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NERSC’s Challenge

How to Enable NERSC’s diverse community 
of 7,000 users, 750 projects, and 700 codes 
to run on advanced architectures like Cori, 
Perlmutter and beyond?



What was different about Cori?

Edison (“Ivy Bridge):
● 5576 nodes
● 24 physical cores per node
● 48 virtual cores per node
● 2.4 - 3.2 GHz

● 8 double precision ops/cycle

● 64 GB of DDR3 memory (2.5 GB per 
physical core)

● ~100 GB/s Memory Bandwidth

Cori (“Knights Landing”):
● 9304 nodes
● 68 physical cores per node
● 272 virtual cores per node
● 1.4 - 1.6 GHz

● 32 double precision ops/cycle

● 16 GB of fast memory
96GB of DDR4 memory

● Fast memory has 400 - 500 GB/s
● No L3 Cache



Optimization Challenges For Scientists

Science teams need a simple way to wrap their heads around performance when 
main focus is scientific productivity:

1. Need a sense of absolute performance when optimizing applications.
- How Do I know if My Performance is Good? 
- Why am I not getting peak performance advertised
- How Do I know when to stop? 

2. Many potential optimization directions:
- How do I know which to apply? 
- What is the limiting factor in my app’s performance?
- Again, how do I know when to stop? 



Optimizing Code For Cori is like:

A. A Staircase ?

A. A Labyrinth ?

A. A Space Elevator?

(More) 
Optimized Code
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MPI/OpenMP
Scaling Issue

IO bottlenecks

Use Edison to 
Test/Add OpenMP 

Improve Scalability. 
Help from 

NERSC/Cray COE 
Available.

Utilize High-Level 
IO-Libraries. 

Consult with NERSC 
about use of Burst 

Buffer.

Utilize 
performant / 

portable 
libraries

The Dungeon:
Simulate kernels on KNL. 
Plan use of on package 

memory, vector 
instructions.

The Ant Farm!
Communication 
dominates beyond 
100 nodes

Code shows no 
improvements 
when turning on 
vectorization

OpenMP 
scales only to 
4 Threads

large cache 
miss rate

50% Walltime 
is IO

Compute intensive 
doesn’t vectorize

Can you 
use a 

library?
Create micro-kernels or 

examples to examine 
thread level 

performance, 
vectorization, cache use, 

locality.

Increase 
Memory 
Locality

Memory bandwidth
bound kernel



Roofline helps visualize this information! 
Guides optimizations

WARP Optimizations:
1. Add tiling over grid targeting L2 cache on both Xeon-Phi Systems

1. Add particle sorting to further improve locality and memory access 
pattern

1. Apply vectorization over particles 



NESAP Example



BerkeleyGW

• A massively parallel package 
for GW calculations

• Sits on top of DFT codes

• Computational motifs
– FFTs
– Dense linear algebra
– Large reductions



Sigma-GPP

do n1 = 1, nbands n’ e.g. 2763 
do igp = 1, ngpown G’ e.g. 6633

do ig = 1, ncouls G e.g. 26529 
do iw = 1, nw E e.g. 3

compute: 1. mixed data types
e.g. complex double, double, integer

2. various memory access patterns
e.g. (ig,igp)(ig,n1)(igp,n1)(iw,n1)(n1) 

3. complex number divisions 
4. nw is very small, will be unrolled

reduction: 1. complex numbers
2. all top 3 loops, billions of iterations

Pseudo Code



BerkeleyGW NESAP Project Optimization Path

Optimization process for GPP Kernel

1. Add OpenMP
2. Initial Vectorization (loop reordering, 

conditional removal)
3. Cache-Blocking
4. Improved Vectorization (Divides)
5. Hyper-threading



Vectorization

ngpown typically in 
100’s to 1000s. Good 
for many threads.

ncouls typically in 
1000s - 10,000s. 
Good for 
vectorization. 

Original inner loop. 
Too small to 
vectorize!

Attempt to save work 
breaks vectorization 
and makes code 
slower.

!$OMP DO reduction(+:achtemp)
do my_igp = 1, ngpown
...
do iw=1,nfreq ! nfreq is 3

scht=0D0
wxt = wx_array(iw)

do ig = 1, ncouls

!if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

wdiff = wxt - wtilde_array(ig,my_igp)
delw = wtilde_array(ig,my_igp) / wdiff
...
scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)
scht = scht + scha(ig)

enddo ! loop over g
sch_array(iw) = sch_array(iw) + 0.5D0*scht

enddo   

achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

enddo



Change in Roofline

The loss of L3 on MIC makes locality more important.



Why KNC worse than Haswell for GPP Kernel?

!$OMP DO
do my_igp = 1, ngpown 

do iw = 1 , 3
do ig = 1, igmax

load wtilde_array(ig,my_igp) 819 MB, 512KB per row
load aqsntemp(ig,n1) 256 MB, 512KB per row
load I_eps_array(ig,my_igp) 819 MB, 512KB per row
do work (including divide)

Required Cache size to reuse 3 times:

1536 KB

L2 on KNL is 512 KB per core
L2 on Has. is 256 KB per core

L3 on Has. is 3800 KB per core

Without blocking we spill out of L2 on 
KNL and Haswell. But, Haswell has L3 to 
catch us.



Why KNC worse than Haswell for GPP Kernel?

!$OMP DO
do my_igp = 1, ngpown 

do igbeg = 1, igmax, igblk
do iw = 1 , 3

do ig = igbeg, min(igbeg + igblk,igmax)
load wtilde_array(ig,my_igp) 819 MB, 512KB per row
load aqsntemp(ig,n1) 256 MB, 512KB per row
load I_eps_array(ig,my_igp) 819 MB, 512KB per row
do work (including divide)

Required Cache size to reuse 3 times:

1536 KB

L2 on KNL is 512 KB per core
L2 on Has. is 256 KB per core

L3 on Has. is 3800 KB per core

Without blocking we spill out of L2 on 
KNL and Haswell. But, Haswell has L3 to 
catch us.



Cache Blocking Optimization



Cache Blocking Optimization (Hierarchical Roofline)

Original Code                                                                                                    Cache-Blocking Code



Additional Speedups from Hyperthreading



GPP on GPUs in 8 Steps

1. Collapse n’, G’, and G loops
2. Bring n’ loop in; collapse only G’ and G
3. Adjust threadblock size 
4. Reduce branching; pull iw loop outside
5. Swap indices to suite parallelisation
6. Simplify code
7. Replace div. with rcp. and mul.
8. Replace abs with power of 2
9. Cache blocking

TFLOPs Time TFLOP/s
v1.collapse3 3.71 1.63 2.27
v9.block 2.00 0.57 3.50

3x !!



V1. Naïve Implementation 

• Collapse the first 3 loops to gain parallelism

TFLOPs Time (sec) TFLOP/s
v1.collapse3 3.71 1.63 2.27

!$ACC PARALLEL LOOP COLLAPSE(3) REDUCTION(+: )
do n1 = 1, nbands 

do igp = 1, ngpown
do ig = 1, ncouls 

do iw = 1, nw #unrolled
compute and reduction



V2. More Compute Per Thread

TFLOPs Time TFLOP/s
v1.collapse3 3.71 1.63 2.27
v2.collapse2 3.71 1.73 2.15

!$ACC PARALLEL LOOP COLLAPSE(2) REDUCTION(+: )
do igp = 1, ngpown

do ig = 1, ncouls 
do n1 = 1, nbands #unrolled too!

do iw = 1, nw #unrolled
compute and reduction

• Move n’ loop in, and collapse the first 2 loops



• L2/HBM AI increases!

• Register count at 186
– Very low occupancy
– 8 warps per SM

• Need more warps to hide latency!

V2. More Compute Per Thread



V3. Increase Threadblock Size

• Force threadblock size to be 512, instead of the default 128

• Register spills but performance may not be bad!

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads

ptxas info : Used 186 registers, 624 bytes cmem[0], 32 bytes cmem[2]

104 bytes stack frame, 188 bytes spill stores, 168 bytes spill loads

ptxas info : Used 128 registers, 624 bytes cmem[0], 32 bytes cmem[2]

!$ACC PARALLEL LOOP COLLAPSE(2) VECTOR_LENGTH(512) REDUCTION(+: )



V3. Increase Threadblock Size

• More bandwidth bound now but 
latency hiding is successful!

TFLOPs Time TFLOP/s

v2.collapse2 3.71 1.73 2.15

v3.vector512 3.71 1.40 2.65



V4. Reduce Branching 

• Bring iw loop outside of the kernel

• Fewer variables to be reduced -> lower register pressure
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads

ptxas info : Used 122 registers, 600 bytes cmem[0], 32 bytes cmem[2]

do iw = 1, nw #reduce branching
!$ACC PARALLEL LOOP COLLAPSE(2) VECTOR_LENGTH(512) REDUCTION(+: )
do igp = 1, ngpown

do ig = 1, ncouls 
do n1 = 1, nbands #unrolled  
compute and reduction



V4. Reduce Branching 

• Aggregated data for all kernels 

• BRA instruction count
14,278,897,053
5,975,051,812   x  2

TFLOPs Time TFLOP/s

v3.vector512 3.71 1.40 2.65

v4.iwoutside 3.52 1.17 3.00

16%



V5. Swap Indices

TFLOPs Time TFLOP/s

v4.iwoutside 3.52 1.17 3.00

v5.swapindices 3.52 1.16 3.03

do iw = 1, nw
!$ACC PARALLEL LOOP 
do igp = 1, ngpown

do ig = 1, ncouls 
do n1 = 1, nbands 

wx_array(iw,n1) to (n1,iw)



V6. Simplify Code

• Fewer instructions  -> less work
– Pull repeated instructions outside the loop
– Use temporary variables to hold intermediate values for reuse

• Less branches -> better programming
– 3 branches is more than 1 branch 

worse than 2 branches!

TFLOPs Time TFLOP/s

v5.swapindices 3.52 1.16 3.03

v6.simplify 3.30 1.10 3.00



V7. Replace Divides

• Replace (complex) div. with (double) rcp. and (complex) mul.
• Lower instruction count:  40%

• More bandwidth bound now!

TFLOPs Time TFLOP/s

v6.simplify 3.30 1.10 3.00

v7.divs 2.09 0.66 3.18



• Can be confirmed by Nsight Compute profiles

V7. Replace Divides



V8. Replace abs(x) with x**2

•

TFLOPs Time TFLOP/s

v7.divs 2.09 0.66 3.18

v8.abs 1.99 0.62 3.23

complex(DP) ssx
if (abs(ssx) .le. ssxcutoff) then  

real(DP) ssxpower
if (ssxpower .le. ssxcutoff **2) then



V8. Replace abs(x) with x**2
Before: 

– Wait: warp stalled waiting on a fixed latency execution dependency 



V8. Replace abs(x) with x**2
After:

– Wait: 46.6% -> 23.7% 



V9. Cache Blocking 
• Non-coalesced memory access for aqsntemp
• Causing Long Scoreboard Warp State

– Warp stalled waiting for L1TEX (local, global, surface, tex) memory operation



V9. Cache Blocking 

• Break loops into chunks and reuse data across threadblocks
• Increase L2 hit rate

TFLOPs Time TFLOP/s

v8.abs 1.99 0.62 3.23

v9.block 2.00 0.57 3.50

!$ACC LOOP GANG VECTOR
do ig_blk = 1, ig_blksize
!$ACC LOOP SEQ
do ig = ig_blk, ncouls, 

ig_blksize



V9. Cache Blocking 

• Less Long Scoreboard samples and higher L2/L1 hit rate



Summary
8 Steps to Optimize Sigma-GPP

1. Collapse n’, G’, and G loops
2. Bring n’ loop in; collapse only G’ and G
3. Adjust threadblock size 
4. Reduce branching; pull iw loop outside
5. Swap indices to suite parallelisation
6. Simplify code
7. Replace div. with rcp. and mul.
8. Replace abs with power of 2
9. Cache blocking

!$ACC PARALLEL LOOP REDUCTION(+: 
)
do n1 = 1, nbands 

do igp = 1, ngpown
do ig = 1, ncouls 

do iw = 1, nw
compute and reduction

TFLOPs Time TFLOP/s
v1.collapse3 3.71 1.63 2.27
v9.block 2.00 0.57 3.50

3x !!



Conclusion

• Code is still bandwidth and latency bound
– shared memory
– lower register count
– improve FMA ratio

• Together with profilers, 
Roofline provides the 
complete solution for your 
performance analysis and 
optimization needs!



Conclusions

Roofline is a great way to Frame Conversation with Application 
Teams

Helps Motivate, Direct and Visualize the optimization process.

Coming soon to a tool near you!!  



Extras



BerkeleyGW Use Case

★ Big systems require more memory. Cost scales as Natoms^2 to store the data.
★ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and 

each MPI task has a memory overhead.
★ Users sometimes forced to use 1 of 24 available cores, in order to provide MPI tasks with 

enough memory.  90% of the computing capability is lost.

Distributed Data

Overhead Data

MPI Task 1

Distributed Data

Overhead Data

MPI Task 2

Distributed Data

Overhead Data

MPI Task 3

…



Computational Bottlenecks

In house code (I’m one of main developers). Use as “prototype” for App 
Readiness.

Significant Bottleneck is large matrix reduction like operations. Turning arrays 
into numbers.



Make 
Algorithm
Changes

Is 
Performance 
affected by 
Half-Clock 

Speed?

Run Example 
at “Half Clock” 

Speed

Run Example 
in “Half 

Packed” Mode

Is 
Performanc
e affected 
by Half-

Packing?

Your Code is at least 
Partially Memory 
Bandwidth Bound

You are at 
least 

Partially 
CPU Bound

Likely Partially 
Memory Latency 

Bound 
(assuming not IO or 

Communication 
Bound) 

Use IPM and Darshan to 
Measure and Remove 
Communication and IO 
Bottlenecks from Code

Make 
Algorithm
Changes

YesYes

No No

The Ant Farm Flow Chart



So, you are Memory Bandwidth Bound?

What to do?

1. Try to improve memory locality, 
cache reuse 

1. Identify the key arrays leading to high memory bandwidth usage and make sure they are/will-
be allocated in HBM on Knights Landing. 

Profit by getting ~ 4-5x more bandwidth GB/s.



So, you are Compute Bound?

What to do?
1. Make sure you have good OpenMP scalability. Look at VTune to see thread activity for major 

OpenMP regions.

1. Make sure your code is vectorizing. Look at Cycles per Instruction (CPI) and VPU utilization 
in vtune. 

See whether intel compiler vectorized loop using compiler flag: -qopt-report=5



Are you latency bound?

You may be memory latency bound (or you may be spending all your time in IO and Communication). 

If running with hyper-threading improves performance, you *might* be latency 
bound:

If you can, try to reduce the number of memory requests per flop by accessing 
contiguous and predictable segments of memory and reusing variables in cache as 
much as possible.

On Knights-Landing, each core will support up to 4 threads. Use them all.

aprun -j 2 -n 48 …. aprun -n 24 ….VS



If your performance changes, you are at least partially memory bandwidth bound

Are you memory or compute bound? Or both?

Run Example 

in “Half 

Packed” Mode

aprun -n 24 -N 12 - S 6 ... VS aprun -n 24 -N 24 -S 12 ...

If you run on only half of the cores on a node, each core you do run 

has access to more bandwidth 

srun -N 2 -n 24 -c 2 - S 6 ... VS srun -N 1 -n 24 -c 1 ...



Cori KNL System

Cray XC40 system with 9,600+ Intel Knights Landing (KNL) nodes:

● 68 cores, 272 Hardware Threads

● Up to 32 FLOPs per Cycle, 1.2-1.4 GHz Clock Rate

● Wide (512 Bit) vector Units

● Multiple Memory Tiers: 96 GB DRAM / 16 GB HBM

● NVRAM Burst Buffer 1.5 PB, 1.5 TB/sec


