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DOE is spending millions of dollars 
porting applications to GPUs…

How do we know if we are 
getting our money’s worth?



Getting our money’s worth?
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§ Imagine profiling a mix of GPU-
accelerated benchmarks …

§ GFLOP/s alone may not be 
particularly insightful

Peak GFLOP/s

§ Really a question of good 
performance on applications 
benchmarks



Are we getting good performance?
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Benchmark

§ We could compare performance to 

a CPU…
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o Speedup may seem random

o Aren’t GPUs always 10x faster than a CPU?

o If not, what does that tell us about 

architecture, algorithm or implementation?

Ø ‘Speedup’ provides no insights into 
architecture, algorithm, or 
implementation.

Ø ‘Speedup’ provides no guidance to CS, 
AM, applications, procurement, or 
vendors.



Are we getting good performance?
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o Modern architectures are incredibly complex
o Simulators may perfectly reproduce 

performance, but can incur 106x 
slowdowns.

Ø Provide no insights into algorithm or 
implementation.

Ø Provide no guidance to CS, AM, 
applications, or procurement.

§ We could take an architectural approach 
and build a simulator to understand every 
nuance of performance…



Are we getting good performance?
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o We may be able to show correlation 
between events, but…

Ø …providing actionable guidance to 
CS, AM, applications, or procurement 
can prove elusive.

§ We could take a CS approach and look at 
performance counters…
o Record microarchitectural events on CPUs/GPUs
o Use arcane architecture-specific terminology
o May be broken
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What’s missing…

§ Each community speaks their own language and develops specialized 
tools/methodologies
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Ø Roofline is just such a model

§ Need common mental model of application execution on a target system
§ Sacrifice accuracy to gain…

o Architecture independence / extensibility
o Readily understandable by the extremely broad DOE community
o intuition, insights, and guidance to CS, AM, apps, procurement, and vendors



Data Movement or Compute?

§ Which takes longer?
o Data Movement
o Compute?
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DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

#FP ops / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s



Data Movement or Compute?
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DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

1 / Peak GFLOP/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max

§ Which takes longer?
o Data Movement
o Compute?

§ Is performance limited by compute or 
data movement?



Data Movement or Compute?
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DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min

§ Which takes longer?
o Data Movement
o Compute?

§ Is performance limited by compute or 
data movement?



Data Movement or Compute?
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DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
Arithmetic Intensity (AI) = measure of data locality

Data Movement or Compute?

§ Which takes longer?
o Data Movement
o Compute?

§ Is performance limited by compute or 
data movement?



(DRAM) Roofline Model
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§ Plot bound on Log-log scale as a 
function of AI (data locality)

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )

§ Measure application (AI,GF/s) and 
scatter plot in the resultant 2D 
locality-performance plane.



(DRAM) Roofline Model
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Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )

§ Roofline tessellates the locality-
performance plane into five regions…



Are we getting good performance?

§ Think back to our mix of 
benchmarks…

14

FL
O

P/
s

Benchmark



Are we getting good performance?

§ We can sort benchmarks by 
arithmetic intensity…
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Are we getting good performance?

§ We can sort benchmarks by 
arithmetic intensity…

§ … and compare performance 
relative to machine capabilities
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Peak GFLOP/s
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Are we getting good performance?

§ Benchmarks near the roofline are 
making good use of 
computational resources
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General Performance Optimization Strategy

§ Get to the Roofline
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General Performance Optimization Strategy

§ Get to the Roofline
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Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

50% of Peak

HBM G
B/s

50
% of

 STREAM

§ Increase Arithmetic Intensity 
when bandwidth-limited
o Reducing data movement increases AI



Roofline and SciDAC



15 years of Roofline R&D
§ 15 years of Roofline activities fall into 3 categories:  

o Research into extending the model
o Prototype implementations
o Integration in production tool

§ Virtuous Cycle
o Research gives rise to prototypes
o Prototypes give rise to production/integration
o Prototypes/Production give rise to new research
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Research: Extending the Model
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Lack of Parallelism…
o Idle Cores/SMs
o Insufficient ILP/TLP
o Divergence and 

Predication

Integer-heavy Codes…
o Non-FP inst. impede 

FLOPs
o No FP instructions

Machine Learning 
Applications…
o Mixed Precision
o Not enough Tensor Core 

OPs

… Additional Ceilings

C. Yang, T. Kurth, S. Williams,
"Hierarchical Roofline analysis for
GPUs: Accelerating performance
optimization for the NERSC-9
Perlmutter system", CCPE, 2019.
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Peak GFLOP/s

…The Hierarchical 
Roofline Model
C. Yang, T. Kurth, S. Williams,
"Hierarchical Roofline analysis for GPUs:
Accelerating performance optimization for
the NERSC-9 Perlmutter system", CCPE,
2019.
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… Roofline Scaling 
Trajectories
K. Ibrahim, S. Williams, L. Oliker,
"Performance Analysis of GPU
Programming Models using the Roofline
Scaling Trajectories", BEST PAPER,
Bench, 2019.
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HBM 25.9 GTXN/s

L2 93.6 GTXN/s

L1 437.5 GTXN/s
Thoeretical Peak: 489.6 warp GIPS

… The Instruction 
Roofline Model
N. Ding, S. Williams, "An Instruction
Roofline Model for GPUs", BEST
PAPER, PMBS, 2019.

DRAM’s not the 
bottleneck…
o Cache bandwidth and 

cache locality
o PCIe bandwidth

Simple DRAM model can be insufficient for a variety of reasons…



Prototypes: Using Roofline for Applications
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Roofline used at ALCF2

o OpenCL and SYCL(shown)
o RAJA LCALS benchmarks
o Intel Gen9 GT4e (left) and NVIDIA 

V100 (right)

Roofline at NERSC/LBL1

o KNL (Cori)
o Compared against Haswell 

(Xeon)
o KNL optimization/readiness 

as a performance trendline

MFDn PICSAREMGeo

§ Resultant prototypes allowed friendly stakeholders to evaluate apps 
using Roofline

§ More recently, DOE centers used Roofline to analyze their applications…



Productization: Vendor Integration
§ Ultimately, users and DOE Centers don’t want CS prototypes
§ Need maintained, production-quality tools
§ Roofline team collaborated with NERSC, ALCF, Intel, and NVIDIA…
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Integration of Roofline into
NVIDIA Nsight Compute (2020)

Integration of Roofline into
Intel Advisor (2017)



Optimization is only the beginning
§ What do we do when we’re on the 

Roofline?
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Peak GFLOP/s§ Need better algorithms
§ Roofline enabled productive 

collaborations with Applied Math 
community



Computer Science-Applied Math CoDesign
§ Think back to how Roofline tessellates 

the locality-performance plane
§ We can rename the regions…

o apps/algorithms in the “FLOPs are free” region 
can do extra FLOPs if they move less data

o those in the “Bytes are free” region can move 
extra data if it saves them on FLOPs
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§ Motivates and provides quantitative 
analysis for the potential for…
o Alternate data structures/representations
o re/precomputation of data
o communication-avoiding algorithms
o alternate and high order numerical methods 



Summary



Take away

§ Roofline has helped hundreds of researchers understand and describe 
application performance relative to machine capabilities
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§ 15 years of SciDAC funding transformed Roofline from a whiteboard 
doodle into an integral component embedded within vendor 
performance analysis tools installed at multiple DOE centers

§ helps frame the conversation between…
§ Application Developers
§ Computer Scientists
§ Applied Mathematicians
§ Processor Vendors

…by providing a common language and mental model
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Arithmetic Intensity

§ Measure of data locality (data reuse)
§ Ratio of Total Flops performed to Total Bytes moved
§ For the DRAM Roofline…

o Total Bytes to/from DRAM 
o Includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)
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Roofline is made of two components

§ Machine Model
o Lines defined by peak GB/s and GF/s 

(Benchmarking)
o Unique to each architecture
o Common to all apps on that architecture
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Roofline is made of two components

§ Machine Model
o Lines defined by peak GB/s and GF/s 

(Benchmarking)

o Unique to each architecture

o Common to all apps on that architecture

§ Application Characteristics
o Dots defined by application GFLOP’s and 

GB’s (Application Instrumentation)

o Unique to each application

o Unique to each architecture
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What is “Good” Performance?

§ Benchmarks near the roofline are 
making good use of 
computational resources
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Peak GFLOP/s
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Ø benchmarks can have low performance 
(GFLOP/s), but make good use 
(%STREAM) of a machine
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What is “Good” Performance?

§ Benchmarks near the roofline are 
making good use of 
computational resources
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Peak GFLOP/s
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Ø benchmarks can have low performance 
(GFLOP/s), but make good use 
(%STREAM) of a machine

Ø benchmarks can have high performance 
(GFLOP/s), but still make poor use of a 
machine (%peak)



Roofline Example

§ Consider a 7-point constant coefficient 
stencil…
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s



Roofline Example

§ Consider a 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

o AI = 7 / (8*8) = 0.11 FLOPs per byte
(measured at the L1)



Roofline Example

§ Consider a 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s



Roofline Example

§ Consider a 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM) 
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s



Roofline Example

§ Consider a 7-point constant coefficient 

stencil…
o 7 FLOPs

o 8 memory references (7 reads, 1 store) per point

o Ideally, cache will filter all but 1 read and 1 write per point

Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM)
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Arithmetic Intensity (FLOP:Byte)

0.083

7-point

Stencil

GFLOP/s ≤ AI * HBM GB/s

0.44
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

== memory bound, but 5x the FLOP rate as TRIAD



Why We Use Roofline…

1. Determine when we’re done optimizing code
o Assess performance relative to machine capabilities
o Track progress towards optimality
o Motivate need for algorithmic changes

2. Identify performance bottlenecks & motivate software optimizations

3. Understand performance differences between Architectures, 
Programming Models, implementations, etc…
o Why do some Architectures/Implementations move more data than others?
o Why do some compilers outperform others?

4. Predict performance on future machines / architectures
o Set realistic performance expectations
o Drive for Architecture-Computer Science-Applied Math Co-Design
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