
Guiding
Optimization on
KNL with the
Roofline Model

February, 2018

What is different about Cori?

Edison (“Ivy Bridge):
● 5576 nodes
● 24 physical cores per node
● 48 virtual cores per node
● 2.4 - 3.2 GHz

● 8 double precision ops/cycle

● 64 GB of DDR3 memory (2.5 GB per
physical core)

● ~100 GB/s Memory Bandwidth

Cori (“Knights Landing”):
● 9304 nodes
● 68 physical cores per node
● 272 virtual cores per node
● 1.4 - 1.6 GHz

● 32 double precision ops/cycle

● 16 GB of fast memory
96GB of DDR4 memory

● Fast memory has 400 - 500 GB/s
● No L3 Cache

NERSC’s Challenge

How to Enable NERSC’s diverse community
of 7,000 users, 750 projects, and 700 codes
to run on advanced architectures like Cori
and beyond?

Optimization Challenges

1. Need a sense of absolute performance when optimizing
applications.
- How Do I know if My Performance is Good?
- How Do I know when to stop?
- Why am I not getting peak performance? Or the predicted ceiling for my application?

2. Many potential optimization directions:
- How do I know which to apply?
- What is the limiting factor in my app’s performance?
- How do I know when to stop?

Optimizing Code For Cori is like:

A. A Staircase ?

A. A Labyrinth ?

A. A Space Elevator?

(More)
Optimized Code

- 6 -

MPI/OpenMP
Scaling Issue

IO bottlenecks

Use Edison to
Test/Add OpenMP

Improve Scalability.
Help from

NERSC/Cray COE
Available.

Utilize High-Level
IO-Libraries.

Consult with NERSC
about use of Burst

Buffer.

Utilize
performant /

portable
libraries

The Dungeon:
Simulate kernels on KNL.
Plan use of on package

memory, vector
instructions.

The Ant Farm!
Communication
dominates beyond
100 nodes

Code shows no
improvements
when turning on
vectorization

OpenMP
scales only to
4 Threads

large cache
miss rate

50% Walltime
is IO

Compute intensive
doesn’t vectorize

Can you
use a

library?
Create micro-kernels or

examples to examine
thread level

performance,
vectorization, cache use,

locality.

Increase
Memory
Locality

Memory bandwidth
bound kernel

Are you memory or compute bound? Or both?

Run Example
in “Half

Packed” Mode

aprun -n 24 -N 12 - S 6 ... VS aprun -n 24 -N 24 -S 12 ...

If you run on only half of the cores on a node, each core you do use
has access to more bandwidth

If your performance changes, you are at least partially memory bandwidth bound

srun -N 2 -n 24 -c 2 - S 6 ... VS srun -N 1 -n 24 -c 1 ...

Are you memory or compute bound? Or both?

aprun --p-state=2400000 ... VS aprun --p-state=1900000 ...

Reducing the CPU speed slows down computation, but doesn’t
reduce memory bandwidth available.

If your performance changes, you are at least partially compute bound

Run Example
at “Half Clock”

Speed

srun --cpu-freq=2400000 ... VS srun --cpu-freq=1900000 ...

Roofline helps visualize this information!
Guides optimizations

WARP Optimizations:
1. Add tiling over grid targeting L2 cache on both Xeon-Phi Systems

1. Add particle sorting to further improve locality and memory access
pattern

1. Apply vectorization over particles

NESAP Example

BerkeleyGW NESAP Project Optimization Path

Optimization process for Kernel-C (Sigma
code):

1. Refactor (3 Loops for MPI, OpenMP,
Vectors)

2. Add OpenMP
3. Initial Vectorization (loop reordering,

conditional removal)
4. Cache-Blocking
5. Improved Vectorization (Divides)
6. Hyper-threading

Vectorization

ngpown typically in
100’s to 1000s. Good
for many threads.

ncouls typically in
1000s - 10,000s.
Good for
vectorization.

Original inner loop.
Too small to
vectorize!

Attempt to save work
breaks vectorization
and makes code
slower.

!$OMP DO reduction(+:achtemp)
do my_igp = 1, ngpown

...
do iw=1,nfreq ! nfreq is 3

scht=0D0
wxt = wx_array(iw)

do ig = 1, ncouls

!if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

wdiff = wxt - wtilde_array(ig,my_igp)
delw = wtilde_array(ig,my_igp) / wdiff
...
scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)
scht = scht + scha(ig)

enddo ! loop over g
sch_array(iw) = sch_array(iw) + 0.5D0*scht

enddo

achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

enddo

Change in Roofline

The loss of L3 on MIC makes locality more important.

Why KNC worse than Haswell for GPP Kernel?

!$OMP DO
do my_igp = 1, ngpown

do iw = 1 , 3
do ig = 1, igmax

load wtilde_array(ig,my_igp) 819 MB, 512KB per row
load aqsntemp(ig,n1) 256 MB, 512KB per row
load I_eps_array(ig,my_igp) 819 MB, 512KB per row
do work (including divide)

Required Cache size to reuse 3 times:

1536 KB

L2 on KNL is 512 KB per core
L2 on Has. is 256 KB per core

L3 on Has. is 3800 KB per core

Without blocking we spill out of L2 on
KNL and Haswell. But, Haswell has L3 to
catch us.

Why KNC worse than Haswell for GPP Kernel?

!$OMP DO
do my_igp = 1, ngpown

do igbeg = 1, igmax, igblk
do iw = 1 , 3

do ig = igbeg, min(igbeg + igblk,igmax)
load wtilde_array(ig,my_igp) 819 MB, 512KB per row
load aqsntemp(ig,n1) 256 MB, 512KB per row
load I_eps_array(ig,my_igp) 819 MB, 512KB per row
do work (including divide)

Required Cache size to reuse 3 times:

1536 KB

L2 on KNL is 512 KB per core
L2 on Has. is 256 KB per core

L3 on Has. is 3800 KB per core

Without blocking we spill out of L2 on
KNL and Haswell. But, Haswell has L3 to
catch us.

Cache Blocking Optimization

Cache Blocking Optimization (Hierarchical Roofline)

Original Code Cache-Blocking Code

Why Complex Divides so Slow?

Found significant x87 instructions from 1/complex_number instead of AVX/AVX-512

Can significantly speed up by using

-fp-model fast=2

Additional Speedups from Hyperthreading

Extras

BerkeleyGW Use Case

★ Big systems require more memory. Cost scales as Natoms^2 to store the data.
★ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and

each MPI task has a memory overhead.
★ Users sometimes forced to use 1 of 24 available cores, in order to provide MPI tasks with

enough memory. 90% of the computing capability is lost.

Distributed Data

Overhead Data

MPI Task 1

Distributed Data

Overhead Data

MPI Task 2

Distributed Data

Overhead Data

MPI Task 3

…

Computational Bottlenecks

In house code (I’m one of main developers). Use as “prototype” for App
Readiness.

Significant Bottleneck is large matrix reduction like operations. Turning arrays
into numbers.

Make
Algorithm
Changes

Is
Performance
affected by
Half-Clock

Speed?

Run Example
at “Half Clock”

Speed

Run Example
in “Half

Packed” Mode

Is
Performanc
e affected
by Half-

Packing?

Your Code is at least
Partially Memory
Bandwidth Bound

You are at
least

Partially
CPU Bound

Likely Partially
Memory Latency

Bound
(assuming not IO or

Communication
Bound)

Use IPM and Darshan to
Measure and Remove
Communication and IO
Bottlenecks from Code

Make
Algorithm
Changes

YesYes

No No

The Ant Farm Flow Chart

So, you are Memory Bandwidth Bound?

What to do?

1. Try to improve memory locality,
cache reuse

1. Identify the key arrays leading to high memory bandwidth usage and make sure they are/will-
be allocated in HBM on Knights Landing.

Profit by getting ~ 4-5x more bandwidth GB/s.

So, you are Compute Bound?

What to do?
1. Make sure you have good OpenMP scalability. Look at VTune to see thread activity for major

OpenMP regions.

1. Make sure your code is vectorizing. Look at Cycles per Instruction (CPI) and VPU utilization
in vtune.

See whether intel compiler vectorized loop using compiler flag: -qopt-report=5

Are you latency bound?

You may be memory latency bound (or you may be spending all your time in IO and Communication).

If running with hyper-threading improves performance, you *might* be latency
bound:

If you can, try to reduce the number of memory requests per flop by accessing
contiguous and predictable segments of memory and reusing variables in cache as
much as possible.

On Knights-Landing, each core will support up to 4 threads. Use them all.

aprun -j 2 -n 48 …. aprun -n 24 ….VS

If your performance changes, you are at least partially memory bandwidth bound

Are you memory or compute bound? Or both?

Run Example

in “Half

Packed” Mode

aprun -n 24 -N 12 - S 6 ... VS aprun -n 24 -N 24 -S 12 ...

If you run on only half of the cores on a node, each core you do run

has access to more bandwidth

srun -N 2 -n 24 -c 2 - S 6 ... VS srun -N 1 -n 24 -c 1 ...

Cori KNL System

Cray XC40 system with 9,600+ Intel Knights Landing (KNL) nodes:

● 68 cores, 272 Hardware Threads

● Up to 32 FLOPs per Cycle, 1.2-1.4 GHz Clock Rate

● Wide (512 Bit) vector Units

● Multiple Memory Tiers: 96 GB DRAM / 16 GB HBM

● NVRAM Burst Buffer 1.5 PB, 1.5 TB/sec

