KNL for short).

Each KNL processor includes 68 cores running at 1.4GHz (1.2GHz for AVX
code) and capable of hosting four HyperThreads (272 HyperThreads per node).
Each core has a private 32KB L1 cache and two 512-bit wide vector processing
units. Each pair of cores (called a “tile”) shares a 1MB L2 cache and each
node has 96GB of DDR4 memory and 16GB of on-package high bandwidth
(MCDRAM) memory.

Users are transitioning to this system from NERSC’s Edison system that con-
tains roughly 5000 nodes with a more traditional dual-socket Xeon (Ivy-Bridge)
architecture. When transitioning from Edison to Cori, users are faced with a
number of important changes: the “many-core” nature of Cori, the increased
vector widths (512-bit) provided with the AVX-512 instruction set, and changes
to the cache-memory hierarchy including the lack of an L3 cache but addition of
an on-chip 16GB fast-memory (MCDRAM) memory layer that can be configured
as a transparent cache. In order to effectively optimize an application for KNL,
users therefore need to know which of these hardware features should be targeted
in order to reach the largest gains. And practically, they need to know when to
stop: i.e. when they’ve reached the expected performance for their application
on the architecture.

The Roofline model [1] is a visually-intuitive performance model used to
bound the performance of applications running on multiple architectures. Rather
than using percent-of-peak estimates, the Roofline model can be used to quanti-
tatively compare the performance of an application to the performance bounds,
or ceilings, set by the architecture of the compute platform. The Roofline model
combines this information into a simple performance figure that can be used to
determine both algorithmic and implementation limitations of an application.

The Roofline model characterizes an application’s performance in gigaflops
per second (GFLOPS) as a function of its arithmetic intensity (AI). AI is the
ratio of floating-point operations performed to the bytes transferred from cache
or memory during execution. This performance number can be compared against
the bounds set by the peak compute performance and the cache/memory band-
width of the system to determine what is limiting performance. The measure-
ment of AI can be done in multiple ways, based on different levels of the memory
hierarchy of modern computer systems. In literature, the Roofline model is often
labeled by the level of memory its AI is measured from. The most well-known
flavors of Roofline are the Cache-Aware Roofline Model (CARM) that measures



the AI presented to the cache hierarchy [2,3] and the classical Roofline model
that measures the DRAM AI (AI after filtering by the cache hierarchy) [1].

Over the past few years, the utility of the Roofline performance model for
guiding and tracking application optimizations has been demonstrated [4]. How-
ever, these efforts have been limited in a couple of ways: gathering Roofline data
was cumbersome and limited in practice to a few code regions manually desig-
nated by the programmer and, secondly, data from only one level of the cache-
memory hierarchy is typically gathered, while many applications have complex
dependencies on the entire hierarchy.

In this paper, we discuss the benefits of an Integrated Roofline Model (IRM)
that collects the AI from all available levels of the memory hierarchy, and present
a tool, Intel R© Advisor, that automates the data collection and visualization in
a user friendly fashion. The novelty of this work with regards to [2,3] is the
new performance analysis method that uses memory traffic between all levels
of the memory hierarchy simultaneously and the demonstration of a tool for
automating the data collection. In CARM, one has a single AI (that is usually
close to the L1 AI) and can estimate effective memory bandwidth by comparing
observed performance to the L1, L2, ..., DRAM ceilings. Thus, if one observes
performance between the L2 and L3 ceilings, one can conclude that the average
memory bandwidth is somewhere between the L2 and L3 bandwidths. Unfortu-
nately, CARM does not actually calculate the attained memory bandwidth at
each level nor does it identify which level might be a performance bottleneck.
To that end, we developed and implemented a hierarchical roofline formulation
with a unique AI for each memory level and used a cache simulator to accurately
calculate the data movement between each level of the memory hierarchy. With
this information we can calculate at which level of the memory hierarchy the
dominant data movement occurs and the degree to which bandwidth at that
level is overprovisioned. An example that illustrates these improvements will be
shown in section 4.2. Integration of this technology into a performance tool has
allowed it to be applied to full applications, linked to source and assembly, and
visualized using the well-known Roofline formulation. It allows us to automat-
ically determine whenever CPU or a given level of memory hierarchy are the
primary bottlenecks in terms of throughput and expose it in a visually-intuitive
manner.

The remainder of the paper is organized as follows: In Section 2 we discuss
the implementation of the Integrated Roofline Model in the Intel Advisor tool.
In Section 3, we show case studies of how real science application performance is
characterized using the Integrated Roofline Model. In Section 4, we demonstrate
two examples where the Integrated Roofline Model has been used to highlight the
effects of optimizations on applications and to demonstrate application perfor-
mance differences of the KNL and Intel Xeon (Haswell generation) architectures
that are present in a smaller data-partition on Cori.



2 Intel Advisor Roofline: Underlying Design and
Methodology

Three measurements from an application are needed for roofline analysis: the
number of floating-point operations executed, the number of bytes transferred
from memory and the execution time. In this section we discuss the measure-
ments implemented in Intel Advisor to collect the data required to build the
IRM [3,5,6].

In order to measure memory traffic and attribute it to the loops and functions
of the application, we use binary instrumentation and cache simulation. We
process all memory arguments of the executed instructions; the CARM traffic
is obtained by adding their sizes, while feeding their sizes and addresses to the
cache simulator provides the numbers for other levels of the memory hierarchy.
The cache simulator is configured according to the actual hardware properties
including individual caches, cache capacities, as well as core and socket counts.

The traffic for each memory level is defined as a number of bytes transferred
between corresponding component and lower (closer to the CPU core) cache
or the core itself. The only exception is L1 cache — where we count the total
number of bytes accessed by CPU instructions instead, producing approximately
the same arithmetic intensity as in the CARM. The difference is caused by the
instructions that access memory by bypassing the cache subsystem, e.g., non-
temporal stores used to store data not expected to be reused.

We attribute traffic to the instruction that caused it — and, afterwards, group
it by loops and functions adding the numbers for corresponding instructions. For
example, if a load causes a cache miss and in order to place the new line in cache
it is required to evict the line modified earlier, storing it to the next level of
the memory hierarchy, the store traffic is attributed to this load instruction.
This may sound counter intuitive, but note that to correctly place the loop on
the Roofline chart we need to measure the traffic generated while the loop was
executing, thus even if it evicts cache lines modified by a preceding loop nest,
corresponding store traffic should be taken into account.

Note that all transfers besides “L1 traffic” values are actually done in cache
line units, which also affects the traffic. For example, if an instruction loads one
byte and the load causes a cache miss and is eventually served by DRAM, we
will measure one byte of L1 traffic, and the traffic defined by the cache line size
(64 bytes on most modern CPUs) for all other caches and DRAM. This may
lead to “L1” arithmetic intensity being larger than L2 or even DRAM, while the
opposite is true for the code with good cache line reuse.

We also count the number of floating-point operations using binary instru-
mentation, analyzing floating-point instructions. For vector instructions, this
enables us to accurately count the number of elements actually processed, i.e.,
properly account for masked vector instructions, noting that instructions can also
involve several FLOPs (e.g. for FMA instructions). By implementing a time, traf-
fic and FLOP measurement workflow in Intel Advisor it became possible to fully
automate Roofline characterization not only for individual loops or functions,
but for full applications.



The binary instrumentation by its nature causes significant overhead. The
overhead varies based on the application (see Table 1). In general, the better the
application is using the CPU resources, the higher is the influence of instrumen-
tation and cache simulation logic. Particularly, the overhead is usually higher for
the code with good cache locality because simulation code, besides consuming
computational resources, evicts application data from the cache, increasing cache
miss rate; if most accesses from the application are served by DRAM anyway,
the impact is lower. The overhead is also affected by the other factors, such as
the use of Hyper-Threading or thread synchronization pattern.

Note that in order to correctly measure the execution time of the program
and individual loops, memory traffic estimation is done in a second analysis pass.
So time is measured in first separate pass, using a low-overhead non intrusive
time sampling technique, and therefore cache simulation overhead does not affect
the execution time (seconds) and final FLOP/s measurements representativeness
and accuracy.

Table 1. Cache simulation overhead for the applications in the paper

Name XGC1 VASP fwi2d SW4 CoMD GPP BIGSTICK

Overhead 37× 21× 21× 23× 8× 9× 18×

Performance counters were used to validate the cache simulation results prior
to this work. We used different compute kernels and benchmarks for validation
and the discrepancy was found to be within 10% on average. We chose to use
cache simulation, since, even though core (and offcore response matrix) counters
can be used to measure read traffic from DRAM, writes to DRAM (caused by
dirty lines evictions from LLC) are not measured. Note that although there is
an OFFCORE REQUEST bit corresponding to writebacks, it refers to write-
backs from L2 to LLC. Counting writes from LLC to DRAM would require
an additional OFFCORE RESPONSE type. Furthermore, measuring traffic on
loop/function boundaries requires source/binary instrumentation that may dis-
tort PMU measurements (especially for small inner loops). Also, in parallel code,
it only makes sense on parallel region boundaries. Thus, it would not be possible
to deep-dive inside the parallel regions and measure roofline data for inner loops
or functions.

In this paper we use the following techniques available to analyze Roofline
data generated by Intel Advisor. First, Intel Advisor’s interactive GUI is uti-
lized to explore Roofline charts directly (Figure 2). Secondly, the Intel Advisor
command line interface or Intel Advisor Python customization API( [7]) can be
used to implement custom extension of Intel Advisor; this approach was used
in this paper to generate custom Integrated Roofline charts shown in the article
(e.g. see Figure 1).



3 Application Characterization Case Studies

In this section, we show the utility of the roofline model for assessing the perfor-
mance of scientific applications that routinely run on NERSC systems. Real-life
scientific applications often feature complex algorithms that may be very diffi-
cult to analyze analytically. For demonstration of the integrated roofline method
on a simple analytic benchmark, the reader is encouraged to refer to [8,9]. The
applications analyzed in this paper are summarized in Table 2.

Table 2. General characteristics of the application evaluated in this paper. Note,
“BW” stands for memory bandwidth

Name XGC1 VASP fwi2d SW4 CoMD GPP BIGSTICK

Domain Magnetic
Fusion

Materials
Science

Geo-
physics

Geo-
dynamics

Poly-
crystalline
Materials

Material
Science

Nuclear
Physics

Motif PIC DFT +
CG

FD Sten-
cils

FD Sten-
cils

MD DFT CI

Release upon
request

paid closed open
source

open
source
[10]

open
source

upon re-
quest

MPI X X X X X X
OpenMP X X X X X X X
LOC 100k 470k 2K 87k 4K 400 91k
Perf.
bound

Gather/
Scatter,
Compute

BW,
latency

BW BW,
Compute

BW BW BW

3.1 XGC1

XGC1 (X-point Gyrokinetic Code) [11] is a fusion plasma physics gyrokinetic
particle-in-cell (PIC) code originally from Princeton Plasma Physics Laboratory
(PPPL). It is one of the codes selected for the US exascale computing project
(ECP). It is primarily used to study turbulence in the edge region of tokamak
fusion plasmas — essential for the success of future fusion reactors.

The main unique feature of XGC1 is its use of unstructured meshes to sim-
ulate the whole tokamak volume. The mesh is decomposed over MPI ranks
into poloidal planes that are connected via a field-following mapping. Within
a poloidal plane, particles are decomposed over both MPI ranks and OpenMP
threads. XGC1 uses kinetic ions and electrons, and uses a sub-cycling scheme
for the electron motion that is the most time-consuming part of the simulation.
In a typical production run on Cori, roughly 70-80% of the total CPU time is
spent in the electron push kernel [12].

Within the electron push kernel, communication between threads is only
needed roughly every 50 electron time steps. The electron push algorithm uses
a 4th order Runge-Kutta scheme to integrate the gyrokinetic equation of mo-
tion [11]. The computation has a high flop to byte ratio, but CPU time is domi-
nated by indirect memory accesses and latency from gather/scatter instructions



due to the random motion of particles across the grid. This is a typical feature
of PIC codes and is exacerbated in XGC1 by the unstructured mesh.

We run XGC1 on a single KNL node in quad-cache mode for an artificially
small problem size, to make data collection with Advisor feasible. The mesh
consists of 7500 nodes in a single axisymmetric plane and the number of particles
is 25,000 per thread, 1.6 million total. We run the code for two ion time steps
with 50 electron sub-cycles per time step, without collisions, using 16 MPI ranks
and 4 OpenMP threads per rank. The Advisor data is collected on rank 0 only.

The five most time-consuming loops of XGC1 are shown on the Roofline chart
in figure 1. All the loops shown are called from the electron push kernel, which
dominates the ion push by a factor 50 in call volume. The loops all have good
cache locality in the L2 cache, shown by a large increase in AI from LLC to L2,
and the highest-performing loops also have good L1 locality, while the rest have
only moderate L1 locality. The kernels clearly are not bandwidth bound, with
the possible exception of bicub mod:295 being bound by the L1 bandwidth. It
also is worth noting that the DRAM traffic within these loops is too small to be
measured by Advisor. That is, the loops are fully running from cache. The loops
are vectorized and do not fall clearly into either bandwidth or compute bound
regimes. Our hypothesis is that they are bound by cache throughput which
is specific to the load instruction. This has been confirmed by instruction set
analysis which shows gather/scatter instructions are generated in the loops. Our
conclusion is the high-performing loops are bound by L1 instruction throughput
and the lower-performing loops by L2 throughput. One could measure a memory
bandwidth roofline for gather/scatter instructions to present the more realistic
performance bound in the roofline model, this is planned for future work.

3.2 fwi2d

Fwi2d (full waveform inversion) is a seismic imaging code from the Paris School
of Mines (MinesParisTech) used to obtain subsurface images from low frequency
wave velocity fields. This is critical for successful exploration and reservoir de-
lineation in oil and gas exploration, but such algorithms can be used for civil
engineering as well. FWI is a computationally-intensive process that requires
propagating waves using time (or frequency) domain wave equation solvers. We
consider here a second-order wave equation and we are using a time domain
finite difference (TDFD) approach based on explicit finite difference schemes in
time (4th order) and space (8th order) with a quasi-Newton (with L-BFGS al-
gorithm) optimization scheme for the model parameters update. The stencil in
use to compute the derivatives has an extremely strong impact on the flop per
byte ratio, on the memory accesses, and finally on the implementation efficiency.
Those algorithms are also known as time reversal techniques that need cross cor-
relation of a forward propagating field and a backward propagating field. This
method usually leads to heavy I/O to keep snapshots of the forward wavefields.
In the present isotropic acoustic 2D implementation of FWI, we keep the snap-
shots in memory for simplicity. The main advantage of a 2D implementation is
to quickly evaluate new features such as more complicated wave equations, new



Fig. 1. XGC1 Roofline figure for Cori (KNL) in a quad-cache configuration. The sym-
bols represent different loops and the colors of the markers represent AI’s of the loops
measured from different memory levels. The memory bandwidth ceilings are similarly
colored. That is, points of a given color should be compared against the memory ceil-
ing of the same color. Although bicub mod attains near L1 roofline performance, most
other kernels are well-below the L2 and scalar add rooflines.

cost functions, finite-difference stencils or boundary conditions and evaluation
of new memory hierarchies in the context of snapshot management. This tech-
nique is popular due to its simple stencil based implementation on a Cartesian
grid and its natural parallelization in the shot domain, e.g. the parallelization
is achieved through standard MPI seismic shot distribution and OpenMP for
domain decomposition within the PDE loop.

In the example runs, we try to understand OpenMP scalability and the per-
formance impact of absorbing boundary condition that potentially impact data
alignment and vectorization. As presented on Figures 2 and 3, we can analyze
the data movement between memory levels for each loop. Since the number of
FLOPs is the same between those levels, any move comes from a change in the
number of bytes transferred. The amplitude of the horizontal movement of each
dot is indicative of potential bottlenecks. For example, the triangles on Figure 3
are very close for the L1, L2 and L3 levels (blue, green, yellow) and far to the
right for the DRAM to LLC traffic (red triangle). This demonstrates that data
resides in the cache and is not impacted by DRAM bandwidth. A look at the
vectorization analysis will then give some recommendations on how to improve
the performance (we ultimately want those triangles against the roofline). An-
other interesting behavior is visible with the blue and green diamonds of Figure 3
where we do not have any data traffic between DRAM-LLC and LLC-L2 levels



Fig. 2. fwi2d Intel Advisor 2018 “Roofline” view screen-shots. These two pictures rep-
resent the data traffic between L1 and register (top left) and between L1 and L2
(bottom right). As the number of FLOPs remains constant between the pictures, we
can see that several functions/loops have the same volume of bytes transferred while
some other points suffer from cache misses that strongly increase the data traffic.

(no yellow or red diamonds). The increase in data movement between L1 and
registers demonstrates a possible issue with vectorization and data alignment.

Using the multi-level Roofline view for all functions and loops is a nice com-
panion to vectorization analysis in order to characterize a full application at
the function/loop levels on a given platform or when moving from one machine
to another generation. To illustrate this, we performed tests on a dual-socket
server using Intel R© Xeon R© Gold 6148 processors codenamed Skylake with 20
cores running at 2.4GHz and 192GB of DDR3-2667 DRAM, leading to a stream
triad bandwidth of about 200GB/s. This architecture is different from the KNL
processor of the Cori system, corresponds to the latest Xeon architecture, and
contains a number of enhancements (AVX512 instruction set and larger cache
sizes). In some cases, applications may need to be optimized for the new cache
hierarchy. In fwi2d this is reflected in the need to reshape the cache block sizes
to fit L2 and benefit from its bandwidth. More details are available at [13].

3.3 VASP

The Vienna Ab-initio Simulation Package (VASP) [14,15] is a widely used materi-
als science application, supporting a wide range of electronic structure methods,
from Density Functional Theory (DFT) to many-body perturbation approaches
(GW and ACFDT). VASP solves a set of eigenvalue and eigenfunction (wave-
funtion) pairs for the many-body (electrons) Schrödinger equation iteratively



Fig. 3. Roofline for Fwi2d using 1 MPI rank of 40 OpenMP threads running on a
dual socket Skylake server. Selected loops are from the stencil routines and boundary
conditions. We can see, the data movement between memory levels is very different
for each loop and each of the loops is not bounded by the same level, i.e by the same
bandwidth. This is one of the key features of the multi-level view.

within a planewave basis set (Fourier space). VASP computation consists of
many independent 3D FFTs, matrix-matrix multiplications, matrix diagonal-
izations, and other linear algebra methods, such as Gram-Schmidt orthogonal-
ization, Cholesky decomposition, and matrix inversion. Therefore VASP heavily
depends on optimized mathematical libraries.

VASP was written in Fortran and parallelized with MPI. To exploit more
energy-efficient processors like Intel KNL, the VASP developers have added
OpenMP directives to the code recently to address increased on-node paral-
lelism. In the hybrid MPI+OpenMP VASP code, the bands are distributed
over MPI tasks, and the coefficients of the bands are distributed over OpenMP
threads, either explicitly via OpenMP directives, or implicitly via the use of
threaded libraries like FFTW or LAPACK/BLAS3. To exploit wider vector
units, VASP employs OpenMP SIMD constructs using both explicit loop-level
vectorization via omp simd and sub-routine/function vectorization through omp

declare simd. To effectively vectorize the nested function calls and complex
loop structures mixing scalar and vector code that compilers often fail to auto-
vectorize, the code employs a combination of user-defined high-level vectors to-
gether with OpenMP SIMD loop vectorization. More details about the OpenMP
implementation and SIMD optimizations in VASP can be found in [16].

Figure 4 shows the four most time consuming loops in the hybrid MPI+OpenMP
VASP (code path: hybrid functional calculation with the damped iteration scheme)
on the roofline chart for Cori KNL. VASP was run with four KNL nodes in quad-



cache using 64 MPI tasks and 8 OpenMP threads per task (16 MPI tasks per
node). Note, the performance data is collected on rank 0 and the flops are nor-
malized to full node by simply multiplying the relevant values by the number
of MPI tasks per node. The benchmark used is a 256-atom Silicon supershell
with a vacancy. The hybrid MPI+OpenMP VASP (last commit 10/16/2017)
was compiled with the Intel compiler (2018.0.128) and was linked to the MKL,
ELPA (2016.05.004), and Cray MPICH (8.6.0) libraries.

Figure 4 shows that the performance of the most time consuming loops (each
of them accounting for 4-6% of the total execution time) are well below the scalar
add peak. Except the loop, apply gfac exchange , being MCDRAM bandwidth
bound, the dots for the rest of the loops are well below the corresponding level’s
memory bandwidths, indicating they are neither compute or bandwidth bound
but likely latency bound. Advisor detected inefficient memory access patterns
and assumed dependencies in these loops. The large separation between the MC-
DRAM and DRAM arithmetic intensities is indicative that the working set fits
well in the MCDRAM cache. Note that the four most time consuming loops
shown in the figure are not the ones that execute the most floating-point calcu-
lations. VASP executes most of the floating-point calculations via the BLAS and
FFT routines in MKL whose performances, being closer to or above the double
precision vector peak, result in a shorter execution times.

Fig. 4. VASP Roofline for KNL. The four most time consuming loops are shown in
the chart. Except the loop, apply gfac exchange , which appears to be the MCDRAM
bandwithd bound, the rest of the loops are neither compute or bandwidth bound.



3.4 BIGSTICK

BIGSTICK [17] implements the parallel Configuration Interaction (CI) method
(widely used to solve the nuclear many body problem) using Fortran 95 and
MPI+OpenMP. Perhaps the greatest challenges in efficient implementation and
execution of the CI method is its immense memory and data movement require-
ments. In CI, the non-relativistic many-body nuclear Schrödinger equation is
cast as a very large sparse matrix eigen-problem with matrices whose dimen-
sion can exceed ten billion. With typical sparsity (between 1 and 100 nonze-
ros per million matrix elements) such large-scale sparse matrix eigen-problems
place high demands on memory capacity and memory bandwidth. To reduce the
memory pressure, BIGSTICK reconstructs nonzero matrix elements on the fly.
As a results, the memory requirements, compared with the stored matrix ap-
proach, is reduced 10-100×. To further reduce memory requirements, BIGSTICK
may be run in a hybrid MPI+OpenMP mode. Figure 5 shows the Roofline for
BIGSTICK on KNL using 1 MPI process of 64 threads. The data set used is
b10nmax4 (10B), an ab initio calculation that has five protons and five neutrons
(10B); the designation Nmax=4 describes the model space and signifies the max-
imum excitation in units of harmonic oscillator energies. Generally speaking, two
interrelated factors drive down both AI and performance — high-stride mem-
ory access patterns and a lack of vectorization. However, the large DRAM AI
suggests the MCDRAM cache is effectively capturing the working set.

Fig. 5. Roofline for BIGSTICK on KNL for 1 MPI process with 64 OpenMP threads.
The low performance is due to high stride data access without vectorization.



3.5 SW4

SW4 [18] is a block-structured, finite difference code that implements substantial
capabilities for 3D seismic modeling. SW4 is parallelized with MPI and has
performance kernels (SW4Lite) threaded with OpenMP.

Fig. 6. SW4 running with 8 MPI ranks of 8 threads on KNL in quad-cache. Observe
four kernels are strongly tied to MCDRAM(LLC) bandwidth.

Figure 6 shows the Roofline model for SW4 running with 8 processes of
8 threads on KNL in quad-cache. The performance of four of the kernels are
directly tied to MCDRAM bandwidth, while the fifth, rhs4sg rev, dominates
the runtime, underperforms its MCDRAM limit, but exceeds the scalar FMA
performance. L1, L2, and MCDRAM(LLC) AIs are widely separated indicating
multiple levels of locality and reuse distances. Note, we do not show DRAM AI
as the problem size completely fits in MCDRAM.

The rhs4sg rev and addsgdfort indrev are the most time consuming routines
in the project. Nearly 80% of the computation time is spent in these routines.
From the Figure 6, we can observe that both these routines are optimized effi-
ciently and since there are sizable gaps between L1, L2 and LLC, it indicates
that there is reuse in all three levels of cache. We do not show the DRAM data
in Figure 6, since the problem size shown fits completely in the MCDRAM.



4 Guided Optimization Case Studies

4.1 CoMD

CoMD [19,20,21,22], a proxy/mini application developed at Los Alamos National
Laboratory (LANL), was designed to mimic the workloads of ddcMD [23] and
Scalable Parallel Short-range Molecular Dynamics (SPaSM) [23] and is a mate-
rial science application for performing molecular dynamics (MD) simulation on
polycrystalline materials. MD algorithms are classified as N-body problems with
an approximate complexity of O(n2) or lower. The two types of force calcula-
tions implemented in CoMD (typically the bottleneck of MD algorithms) is the
Leonard Jones (LJ) and Embedded Atom Model (EAM). CoMD is implemented
in C with MPI and OpenMP.

Initial observations showed that the LJ force kernel strongly dominates the
run time. Therefore, for the purpose of demonstrating the viability of the Roofline
approach, we will focus on the LJ force kernel.
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Fig. 7. (Left) Out-of-the-box CoMD LJ-Force on KNL generally underperforms
Haswell (oversubscription beyond 64 threads). (Right) Roofline analysis of CoMD on
KNL shows the LJ kernel dominates the run time and has high data locality. Note,
HyperThreading on Haswell only supports 64 simultanous threads.

Figure 7(left) shows out-of-the-box CoMD performance on KNL compared
to a two-socket Haswell node (thread concurrencies greater than 64 indicate
oversubscription). Data provided by Intel Advisor, Figure 7(right), shows that
the LJ kernel dominates the run time and has substantial L2 and MCDRAM data
locality. However, it clearly shows that there is a great deal of L1 data movement
(much lower L1 AI). Advisor noted the lack of vectorized loops, unaligned data,
and non-unit stride stores. Therefore, the conclusion from the roofline analysis
was the performance is not bound by memory bandwidth, since good locality is
achieved, and optimization efforts on KNL should focus on leveraging the vector
instructions to reach higher compute ceilings.

After several optimization sessions with the goal of improving the data and
thread level parallelism, figure 8 shows approximately 30% improvement in the
LJ-force kernel performance on both KNL and HSW. The modernization effort in



CoMD for the LJ-force kernel includes improving vectorization via simd clauses,
branch hints for simd, simdized functions, alignment, compiler hints, and data
structure transformations. However, the roofline performance figure indicates
that work remains to bridge the remaining performance gaps.
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Fig. 8. (Left) Optimized CoMD LJ-Force on KNL and Haswell. (Right) Roofline anal-
ysis of optimized CoMD on KNL. Note, HyperThreading on Haswell only supports 64
simultanous threads.

4.2 BerkeleyGW (GPP)

BerkeleyGW [24] is a material science application that predicts the excited-state
properties of a wide range of materials. GPP [25] is a proxy code for BerkeleyGW,
written in Fortran90 and parallelized with OpenMP. It calculates the electron
self-energy using the common General Plasmon Pole (GPP) approximation [26].
The computation represents the work an individual MPI task would perform in
a much larger calculation (typically spanning hundreds or thousands of nodes).
The code implements several nested loops, where the innermost loop iterates
over the longest dimension of arrays. For a small BerkeleyGW problem, with
512 electrons (bands) and 32,768 plane wave basis elements, the innermost loop,
for example at line 303 in the code [25], must read/write 2MB of data for each
outer iteration. As this 2MB working set doesn’t fit into the L2 cache on either
Haswell or KNL, a cache-blocking strategy is deployed.

Using 32 threads on the Cori/Haswell nodes and 64 threads on the Cori/KNL
nodes (quad-cache), Figure 9 shows that this core computational loop is MCDRAM-
bound on KNL and L3-bound on Haswell, since there is essentially no difference
between the LLC, L2 and L1 AI’s. This means that data is being streamed from
the LLC and there is no reuse of data in L1 or L2. Table 3 shows that when one
applies cache blocking, the LLC AI improves by 3×, which is due to the fixed
trip count of three for loop iw. Likewise, Figure 9 shows significant separation
appears between the L2 and LLC AI’s after cache blocking - meaning reuse out
of L2 has been achieved. The GFLOPS/s performance has improved by 16-18%,
lower than 3×, because there are divide, shuffle and unpack instructions involved
in the innermost loop.
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Fig. 9. Integrated Roofline for GPP on Haswell (top) and KNL (bottom) before (left)
and after (right) cache blocking. Observe the lack of differentiation for L2 and L3 AI’s
in the left figures for loop at line 303.

Table 3. Integrated Roofline AI and performance for GPP on Haswell and KNL with
and without cache blocking. Observe the 3× increase in LLC AI.

Haswell KNL
gppKernel.f90:303 Original Cache Blocked Original Cache Blocked

L1+NTS AI 0.31 0.31 0.64 0.64
L2 AI 0.46 0.62 0.51 0.69

LLC AI 0.46 1.40 0.56 1.71
DRAM AI 3.31 3.44 26.45 26.83

GFLOPS/s 148.57 172.48 242.55 287.28

Table 3 and Table 4 show that the (single) AI obtained from CARM is
exactly the same as the L1 AI obtained in the Integrated Roofline Modeling (n.b.,
CARM GFlop/s is different as it was collected in a separate run that resulted in
a slightly different run time). While the CARM Roofline approach, in Figure 10,
can show the upward movement of the performance through optimization, it
fails to provide any information on which level of cache this optimization has
affected, whereas in the Integrated Roofline (Figure 9), the increase of LLC AI
clearly indicates that data has been blocked to L2 and traffic between L2 and
LLC has been reduced.

5 Related Work

The literature is filled with many performance models and tools specialized for
varying levels of detail and different bottlenecks. Whereas the Integrated Roofline



Table 4. CARM Roofline AI and performance for GPP on Haswell and KNL with
and without cache blocking.

Haswell KNL
gppKernel.f90:303 Original Cache Blocked Original Cache Blocked

CARM AI 0.31 0.31 0.64 0.64

GFLOPS/s 147.60 169.83 250.88 290.03

10−2 1021 100 101
Arithmetic Inten−it0 [FLOP/B0te]

100

101

102

103

Pe
rfo

rm
an

ce
 [G

FL
OP

/−
ec

]

DP Vector FMA Peak: 1685.2 GFLOP/s

DP Vector Add Peak: 421.9 GFLOP/s

Scalar Add Peak: 115.2 GFLOP/sL1 B
andw

idth:
 109

94.1
 GB/

s

L2 B
andw

idth:
 297

9.8 G
B/s

L3 B
andw

idth:
 104

5.0 G
B/s

DRA
M Ba

ndw
idth:

 128
.5 G

B/s

gppKernel.f90:303
Before optimization
After optimization

10−2 10−1 100 101

A−ithmetic Intensity [FLOP/Byte]
100

101

102

103

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

DP Vector FMA Peak: 2774.5 GFLOP/s
DP Vector Add Peak: 1387.9 GFLOP/s

Scalar Add Peak: 162.5 GFLOP/sL1 B
andw

idth:
 122

18.3
 GB/

s

L2 B
andw

idth:
 204

3.9 G
B/s

MCD
RAM

 Ban
dwid

th: 3
73.6

 GB/
s

DRA
M Ba

ndw
idth:

 77.0
 GB/

s

gppKernel.f90:303
Before optimization
After optimization

Fig. 10. CARM Roofline for GPP on Haswell (left) and KNL (right) before (cyan) and
after (magenta) cache blocking.

presented in this paper includes all levels of the cache hierarchy, the original
Roofline model [1] focused on only a single level at a time (e.g. DRAM). As
accurately measuring data movement can be a hard problem (hence the cache
model used in in the Integrated Roofline), the Cache-Aware Roofline Model [2]
transforms the problem by fixing arithmetic intensity at the L1 and infers locality
based on the position of performance relative to bandwidth ceilings.

Whereas, Roofline presents an idealized machine that can perfectly overlap
computation with L1, L2, and DRAM data movement, many real processors may
not be able to realize this. To that end, the Execution-Cache-Memory Model was
developed [27] to more accurately capture how specific processor microarchitec-
tures fail to perfectly overlap communication and computation.

Rather than modeling the cache hierarchy, tools like PAPI [28] and LIK-
WID [29] can directly read the hardware performance counters that record var-
ious compute and data movement events. Unfortunately, performance counter
tools are only as good as the processor vendor’s implementation of the underly-
ing performance counters. Where the counters are inaccurate, incomplete (e.g.
failing to incorporate masks when counting vector flops), or simply missing, tools
will not provide the requisite data. Additionally, such tools often rely on coarse-
grained sampling techniques that are error-prone on short loops or are other-
wise challenged in attribution. The latter, attribution (i.e. which loop caused
the data movement observed on a shared uncore counter), is a direct motiva-
tor for out cache simulator based approach. Nevertheless, performance counter
sampling incurs minimal performance impact and thus enables full-application
instrumentation at scale.



When performance falls out of the throughput-limited regime, overheads and
inter-process communication can dominate an application’s performance char-
acteristics. To that end, depending on message size, messages per synchroniza-
tion point, and the performance of the underlying communication layer, the
LogP or LogGP models may be more appropriate [30,31]. For single-node runs
where there is no inter-process communication, models like LogCA [32] should
be adapted to incorporate the overhead of OpenMP parallelization.

Whereas our tool is nominally geared for analyzing threaded single-process
executions, other tools like TAU [33] or HPCToolkit [34] are more adept at inte-
grating and analyzing higly-concurrent, distributed-memory performance char-
acteristics to identify communication or computational load imbalance. Simi-
larly, when running on Cray supercomputers, one may use CrayPat [35] to instru-
ment and analyze performance. In addition to timings, CrayPat provides access
(via PAPI) to the underlying performance counters in order to measure cache,
memory, and floating-point performance. Nevertheless, neither PAPI, LIKWID,
CrayPat, TAU, or HPCToolkit have an underlying performance model that can
be used for performance analysis rather than simply performance instrumenta-
tion.

6 Summary and Outlook

We have shown in this paper that utility of an “Integrated” Roofline Model
approach for evaluating and guiding the optimization of application performance.
This novel approach, as implemented in the latest Intel Vector Advisor tool via
an included cache simulator, provides simple to understand visual indication of
which (if any) level of the cache-memory limits performance and the amount of
data-reuse present in each. For example, for a given loop or function, the visual
separation of the four plotted points corresponding to AI’s from L1, L2, LLC,
and DRAM corresponds directly to cache-reuse. We observe that the effect of
cache-blocking optimizations can be easily visualized in this manner.

The integration with Intel Advisor enables the automated collection of inte-
grated roofline information, not just for simplistic kernels but for real, large-scale
applications with multiple bottlenecks. It effectively combines the process of col-
lecting a profile and analyzing the performance limiters of the hotspots into a
single step. The result is the presentation of actionable performance data for all
the top hotspots in an application.

At LBNL and LANL, this information is used to inform code teams which
viable optimization paths are available to them and which KNL architectures
features they should target. For example, if an application bandwidth bound in
certain cache or memory layer, it isn’t likely very profitable to tackle improved
vector code generation — but adding a layer of cache blocking or tiling (e.g. in
the KNL MCDRAM) would likely enable greater performance.

In many cases, even with the increased granularity of information provided
by all four points in the Integrated Roofline Model, it isn’t always immediately
clear what the performance limiter of an application is. For example, none of the



measure performance points may lie clearly on one of their respective ceilings. In
practice what we have found, is the Roofline model, and IRM in particular, are,
however, always great tools for starting or framing a conversation with facility
users around performance. Asking the question “why are my performance points
not on their ceilings” nearly always leads to fruitful investigation whereby the
code teams learns something new and deeper about their application — well
beyond using walltime to profile an application alone.

In many cases, the answer to the above quoted question is related to the
fact that the ceilings for each level of the cache-memory hierarchy are based
on streaming (unit-stride) access patterns, but real applications often exhibit
strided or random memory access patterns. It is straightforward to empirically
compute “effective” ceilings for such access patterns (which are typically lower
than unit-stride access patterns) but we leave a detailed discussion of extending
the utility of the Roofline model in this way to a future work.

In addition, one may, in principle, add additional levels (and corresponding
performance points) to the Integrated Roofline Model corresponding to data
accessed from off-node (e.g. via MPI communication), from I/O during execu-
tion, or other limiters of in-core performance (e.g. floating-point divides). This
is important not only for applications that are communication or I/O bound,
but also for applicaitons that depart from the multiply-add idiom that modern
architectures are optimized for. This is a fruitful avenue for future work.
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