Hierarchical Roofline Analysis on GPUs

Charlene Yang
Lawrence Berkeley National Laboratory
ECP 2020, Houston

Outline

- Hierarchical Roofline on NVIDIA GPUs
 - L1, L2, HBM, System Memory
- Methodology for Roofline Data Coleman
 - Machine characterization: peak
 - Application characterization
- Two Examples
 - GPP from BerkeleyGW, and

This methodology can be extended to other GPUs, and other instruction types!

GPU Architecture: Tesla V100

80 SMs	
12800 CUDA Cores	16/32GB HBM2
640 Tensor Cores	900GB/s HBM2

FP32 units	64	INT32 units	64
FP64 units	32	Tensor Cores	8
Registers	256KB	Unified Cache	128KB
Max Threads	2048	Thread Blocks	32

GPU Architecture: Tesla V100

- Logical memory spaces (green)
- Physical memory spaces (blue) [Roofline]
 - Level 1
 - Level 2
 - HBM (DRAM)
 - PCIe/NVLink

Goal: Construct Hierarchical Roofline

To construct a Roofline on NVIDIA GPUs

- that incorporates the full memory hierarchy
 - L1, L2, HBM, System Memory (NVLink/PCIe)
- also instruction types, data types...₁₀5
 - FMA/no-FMA/IntOps/...
 - FP64, FP32, FP16, ...
 - CUDA core/Tensor core
 - ...

Methodology to Collect Roofline Data

Machine Characterization

How to get the ceilings?

compute and bandwidth

Theoretical vs Empirical

Empirical Roofline Toolkit (ERT)

- runs micro benchmarks
- More Realistic
- power constraints, etc

Machine Characterization

Empirical Roofline Toolkit (ERT)

- Different than the architecture specs, MORE REALISTIC
- Reflects actual execution environment (power constraints, etc)
- Sweeps through a range of configurations, and statistically stable
 - Data elements per thread
 - FLOPs per data element
 - Threadblocks/threads
 - Trails per dataset
 - o etc

ERT Configuration

Kernel.c

- actual compute
- customizable

Driver.c

- setup
- call kernels
- loop over parameters

config script

set up ranges of parameters

job script

submit the job and run it

Machine Characterization

ERT can't detect all the ceilings yet - IN DEVELOPMENT!

Theoretical compute ceilings on V100:

FP64 FMA: 80 SMs x 32 FP64 cores x 1.53 GHz x 2 = 7.83 TFLOP/s

- FP64 No-FMA: 80 SMs x 32 FP64 cores x 1.53 GHz = 3.92 TFLOP/s

Theoretical memory bandwidths on V100:

- HBM: 900 GB/s

- L2: ~4.1 TB/s

Bad News:

you may never achieve 7.8 TFLOP/s

Good News:

you may be closer to the ceiling than you think

Require three raw measurements:

- Runtime
- FLOPs
- Bytes (on each cache level)
 to calculate Al and GFLOP/s:

Arithmetic Intensity =
$$\frac{nvprof \text{ FLOPs}}{nvprof \text{ Data Movement}}$$

$$\frac{\text{Performance}}{\text{(y: GFLOP/s)}} = \frac{nvprof \text{ FLOPs}}{\text{Runtime}}$$

Currently the methodology is based on nvprof

But we are working with NVIDIA on an Nsight-based methodology!!

Runtime:

Time per invocation of a kernel

```
nvprof --print-gpu-trace ./application
```

Average time over multiple invocations

```
nvprof --print-gpu-summary ./application
```

FLOPs:

CUDA Core: Predication aware and complex-operation aware (such as divides)

```
nvprof --kernels 'kernel_name' --metrics 'flop_count_xx'
./application e.g. flop_count_{dp/dp_add/dp_mul/dp_fma, sp*, hp*}
```

Tensor Core: (more details later)

```
--metrics tensor_precision_fu_utilization
```

0-10 integer range, 0-0, 10-125TFLOP/s; multiply by run time -> FLOPs

- Bytes for different cache levels in order to construct hierarchical Roofline:
 - Bytes = (read transactions + write transactions) x transaction size

Level	Metrics	Transaction Size
First Level Cache*	<pre>gld_transactions, gst_transactions, atomic_transactions, local_load_transactions, local_store_transactions, shared_load_transactions, shared_store_transactions</pre>	32B
Second Level Cache	12_read_transactions, 12_write_transactions	32B
Device Memory	dram_read_transactions, dram_write_transactions	32B
System Memory	system_read_transactions, system_write_transactions	32B

Note: surface and texture transactions are ignored here for HPC applications

Example Output

context: stream: kernel: invocation

```
[cjyang@voltar source]$ nvprof --kernels "1:7:smooth_kernel:1" --metrics flop_count_dp --metrics gld_transactions --metrics gst_transactions --metrics 12_read_transactions --metrics 12_write_transactions --metrics dram_read_transactions --metrics dram_write_transactions --metrics sysmem_read_bytes --metrics sysmem_write_bytes ./hpgmg-fv-fp 5 8
```

• Export to CSV: --csv -o nvprof.out

Invocations	Metric Name	Metric Des	cription Min	Max	Avg
Device "Tesla V100-P	CIE-16GB (0)"				-
Kernel: void smo	oth_kernel <int=6, in<="" int="4," td=""><td>t=8>(level_type, int, int, double, d</td><td>ouble, int, double*,</td><td>double*)</td><td></td></int=6,>	t=8>(level_type, int, int, double, d	ouble, int, double*,	double*)	
1	flop_count_dp	Floating Point Operations(Double Pr	ecision) 30277632	30277632	30277632
1	gld_transactions	Global Load Tran	sactions 4280320	4280320	4280320
1	gst_transactions	Global Store Tran	sactions 73728	73728	73728
1	12_read_transactions	L2 Read Tran	sactions 890596	890596	890596
1	12_write_transactions	L2 Write Tran	sactions 85927	85927	85927
1	dram_read_transactions	Device Memory Read Tran	sactions 702911	702911	702911
1	dram_write_transactions	Device Memory Write Tran	sactions 151487	151487	151487
1	sysmem_read_bytes	System Memory Re	ad Bytes 0		9
1	sysmem_write_bytes	System Memory Wri	te Bytes 160	160	160
A					

Plot Roofline with Python

- Calculate Arithmetic Intensity and GFLOP/s performance
 - x coordinate: Arithmetic Intensity
 - y coordinate: GFLOP/s performance

$$\frac{\text{Performance}}{\text{(GFLOP/s)}} = \frac{nvprof \text{ FLOPs}}{\text{Runtime}} \text{ , } \frac{\text{Arithmetic Intensity}}{\text{(FLOPs/Byte)}} = \frac{nvprof \text{ FLOPs}}{nvprof \text{ Data Movement}}$$

- Plot Roofline with Python Matplotlib
 - Example scripts:
 - https://gitlab.com/cyang.lbl/roofline-on-nvidia-gpus/tree/master/ExamplePlots
 - Tweak as needed for more complex Rooflines

Plot Roofline with Python

Quick example:

- plot roofline.py data.txt
- Accepts space-delimited list for values
- Use quotes to separate names/labels

```
data.txt

# all data is space delimited
memroofs 14336.0 2996.8 828.758
mem_roof_names `L1' `L2' `HBM'
comproofs 7068.86 3535.79
comp_roof_names `FMA' `No-FMA'

# omit the following if only plotting roofs
# AI: arithmetic intensity; GFLOPs: performance
AI 0.87 2.25 2.58
GFLOPs 2085.756683
labels `Kernel'
```


Recap: Methodology to Construct Roofline

1. Collect Roofline ceilings

- ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
- compute (FMA/no FMA) and bandwidth (DRAM, L2, ...)

2. Collect application performance

- nvprof: --metrics, --events, --print-gpu-trace
- FLOPs, bytes (DRAM, L2, ...), runtime

3. Plot Roofline with Python Matplotlib

- arithmetic intensity, GFLOP/s performance, ceilings
- example scripts: https://gitlab.com/cyang.lbl/roofline-on-nvidia-gpus/

Roofline Analysis: Two Examples

Example 1: GPP

- GPP (General Plasmon Pole) kernel from BerkeleyGW (Material Science)
- Small problem size: 512 2 32768 20
- Tensor-contraction, abundant parallelism, large reductions
- Low FMA counts, divides, complex double data type, HBM data 1.5GB

Pseudo Code

```
do band = 1, nbands  #blockIdx.x
  do igp = 1, ngpown  #blockIdx.y
  do ig = 1, ncouls  #threadIdx.x
  do iw = 1, nw  #unrolled
      compute; reductions
```


Example 1: GPP

- Highly parameterizable
 - 1. Varying nw from 1 to 6 to increase arithmetic intensity
 - FLOPs increases, but data movement stays (at least for HBM)

Pseudo Code

- 2. Compiling with and without FMA to study impact of instruction mix
 - -fmad=true/false

Example 1: GPP

- Highly parameterizable
 - 3. Striding ig loop to analyze impact of memory coalescing
 - Split ig loop to two loops and place the 'blocking' loop outside

Pseudo Code

```
do band = 1, nbands #blockIdx.x
do igp = 1, ngpown #blockIdx.y

do igs = 0, stride - 1
do ig = 1, ncouls/stride #threadIdx.x
do iw = 1, nw #unrolled
compute; reductions
```

Stride 2

- Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
 - GPP is HBM bound at low nw's and compute bound at high nw's
 - FLOPs ∝ nw
 - **HBM** bytes: constant
 - L2 bytes: increasing at $\alpha > 1$
 - L1 bytes: constant
- **Hierarchical Roofline captures** more details about cache locality

- **HBM** Roofline, i.e. bytes are **HBM** bytes
 - No-FMA performance converges to no-FMA ceiling, but FMA performance is still far from the FMA ceiling
 Not reaching FMA ceiling due
 - to lack of FMA instructions

FMA FP64 instr.

FMA FP64 instr. + non-FMA FP64 instr.

= 60% of FMA instructions

Expected performance is

At nw=6, GPP has $\alpha =$

$$\beta = \frac{\alpha \times 2 + (1 - \alpha)}{2} = 80\% \text{ of peak}$$

But at nw=6, GPP only achieves 66%

- Other FP/non-FP instructions may be taking up the instruction issue/execution pipeline
- Roofline captures effects of instruction mix

- Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
 - L1/L2 bytes doubles from stride 1 to 2, but stays almost constant afterwards
 - at nw=6, GPP moves from compute bound to bandwidth bound
 - Eventually all converge to HBM
- Roofline captures effects of suboptimal memory coalescing

- HPGMG (High-performance Geometric Multigrid) from Adaptive Mesh Refinement code
- https://bitbucket.org/nsakharnykh/hpgmg-cuda
- Stencil code, F-cycles and V-cycles, GSRB smoother kernel (Gauss-Seidel Red-Black)

- Hybrid GPU and CPU code
 - Example: hpgmg-fv 7 8
 - 128³ box x 8, Level 5-8 run on GPU, Level 1-4 on CPU
- Three versions of GSRB kernel
 - GSRB_FP, GSRB_BRANCH, GSRB_STRIDE2


```
for(int k=klo; k<(klo+kdim); k++) {
  const int ijk = i + j*jStride + k*kStride;
  const double *__restrict__ RedBlack =
        level.RedBlack_FP + ghosts*(1+jStride)
        +((k^color000)&1)*kStride;
  const double Ax = apply_op_ijk();
  const double lambda = Dinv_ijk();
  const int ij = i + j*jStride;
  xo[ijk] = X(ijk) + RedBlack[ij]*lambda*(rhs[ijk]-Ax);
}</pre>
```


8 threads

8 elements

GSRB_BRANCH has half the FLOPs as GSRB_FP but the same HBM/L1/L2 bytes


```
GSRB STRIDE2
for(int k=klo; k<klo+kdim; k++){</pre>
  i = ilo +!((ilo^j^k^color000)&1) + threadIdx.x*2;
  if(i < ilo+idim) {</pre>
    const int ijk = i + Stride + k*kStride;
    xo[ijk] = X(ijk);
  i = ilo + ((ilo^j^k^color000)&1) + threadIdx.x*2;
  if(i < ilo+idim) {</pre>
    const int ijk = i + j*jStride + k*kStride;
    const double Ax = apply_op_ijk();
    const double lambda = Dinv ijk();
    xo[ijk] = X(ijk) + lambda*(rhs[ijk]-Ax);
```


GSRB_STRIDE2 should have the same FLOPs as GSRB_BRANCH, but more bytes? More writes than GSRB_BRANCH.

Example 2: HPGMG Analysis

- GSRB_FP, Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
- Highly bandwidth bound, inherent to stencil codes
- From Level 5 to Level 8:
 - **HBM AI** increases due to better Surface: Volume ratio
 - better Surface: Volume ratio
 Roughly constant L1/L2 Al
 due to stencils being 'tiled'

 Roofline captures computational

characteristics of the algorithm

Example 2: HPGMG Analysis

GSRB_FP vs. GSRB_BRANCH

- FLOPs halves, bytes doesn't change, thus Al halves and GFLOP/s halves
- Runtime is comparable even though GFLOP/s has halved
- Same number of threads occupied, only with half predicated in GSRB_BRANCH

Example 2: HPGMG Analysis

GSRB_BRANCH vs. GSRB_STRIDE2

Extra writes in GSRB_STRIDE2 cause more capacity misser in L2, leading to Al drop on L2 and DRAM, starting from Level 7 (drta size)

Runtime almost doubled and GFLOP/s halved

Summary

- An effective methodology to construct hierarchical Roofline on NVIDIA GPUs
 - ERT for machine characterization
 - nvprof for application characterization
- Two examples demonstrated the value of this methodology and its ability to understand various aspects of performance on NVIDIA GPUs
 - cache locality, instruction mix, memory coalescing, reduced precision and Tensor Cores
 - GPP from BerkeleyGW, and HPGMG kernel

Acknowledgement

- This material is based upon work supported by the Advanced Scientific Computing Research Program in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.
- This material is based upon work supported by the DOE RAPIDS SciDAC Institute.
- This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02- 05CH11231.

Thank You

