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GFLOP/s = min       Peak GFLOP/s
AI * GB/s

History of Roofline Models 
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• Sustainable performance is bound by

Roofline Model

• Arithmetic Intensity (AI) : FLOPs/Byte
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• Arithmetic Intensity (AI) : FLOPs/Byte(L1/L2/DRAM)
• Additional compute ceilings: No-FMA peak
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Roofline is Useful
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Memory-bound or Compute-bound Cache effects

Driving performance optimization
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However…

• Even with sufficient data locality, one cannot guarantee high performance
• Pathological memory access patterns?
• Re-design the data layout?
• Limited by instruction throughput?

• Many applications perform more integer operations than floating-point/no-flops
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Motivation  for the Instruction Roofline Model

Emerging Domains Architectural Evolution Practical Use

• Mixed precision, Integer-
heavy

• No floating points 
operations

• Instruction throughput
• pipeline utilization

• Warp efficiency
• Thread predication

• Memory access patterns
• reduce wasted transactions
• reduce redundant access

More than Flops A New Set of Metrics

• What is holding you back?

• What optimizations should 
be performed?

• When to stop optimization?

Drive Code Optimization 
in a Good Visual Manner



GFLOP/s = min       Peak GFLOP/s
sAI * GB/s
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The First Step to Instruction Roofline Model
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Peak GIPS

Expanding the applicability of roofline to 
several emerging computational domains

Form the basis for several subsequent Instruction 
Roofline-oriented performance analysis 
technologies 

• Identify fetch-decode-issue bottlenecks
• Function unit utilization (FPU, tensor, 

integer, etc...) 

• Sustainable performance is bound by

GIPS = min       Peak GIPS
II * GB/s



7

The Second Step to Instruction Roofline Model
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• Instruction Intensity: Instructions per Byte

Limitation:
Hard to motivate more performance analysis 
techniques, such as memory pattern access

GFLOP/s = min       Peak GFLOP/s
AI * GB/s

Expanding the applicability of roofline to 
several emerging computational domains

• Sustainable performance is bound by

GIPS = min       Peak GIPS
II * GB/s
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A Final Step to Instruction Roofline Model on GPUs
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• Memory Transaction
• the natural unit to access data on NVIDIA GPUs
• the natural unit to analyze memory access
• a warp-level load/store -> 1 - 32 transactions

Expanding the applicability of roofline to more 
performance analysis technologies  GPUs

• Instruction Intensity 
• Instructions per Transaction 

Form the basis for several subsequent Instruction 
Roofline-oriented performance analysis 
technologies on GPUs:

• Memory access patterns

GIPS = min       Peak GIPS
Instructions/Transaction * GTXN/s



Instruction Roofline Performance Model

• Sustainable performance of is bound by

• Theoretical Peak on V100:
80 SMs x 4 warp scheduler x 1 inst/cyc x 1.53GHz = 489.6 GIPS

[1] https://bitbucket.org/berkeleylab/cs-roofline-toolkit 9

GIPS = min       Peak GIPS
Instruction Intensity * GTransaction/s
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• Memory ceilings on V100:
• Based on the GB/s from Empirical Roofline 

Toolkit[1] 

• Calculate the number of equivalent 32-byte 
transactions



Instruction Throughput

Capabilities of Instruction Roofline Performance Model （1/2）



Capabilities of Instruction Roofline Model  -- Instruction Throughput

• Instruction throughput
All instruction,  Transactions of each memory level(L1/L2/HBM), runtime
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• Insights:
1. Distance between the 

ceilings and dots can 
tell memory-bound or 
instruction-bound

2. Distance between the 
two plots (different 
memory level) can tell 
the data reuse.
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Theoretical



• Instruction throughput
All instruction,  Transactions of each memory level(L1/L2/HBM), runtime
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Better!
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• Insights:
1. Distance between the 

ceilings and dots can 
tell memory-bound or 
instruction-bound

2. Distance between the 
two plots (different 
memory level) can tell 
the data reuse.

Capabilities of Instruction Roofline Model  -- Instruction Throughput

Theoretical



Memory Access Patterns

Capabilities of Instruction Roofline Performance Model （2/2）



Memory Access Pattern is Critical to Application Execution Time 
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Easy to code in an inefficient memory pattern

Low performance 

Hidden deep in the code

Time consuming to reason the performance



Capabilities of Instruction Roofline Model -- Global Memory Patterns

1 warp-level load/store ->  1 to 32 transactions depending on memory patterns

𝟏 "#$% &'()#' *+,-
𝟏 &'()#' -$#./#012(.

“Stride-0” 
𝟏 "#$% &'()#' *+,-

𝟑𝟐 &'()#' -$#./#012(./

“Stride-8”

Useful data Waste data
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… 1 global transaction
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Capabilities of Instruction Roofline Performance Model 
---- Three Intensity ``Walls’’ for Stride Global Memory Access Patterns
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Better Efficiency!
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Capabilities of Instruction Roofline Performance Model 
---- Characterize Global Memory Access Patterns

Breakdown the L1 dot into Global Memory Only metrics -> Stride Global Memory Patterns 
according to  Global Memory Walls

X-axis: 𝑮𝒍𝒐𝒃𝒂𝒍 𝑳𝑫𝑺𝑻 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔𝑮𝒍𝒐𝒃𝒂𝒍 𝒕𝒓𝒂𝒏𝒔𝒂𝒄𝒕𝒊𝒐𝒏𝒔

Y-axis : 𝑮𝒍𝒐𝒃𝒂𝒍 𝑳𝑫𝑺𝑻 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔𝑹𝒖𝒏𝒕𝒊𝒎𝒆

17

Better Efficiency!

TheoreticalX-axis: 𝑻𝒐𝒕𝒂𝒍 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔
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Capabilities of Instruction Roofline Performance Model 
---- Shared Memory Access Patterns

Notional Physical

__shared__ int array[32][32]
32 banks per shared memory row
Each bank is 4 Byte

Reduce bank conflicts
__shared__ int array[32][32+1]

310 1
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__shared__ int array[32][32]
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• “No bank conflict” =  O"#$% ,P#$QR *+,-O ,P#$QR -$#./#012(.

• different 4-byte word, different bank
• same 4-byte word , same bank

• “32-way bank conflict” = O"#$% ,P#$QR *+,-
ST ,P#$QR -$#./#012(./

• different 4-byte words, same bank

Capabilities of Instruction Roofline Performance Model 
---- Two Intensity ``Walls’’ for Bank Shared Memory Access Patterns
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Capabilities of Instruction Roofline Performance Model 
---- Characterize Shared Memory Access Patterns

Breakdown the L1 dot into Shared Memory Only metrics -> banked Shared Memory Patterns 
according to  Shared Memory Walls
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Better Efficiency!



An example to understand the outputs from Instruction Roofline Model

Example:  Matrix Transpose

Description A-> AT, stored in column major
Matrix size 1024 x 1024
Machine NVIDIA’s latest V100 GPU

Implementations Naive Coalesced Coalesced_NoBankConflict

Simple 
copy

Coaleced global 
memory access

Based on “Coalesced”
Reduce shared memory bank 
conflicts

Using 32×8 thread blocks operating on 32×32 matrix tiles 

21



Global memory stride access

Input Matrix: A (column major)

Output Matrix: AT (column major)
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Naive Implementation

Instruction Throughput
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Global memory stride access

Input Matrix: A (column major)

Output Matrix: AT (column major)
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Coalesced Implementation

Instruction Throughput

Coalesced read
32 x 32 (floats)

Coalesced write

Shared memory

Recalculating 
the array index

Better Efficiency!
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Shared memory bank access

Input Matrix: A (column major)

Output Matrix: AT (column major)
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Coalesced Implementation

Coalesced read
32 x 32 (floats)

Coalesced write

Shared memory

Recalculating 
the array index
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Shared memory bank access

Input Matrix: A (column major)

Output Matrix: AT (column major)
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Coalesced_NoBankConflict Implementation

Instruction Throughput

Coalesced read
32 x 32 (floats)

Coalesced write

Shared memory

Recalculating 
the array index

k k+16
T0 T1

… …

T3
T4 T5
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[32][32+1]
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Summary

• Instruction Throughput 
• Expanding the applicability of roofline to several emerging computational domains

• Global Memory Access Patterns
• Quantify the memory access pattern, e.g. unit-stride vs. gather/scatter

• Shared Memory Access Patterns
• Denote the efficiency of shared memory access.
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There’s more in the paper !!
• Thread Predication
• More Examples 

• HPGMG (mixed precision): three implementations. 
• BatchSW (integer-only): two implementations

• Tensor core
• WMMA
• cuBLAS



Closing Thoughts



Emerging Domains Architectural Evolution Practical Use

• Mixed precision 
• Integer-heavy
• No floating points operations

• Instruction throughput
• pipeline utilization

• Quantify memory pattern 
• Unit-stride, scatter/gather

• Efficiency of memory access
• Warp efficiency

• Thread predication

Applicability of roofline 
to GPUs with greater 
insights

• Unified visualization of 
bandwidth and access 
efficiency

Applicability to several 
emerging computational 
domains

Rapidly tell how 
different aspects of 
modern GPU 
architectures constrain 
performance.

What the Instruction Roofline Models Tell us…



Future Work

• Apply our methodology to other accelerated architectures

• Extend the access efficiency concept to networking, I/O, and Lustre file systems.
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Questions?



Backup


