
The Roofline Model:
A Bridge between Computer Science,

Applied Math, and Computational Science

Samuel Williams
Computational Research Division
Lawrence Berkeley National Lab

SWWilliams@lbl.gov

mailto:SWWilliams@lbl.gov

DOE is spending millions of dollars
porting applications to GPUs…

How do we know if we are
getting our money’s worth?

Getting our money’s worth?

3

Benchmark

G
FL

O
P/

s

§ Imagine profiling a mix of GPU-
accelerated benchmarks …

§ GFLOP/s alone may not be
particularly insightful

Peak GFLOP/s

§ Really a question of good
performance on applications
benchmarks

Are we getting good performance?

4

Benchmark

§ We could compare performance to

a CPU…

G
F

L
O

P
/s

o Speedup may seem random

o Aren’t GPUs always 10x faster than a CPU?

o If not, what does that tell us about

architecture, algorithm or implementation?

Ø ‘Speedup’ provides no insights into
architecture, algorithm, or
implementation.

Ø ‘Speedup’ provides no guidance to CS,
AM, applications, procurement, or
vendors.

Are we getting good performance?

5

o Modern architectures are incredibly complex
o Simulators may perfectly reproduce

performance, but can incur 106x
slowdowns.

Ø Provide no insights into algorithm or
implementation.

Ø Provide no guidance to CS, AM,
applications, or procurement.

§ We could take an architectural approach
and build a simulator to understand every
nuance of performance…

Are we getting good performance?

6

o We may be able to show correlation
between events, but…

Ø …providing actionable guidance to
CS, AM, applications, or procurement
can prove elusive.

§ We could take a CS approach and look at
performance counters…
o Record microarchitectural events on CPUs/GPUs
o Use arcane architecture-specific terminology
o May be broken

.

.

.
FRONTEND_RETIRED.LATENCY_GE_8_PS

FRONTEND_RETIRED.LATENCY_GE_16_PS
FRONTEND_RETIRED.LATENCY_GE_32_PS
RS_EVENTS.EMPTY_END
FRONTEND_RETIRED.L2_MISS_PS
FRONTEND_RETIRED.L1I_MISS_PS

FRONTEND_RETIRED.STLB_MISS_PS
FRONTEND_RETIRED.ITLB_MISS_PS
ITLB_MISSES.WALK_COMPLETED
BR_MISP_RETIRED.ALL_BRANCHES_PS
IDQ.MS_SWITCHES

FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_1_PS
BR_MISP_RETIRED.ALL_BRANCHES_PS
MACHINE_CLEARS.COUNT
MEM_LOAD_RETIRED.L1_HIT_PS
MEM_LOAD_RETIRED.FB_HIT_PS

MEM_LOAD_UOPS_RETIRED.L1_HIT_PS
MEM_LOAD_UOPS_RETIRED.HIT_LFB_PS
MEM_INST_RETIRED.STLB_MISS_LOADS_PS
MEM_UOPS_RETIRED.STLB_MISS_LOADS_PS
MEM_LOAD_RETIRED.L2_HIT_PSMEM_LOAD_UOPS_RETIRED.L2_HIT_PS

MEM_LOAD_RETIRED.L3_HIT_PS
MEM_LOAD_UOPS_RETIRED.LLC_HIT_PS
MEM_LOAD_UOPS_RETIRED.L3_HIT_PS
MEM_LOAD_RETIRED.L3_MISS_PS
MEM_LOAD_UOPS_RETIRED.LLC_MISS_PS

MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS_PS
MEM_LOAD_UOPS_RETIRED.L3_MISS_PS
MEM_INST_RETIRED.ALL_STORES_PS
MEM_UOPS_RETIRED.ALL_STORES_PS
ARITH.DIVIDER_ACTIVE

ARITH.DIVIDER_UOPS
ARITH.FPU_DIV_ACTIVE
INST_RETIRED.PREC_DIST
IDQ.MS_UOPS
INST_RETIRED.PREC_DIST

.

.

.

What’s missing…

§ Each community speaks their own language and develops specialized
tools/methodologies

7

Ø Roofline is just such a model

§ Need common mental model of application execution on a target system
§ Sacrifice accuracy to gain…

o Architecture independence / extensibility
o Readily understandable by the extremely broad DOE community
o intuition, insights, and guidance to CS, AM, apps, procurement, and vendors

Data Movement or Compute?

§ Which takes longer?
o Data Movement
o Compute?

8

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

#FP ops / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s

Data Movement or Compute?

9

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

1 / Peak GFLOP/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max

§ Which takes longer?
o Data Movement
o Compute?

§ Is performance limited by compute or
data movement?

Data Movement or Compute?

10

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min

§ Which takes longer?
o Data Movement
o Compute?

§ Is performance limited by compute or
data movement?

Data Movement or Compute?

11

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
Arithmetic Intensity (AI) = measure of data locality

Data Movement or Compute?

§ Which takes longer?
o Data Movement
o Compute?

§ Is performance limited by compute or
data movement?

(DRAM) Roofline Model

12

A
tta

in
ab

le
 F

LO
P

/s

Arithmetic Intensity (FLOP:Byte)

HBM
 G

B/s

Peak GFLOP/s

§ Plot bound on Log-log scale as a
function of AI (data locality)

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

§ Measure application (AI,GF/s) and
scatter plot in the resultant 2D
locality-performance plane.

(DRAM) Roofline Model

13

A
tta

in
ab

le
 F

LO
P

/s

Arithmetic Intensity (FLOP:Byte)

unattainable performance
(greater than peak GFLOP/s)

unatt
ain

ab
le

perf
orm

an
ce

(in
su

ffic
ien

t b
an

dwidth)

poor

performance
HBM

 G
B/s

Peak GFLOP/s

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

§ Roofline tessellates the locality-
performance plane into five regions…

Are we getting good performance?

§ Think back to our mix of
benchmarks…

14

FL
O

P/
s

Benchmark

Are we getting good performance?

§ We can sort benchmarks by
arithmetic intensity…

15

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

Are we getting good performance?

§ We can sort benchmarks by
arithmetic intensity…

§ … and compare performance
relative to machine capabilities

16

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

50
%

 o
f S

TREAM

50% of Peak

Are we getting good performance?

§ Benchmarks near the roofline are
making good use of
computational resources

17

Peak GFLOP/s

A
tta

in
ab

le
 F

LO
P

/s

HBM
 G

B/s

Arithmetic Intensity (FLOP:Byte)

General Performance Optimization Strategy

§ Get to the Roofline

18

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

50% of Peak

HBM G
B/s

50
% of

 STREAM

General Performance Optimization Strategy

§ Get to the Roofline

19

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

50% of Peak

HBM G
B/s

50
% of

 STREAM

§ Increase Arithmetic Intensity
when bandwidth-limited
o Reducing data movement increases AI

Roofline and SciDAC

15 years of Roofline R&D
§ 15 years of Roofline activities fall into 3 categories:

o Research into extending the model
o Prototype implementations
o Integration in production tool

§ Virtuous Cycle
o Research gives rise to prototypes
o Prototypes give rise to production/integration
o Prototypes/Production give rise to new research

21

Research: Extending the Model

22

Lack of Parallelism…
o Idle Cores/SMs
o Insufficient ILP/TLP
o Divergence and

Predication

Integer-heavy Codes…
o Non-FP inst. impede

FLOPs
o No FP instructions

Machine Learning
Applications…
o Mixed Precision
o Not enough Tensor Core

OPs

… Additional Ceilings

C. Yang, T. Kurth, S. Williams,
"Hierarchical Roofline analysis for
GPUs: Accelerating performance
optimization for the NERSC-9
Perlmutter system", CCPE, 2019.

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

…The Hierarchical
Roofline Model
C. Yang, T. Kurth, S. Williams,
"Hierarchical Roofline analysis for GPUs:
Accelerating performance optimization for
the NERSC-9 Perlmutter system", CCPE,
2019.

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c3

2) (1
28)

DRAM (c1
) (1

4.3)

●

●

●

●

●
●●

roofline_summary_sp_lbl

● Class A
Class B
Class C

c1

c2

c4
c8

c16c32c64

… Roofline Scaling
Trajectories
K. Ibrahim, S. Williams, L. Oliker,
"Performance Analysis of GPU
Programming Models using the Roofline
Scaling Trajectories", BEST PAPER,
Bench, 2019.

10-2 10-1 100 101 102

Instruction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

HBM 25.9 GTXN/s

L2 93.6 GTXN/s

L1 437.5 GTXN/s
Thoeretical Peak: 489.6 warp GIPS

… The Instruction
Roofline Model
N. Ding, S. Williams, "An Instruction
Roofline Model for GPUs", BEST
PAPER, PMBS, 2019.

DRAM’s not the
bottleneck…
o Cache bandwidth and

cache locality
o PCIe bandwidth

Simple DRAM model can be insufficient for a variety of reasons…

Prototypes: Using Roofline for Applications

23

Roofline used at ALCF2

o OpenCL and SYCL(shown)
o RAJA LCALS benchmarks
o Intel Gen9 GT4e (left) and NVIDIA

V100 (right)

Roofline at NERSC/LBL1

o KNL (Cori)
o Compared against Haswell

(Xeon)
o KNL optimization/readiness

as a performance trendline

MFDn PICSAREMGeo

§ Resultant prototypes allowed friendly stakeholders to evaluate apps
using Roofline

§ More recently, DOE centers used Roofline to analyze their applications…

Productization: Vendor Integration
§ Ultimately, users and DOE Centers don’t want CS prototypes
§ Need maintained, production-quality tools
§ Roofline team collaborated with NERSC, ALCF, Intel, and NVIDIA…

24

Integration of Roofline into
NVIDIA Nsight Compute (2020)

Integration of Roofline into
Intel Advisor (2017)

Optimization is only the beginning
§ What do we do when we’re on the

Roofline?

25

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

HBM G
B/s

Peak GFLOP/s§ Need better algorithms
§ Roofline enabled productive

collaborations with Applied Math
community

Computer Science-Applied Math CoDesign
§ Think back to how Roofline tessellates

the locality-performance plane
§ We can rename the regions…

o apps/algorithms in the “FLOPs are free” region
can do extra FLOPs if they move less data

o those in the “Bytes are free” region can move
extra data if it saves them on FLOPs

26

A
tta

in
ab

le
 F

LO
P

/s

Arithmetic Intensity (FLOP:Byte)

HBM G
B/s

Peak GFLOP/s

§ Motivates and provides quantitative
analysis for the potential for…
o Alternate data structures/representations
o re/precomputation of data
o communication-avoiding algorithms
o alternate and high order numerical methods

Summary

Take away

§ Roofline has helped hundreds of researchers understand and describe
application performance relative to machine capabilities

28

§ 15 years of SciDAC funding transformed Roofline from a whiteboard
doodle into an integral component embedded within vendor
performance analysis tools installed at multiple DOE centers

§ helps frame the conversation between…
§ Application Developers
§ Computer Scientists
§ Applied Mathematicians
§ Processor Vendors

…by providing a common language and mental model

Thanks to the Entire
Roofline Team…

Charlene Yang, Doug Doerfler, Thorsten Kurth,
Khaled Ibrahim, Nan Ding, Yunsong Wang, Jonathan Madsen,

Brian Van Straalen, Protonu Basu, Terry Ligocki,
Linda Lo, Matt Cordery, Andrew Waterman,

Jack Deslippe, Lenny Oliker, David Patterson

Acknowledgements
§ This material is based upon work supported by the Advanced Scientific Computing Research Program in the

U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.
§ This material is based upon work supported by the DOE RAPIDS SciDAC Institute.
§ This research used resources of the National Energy Research Scientific Computing Center (NERSC),

which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

§ This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

BACKUP

Arithmetic Intensity

§ Measure of data locality (data reuse)
§ Ratio of Total Flops performed to Total Bytes moved
§ For the DRAM Roofline…

o Total Bytes to/from DRAM
o Includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)

32

Roofline is made of two components

§ Machine Model
o Lines defined by peak GB/s and GF/s

(Benchmarking)
o Unique to each architecture
o Common to all apps on that architecture

33

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

50
% of

 STREAM

Arithmetic Intensity (FLOP:Byte)

50% of Peak

Roofline is made of two components

§ Machine Model
o Lines defined by peak GB/s and GF/s

(Benchmarking)

o Unique to each architecture

o Common to all apps on that architecture

§ Application Characteristics
o Dots defined by application GFLOP’s and

GB’s (Application Instrumentation)

o Unique to each application

o Unique to each architecture

34

A
tta

in
ab

le
 F

LO
P

/s

Arithmetic Intensity (FLOP:Byte)

50% of Peak

50
% of

 STREAM

What is “Good” Performance?

§ Benchmarks near the roofline are
making good use of
computational resources

35

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Ø benchmarks can have low performance
(GFLOP/s), but make good use
(%STREAM) of a machine

50% of Peak

50
%

 o
f S

TREAM

What is “Good” Performance?

§ Benchmarks near the roofline are
making good use of
computational resources

36

Peak GFLOP/s

A
tta

in
ab

le
 F

LO
P

/s

HBM
 G

B/s

Arithmetic Intensity (FLOP:Byte)

Ø benchmarks can have low performance
(GFLOP/s), but make good use
(%STREAM) of a machine

Ø benchmarks can have high performance
(GFLOP/s), but still make poor use of a
machine (%peak)

Roofline Example

§ Consider a 7-point constant coefficient
stencil…

37

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

Roofline Example

§ Consider a 7-point constant coefficient
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point

38

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

o AI = 7 / (8*8) = 0.11 FLOPs per byte
(measured at the L1)

Roofline Example

§ Consider a 7-point constant coefficient
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point

39

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

Roofline Example

§ Consider a 7-point constant coefficient
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM)

40

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

Roofline Example

§ Consider a 7-point constant coefficient

stencil…
o 7 FLOPs

o 8 memory references (7 reads, 1 store) per point

o Ideally, cache will filter all but 1 read and 1 write per point

Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM)

41

A
tt
a
in

a
b
le

 F
L
O

P
/s

H
B
M

 G
B
/s

TRIAD

Arithmetic Intensity (FLOP:Byte)

0.083

7-point

Stencil

GFLOP/s ≤ AI * HBM GB/s

0.44

Peak GFLOP/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

== memory bound, but 5x the FLOP rate as TRIAD

Why We Use Roofline…

1. Determine when we’re done optimizing code
o Assess performance relative to machine capabilities
o Track progress towards optimality
o Motivate need for algorithmic changes

2. Identify performance bottlenecks & motivate software optimizations

3. Understand performance differences between Architectures,
Programming Models, implementations, etc…
o Why do some Architectures/Implementations move more data than others?
o Why do some compilers outperform others?

4. Predict performance on future machines / architectures
o Set realistic performance expectations
o Drive for Architecture-Computer Science-Applied Math Co-Design

42

