— e

pTaTranal Research Division™

~~Compu
LdWrence Berkeley National Lab
-~ SWWilliams@lbl.qove

\H_—
w&

-~-~ ~ , frl\/l‘afefﬂélleldes provided by Max Katz, Charlene Yang, Jonat‘han Madsen,

?(4-/&(/-- >

| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

SRy U-S.
st


mailto:SWWilliams@lbl.gov

Reminder: Roofline is made of two components

= Machine Model

,T
o Lines defined by peak GB/s and GF/s
(Benchmarking) Peak GFLOP/s
o Unique to each architecture o '
o Common to all apps on that architecture E__.’ '''''''''''' 50% of Peak
o
I
S
<
Arithmetic Intensity (FLOP:Byte) g

-
A
rrrrrrr "“l

BERKELEY LAB



Reminder: Roofline is made of two components

= Machine Model

o Lines defined by peak GB/s and GF/s
(Benchmarking)

o Unique to each architecture
o Common to all apps on that architecture

= Application Characteristics

o Dots defined by application GFLOPs,
GBs, and run time

Attainable FLOP/s
@)

(Application Instrumentation)
>

o Unique to each application Arithmetic Intensity (FLOP:Byte)
o Unique to each architecture

-
A
rrrrrrr "“l

BERKELEY LAB



Two Approaches:
Original Approach Fully Integrated Approach

Empirical Roofline

Toolkit (ERT) Nsight Compute
GFLOP/s, GB/s, efc...

Benchmarking

Existing Analytical Capabilities
Nsight Compute +

Kernel metrics: Roofline Modeling, Profiling,
GFLOPs, GBs, and seconds and Visualization

(@)
=
E

(@)

=
i

Python Scripts

Manipulate metrics and plot

Visualization

= A
4 /\l '

BERKELEY LAB



- >

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

i&“w""% U.S. DEPARTMENT OF

{v) ENERGY

|\




Machine Characterization

Cori/ KNL
* “Theoretical Performance”
numbers can be highly optimistic... .
o Pin BW vs. sustained bandwidth dr o
o TurboMode_ / Underclpck for AVX 5 e  [SummitDev ] 4GPUs
o compiler failings on high-Al loops.
| LBL developed the Empirical o 10000 Ay
Roofline Toolkit (ERT)... N

/
Q,
23,
X

1000

o Characterize CPU/GPU systems
Peak Flop rates

O
o Bandwidths for each level of memory
o MPI+OpenMP/CUDA == multiple GPUs

GFLOPs / se
S

10
0.01 0.1 1 10 100

= Provides a sanity check on
programmers, compilers, vendors

https://bitbucket.org/berkeleylab/cs-roofline-toolkit = A
https://github.com/cyanguwa/nersc-roofline rjr}| ’"'l

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

BERKELEY LAB



ERT Configuration Files

Kernel.c Driver.c
« actual compute e setup
 customizable e call kernels

* loop over parameters

config script job script
« set up ranges of parameters e submit the job and run it

~

Empirical Roofline Toolkit (ERT). /\l“

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/ BERKELEY LAB



ERT on NVIDIA GPUs

-10%

e Theoretical FMA;.7833.6. GFLOP/s.

Empirical FMA: 7068.9 GFLOP/s

= | ast level of memory is ' DRAM’
(ERT calls HBM DRAM on V100)

=
/\ o

« Enumerates all detected caches | /& 4 st o oA 2918700
as L1, L2, etc... %ws -10%
= Uncacheable memory/WT caches £
are not detected (ERT misses L1  *© \Lj%trae" itn
on V100 and calls the L2 the L1) | °
o Too Tor o o o s

Arithmetic Intensity [FLOPs/Byte]

= Empirical ceilings are 8-28%
lower than the theoretical
numbers.

Empirical Roofline Toolkit (ERT). /‘\l ’.ﬁl

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/ BERKELEY LAB



5 R

S, S
,'2;(4' ;.;' N, P
-~

««f BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

U.S. DEPARTMENT OF

) ENERGY




Application Characterization with Nsight (1)

Usage:
ncu -k [regexp] --metrics [metrics] --csv ./application

Kernel Run time:

= Time per invocation of a kernel:
sm_ cycles elapsed.avg / sm__cycles elapsed.avg.per second




Application Characterization with Nsight (2)

#FLOPs:

= For {Double, Single, Half} precision, sum the following metrics:
sm sass thread inst executed op {d,f,h}add pred on.sum +

sm sass thread inst executed op {d,f,h}mul pred on.sum

2*sm sass thread inst executed op {d,f,h}fma pred on.sum

= To calculate FLOPs from Tensor Cores (Volta):
512*sm inst executed pipe tensor.sum

= (far more accurate than NVProf's discretized tensor utilization)

-
A
rrrrrrr ""|

BERKELEY LAB



Application Characterization with Nsight (2)

#Bytes

= Measure bytes for each level of the memory hierarchy
= Scale transactions where necessary

Level Metrics

L1 Cache lltex t bytes.sum
Shared Memory |(lltex data pipe lsu wavefronts mem shared op ld.sum +
(included in L1) lltex data pipe lsu wavefronts mem shared op st.sum) *32
Atomics (Lltex t set accesses pilipe lsu mem global op atom.sum +
(included in L1) lltex::tiset:accesSesipipe:lSu:mem:global:op:red. sum) *32
L2 Cache lts  t bytes.sum
Device Memory dram bytes.sum
System Memory |(lts t sectors aperture sysmem op read.sum +
(PCle) lts t sectors aperture sysmem op write.sum) *32

~

A
reeeeee| M

BERKELEY LAB


samw



A
frreeeee BE

f*‘“'”% U.S. DEPARTMENT OF

{v) ENERGY

|\

| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY




You must combine ERT and Nsight data

= ERT provides compute (horizontal lines) and bandwidth (diagonal lines)
ceilings
= NVProf data must be manipulated

Al _ NVprof GFLOPs GFLOP/s _ NVprof GFLOPs

(x coordinate)  NVprof GBytes  (y coordinate)  NVprof seconds

= Plot Using Python script. e.q.

https://gitlab.com/NERSC/roofline-on-nvidia-gpus/-/tree/master/custom-scripts




You must combine ERT and Nsight data

$ cat data.txt

# all data is space delimited
memroofs 14336.0 2996.8 828.758
mem roof names ‘L1’ ‘L2’ ‘HBM'
comproofs 7068.86 3535.79

comp roof names ‘FMA’ ‘No-FMA' o

% plot roofline.py data.txt

# omit the following if only plotting roofs
# AI: arithmetic intensity; GFLOPs: performance 1m_vum
AT 0.87 2.25 2.58

GFLOPs 2085.756683 FMA: 7068.9 GFLOP/s

labels ‘Kernel’ g ////// //////
(7]
§ No-FMA: 3535.8 GFLOP/s
S
()]
[}
c
[(v]
£
£
Q
o 3
10 e 1
e 2

I HBM ® Kernel

10° 10! 102
Arithmetic Intensity [FLOPs/Byte]

~

A
frreeeee l"|

BERKELEY LAB



|

5 R

S, S
,'2;(4' ;.;' N, P
-~

««f BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

U.S. DEPARTMENT OF

) ENERGY




Nsight has integrated Roofline Analysis

= Nsight's view of V100’s memory
architecture L1GB L2GB HBM GB
| | |

o Green boxes are logical regions e
o Blue boxes are physical levels

= Roofline is calculated based on
the data movement between
physical levels

= Roofline in GUI:
ncu -k [kernel] --metrics [metrics]./application

-
A
rrrrrrr ""|

BERKELEY LAB



Nsight has integrated Roofline Analysis

= Automatically plots Roofline (DRAM shown below

= Allows you to compare multiple versions of a kernel on the same
Roofline (tracks progress towards optimality)

€ NVIDIA Nsight Compute

File Connection Debug Profile Tools Window Help
o Connect
9 baseline.ncurep X
Page: Details ¥ Launch: 0- 2356 - sigma_gpp_gpu_31_gpu v Y ~ AddBaselne ~ = ApplyRules Copy as Image ~
Current 2356 - sigma_gpp_agpu_31_gpu (8388480, 1, 1)x( 128, 1, 1) Time: 1.19second Cycles: 1,301,270,461 Regs: 96 GPU: A100-SXM4-40GB SM Frequency: 1.09 cyde/nsecond CC: 8.0 Process: [206840] gpp.x ® © 0
SOL SM: Inst Executed Pipe Fp16 [%] 0 SOL L1: Data Pipe Tex Wavefronts [%] -

SOL SM: Inst Executed Pipe Ipa [%] 0 SOL L1: Tex Writeback Active [%)]
SOL SM: Pipe Tensor Cycles Active [%] 0 SOL L2: D Atomic Input Cycles Active [%]

Floating Point Operations Roofline

(w]

Performance [FLOP/s]
(1 =1e+12)

0.001
0.

01 - 10
Arithmetic Intensity [FLOP/byte]

Recommendations

A Bottleneck [Warning] Compute is more heavily utiized than Memory: Look at the report section to see what the compute pipelines are spending their time doing. Also, consider whether any computation is redundant and could be reduced or moved to look-up tables.

= A
18 frerrrr "I|

BERKELEY LAB




Complements Existing SOL and PTX analysis

= speed-of-light analysis
comparisons with baseline

= Source/PTX/SASS analysis and
correlation

Current 64291 - softmax_compute_kernel (196... Time: 15.65usecond Cycles: 16,235 Regs: 28 GPU: Tesla V100-5XM2-16GB SM Frequency: 1.04cydefnsecond ~ CC: 7.0 Process: [944] python3.5s @ © @ softmax-inl.h ZNSmxnet2op8mxnet_op22softmax_compute_kernelILiZENS 1_11softmax_fwdELbOEfLi2EN7mshadow4half6half_tES6_EEVPT4_PTS

Baseline 2 54456 - softmax_compute_kernel (196... Time: 15,78 usecond Cycles: 15,760 Regs: 28 GPU: Tesla V100-SXM2-16GB SM Frequency: 997,26 cydefusecond CC: 7.0 Process: [944] python3.5

SOL SM [%]
Memory [%]
TEX [%]
L2 [%]

FB [%]

45.88
43.42
55.37
13.66
43.42

.95%)
.93%)
.35%)
.82%)
.93%)

puration [usecond]

Elapsed Cycles [cycle]

SM Active Cycles [cycle]

SM Frequency [cycle/nsecond]
Memory Frequency [cycle/usecond]

GPU utilization

15.65
16,235
12,110.30
1.84
701.94

(-e.
(+3.
(-2.
(+3.
(+3.

Instructions Executed

Source

DType, oType>

__global__

(DType *in, OType *out, index_t m
Shape<ndim> sshape, Shape<ndim>
temperature) {
x_size = << x_bits;

__shared__ AType smem[x_size];

index_t sa =

index_t base

Memory [%]

red::
(index_t

0.0

Spe:

50.0
ed Of Light [%]

Recommendations

smem[x] = ::

stride[axis];
= (blockIdx.x, sshape, stride);

index_t x = threadIdx.x;

(smem[x]);
i=x;1<m; i+=x_size) {
(smem[x], negate ? -in[base + i*sa] : in[base + i*sa

R
Qs

cuda: :ReducelD<red: :maximum, x_bits>(smem);

DType smax =

A Bottleneck [Warning] This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of this device. Achieved compute throughput and/or memory bandwidth below
60.0% of peak typically indicate latency issues. Look at *Scheduler Statistics™ and “Warp State Statistics” for potential reasons.

red::

» Compute Workload Analysis

Detailed analysis of the compute resources of the streaming multiprocessors (SM), induding the achieved instructions per dock (IPC) and the utilization of each available pipeline. Pipelines with very high utilization might limit the overall

performance.

Executed Ipc Elapsed [inst/cycle]
Executed Ipc Active [inst/cycle]
Issued Ipc Active [inst/cycle]

~ Memory Workload Analysis

Detailed analysis of the memory resources of the GPU. Memory can become a limiting factor for the overall kernel performance when fully utilizing the involved hardware units (Mem Busy), exhausting the available communication

bandwidth between those units (Max Bandwidth), or by reaching the maximum throughput of issuing memory instructio

Memory Throughput [Gbyte/second]
L1 Hit Rate [%]
L2 Hit Rate [%]

312.e9
46.89
94.87

(+0.65%)
(+0.31%)

SM Busy [%]
Issue Slots Busy [%]

ns (Mem Pipes Busy). Detailed chart of the memory units. Detailed tables with data for each memory unit.

Mem Busy [%]
Max Bandwidth [%]

(+0.@

Mem Pipes Busy [%]

Al

DType val;
(index_t

T
0O;
smem[2];
T
0O;

(smen[x1);

i=2x;1<m; i+=x_size) {

val = negate ? -in[base + i*sa]:in[base + i*sa];

smem[x] +=

3
}

<AType>( ((val - smax) /

e
(OH

cuda: :ReduceiD<red: :sum, x_bits>(smem);

AType ssum =

(index_t

0O:
(O

smem[2];

0:
(O

i=2x;1<m; i+=x_size) {

val = negate ? -in[base + i*sa] : in[base + i*sa];

out[base +

19

i*sa] = ((val - smax)/ <DType>(temperat

Sampling Data (Al) =

£

1Q&mé&ﬂmlﬂ®!®®mmmm

Total Sample Count: 111

Barrier: 43 (38.7%

Mio Throttl

"

® Ol O B ® o

Sampling Data (Not Issued) -

Source
BSYNC B
NOP
BAR.
ISETP.GT.AND
BSSY B1,

WU Rs, [
LU RS, [
[R1+exs],
FMNMX RS, RS,
[R14],
NOP
BAR.
WURE, [
ISETP.GT.AND
U R7, [
[R1+exc],
FMNMX -

NOP
BAR.
2URs, [
ISETP.GT.AND
Wwrs, [
[R1+ex1e],
FMNMX

NOP

NOP

Sampling Data (All)
e

q

Bleornvwsennor

Lo re o

ok © B

S R e ECR

B

a

Instructions Executes

¥

SIEGlERIEE

I8

~

A
reeeeee| M

BERKELEY LAB



Scripting interface for Custom Rooflines

= Nsight includes a scripting interface where users can define their own
custom Rooflines (e.g. hierarchical Roofline)
https://docs.nvidia.com/nsight-compute/CustomizationGuide/index.html#sections

= NERSC/NVIDIA have provided example scripts:

https://qgitlab.com/NERSC/roofline-on-nvidia-gpus

e.g.

ncu -f -o myprofile --section-folder ../../ncu-section-files
--sectionSpeedOfLight HierarchicalDoubleRooflineChart ./application

-
A
rrrrrrr "“l

BERKELEY LAB


https://docs.nvidia.com/nsight-compute/CustomizationGuide/index.html
https://gitlab.com/NERSC/roofline-on-nvidia-gpus

Which approach should | use?
yginal Approach Fully Integrated Approach

-mpirical Roofline

Toolkit (ERT) Nsight Compute
GFLOP/s, GB/s, efc...

Existing Analytical Capabilities
Nsight Compute +

Kernel metrics: Roofline Modeling, Profiling,
GFLOPs, GBs, and seconds and Visualization

(@)
=
E

(@)

=
i

Python Scripts

Manipulate metrics and plot

Visualization




g - .. 5 . N
2,

f*“'”% U.S. DEPARTMENT OF

{v) ENERGY

|\

| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

A
frecoee




" BERKELEY LAB

-~

frreeeer

U.S. DEPARTMENT OF

ENERGY

LAWRENCE BERKELEY NATIONAL LABORATORY

BERKELEY LAB



2y ¥ i LU0

ol [(Hasae-- 2o nd i

T i oy T
e 5 L] £

P!
-~
Ul

| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

[

(o) ENERGY




Application Characterization with NVProf (1)

Run time:
= Time per invocation of a kernel
nvprof --print-gpu-trace ./application
= Average time over multiple invocations
nvprof --print-gpu-summary ./application

#FLOPs:
= CUDA Core: Predication aware and complex-operation aware (such as divides)
nvprof --kernels [kernel name] --metrics [flop count xx]./application

e.g. flop count {dp/dp add/dp mul/dp fma, sp*, hp*}
= Tensor Cores:
--metrics tensor precision fu utilization

Note: integer in the range of 0-10, 0=0, 10=125TFLOP/s; multiply by run time -> #FLOPs

-
A
rrrrrrr ""|

BERKELEY LAB



Application Characterization with NVProf (2)

#Bytes

= Measure bytes for each level of the memory hierarchy

= Bytes = (read transactions + write transactions) * transaction size
= Preface with your favor launcher (srun, mpirun, jsrun, etc...)

nvprof --kernels [kernel name] --metrics [metric name] ./application

Metrics

Transaction

First Level Cache

gld transactions, gst transactions,

Size

local load transactions, local store transactions, 32B

atomic transactions
Shared Memory shared load transactions, shared store transactions 128B
Second Level Cache |12 _read transactions, 12 write transactions 32B
Device Memory dram read transactions, dram write transactions 32B
System Memory system read transactions, system write transactions 32B

26

~

A
reeeeee| M

BERKELEY LAB



Application Characterization with NVProf (3)

= You can specify specific context(1), stream(7), and invocation(1) ...

--kernels “1:7:smooth kernel:1”
= Nominally just get an output table

Invocations Metric Mame Metric Description Min Maix AvE
Device "Tesla V1e@-PCIE-16GE (©)"

Kernel: woid smooth _kernel<int=6, int=32, int=4, int=&:>{level type, int, int, double, double, int, double*, double*)

Tlop_count_dp Floating Foint Operations(Double Precision) 3027763 3027763 JB277632

gld transactions Globkal Load Transactions 4280320 4220320 4280320

gst _transactions Global Store Transactions F3728 F3728 F3728

1Z_read_transactions L2 Read Transactions 8303596 830396 830396

1l _write_transactions Lz Write Transactions 8595927 82927 83927

dram_read transactions Device Memory Read Transactions FE2911 FE2911 FO25911

dram_write transactions Device Memory Write Transactions 151457 151487 151487

sysmem_read_bytes swstem Memory Read Byles @ @ @

sysmem_wWrite_byles system Memory Write Byles 1e@ led 168

= e

= Alternately, you can output to a csv...

-—-csv —o nvprof.out

~

27 i

BERKELEY LAB




