
Leveraging One-Sided Communication for Sparse Triangular Solvers ∗

Nan Ding† Samuel Williams† Yang Liu ‡ Xiaoye S. Li‡

Abstract

In this paper, we implement and evaluate a one-sided

communication-based distributed-memory sparse triangular

solve (SpTRSV). SpTRSV is used in conjunction with Sparse

LU to affect preconditioning in linear solvers. One-sided

communication paradigms enjoy higher effective network

bandwidth and lower synchronization costs compared to

their two-sided counterparts. We use a passive target mode

in one-sided communication to implement a synchronization-

free task queue to manage the messaging between producer-

consumer pairs. Whereas some numerical methods lend

themselves to simple performance analysis, the DAG-based

computational graph of SpTRSV demands we construct a

critical path performance model in order to assess our ob-

served performance relative to machine capabilities. In

alignment with our model, our foMPI-based one-sided im-

plementation of SpTRSV reduces communication time by

1.5× to 2.5× and improves SpTRSV solver performance by

up to 2.4× compared to the SuperLU DIST’s two-sided MPI

implementation running on 64 to 4,096 processes on Cray

supercomputers.

1 Introduction

The sparse triangular solve (SpTRSV) is an indis-
pensable task in a wide range of applications from nu-
merical simulation [1] to machine learning [2]. Walk-
ing through their long history that originates from the
first numerical linear algebra developed by computer pi-
oneers like John von Neumann, we see massive parallel
methods and optimization efforts that involve hundreds
or even thousands of contributors with immense coding
efforts [3–11]. Along with the development process of
these efforts, massive performance analysis is conducted
by developers to guide the performance optimization.

With more scientific insights derived from software,

∗This research is supported in part by the U.S. Department of

Energy, Office of Science, Office of Advanced Scientific Comput-

ing Research, Scientific Discovery through Advanced Computing
(SciDAC) programs under Contract No. DE-AC02-05CH11231 at

Lawrence Berkeley National Laboratory.
†Computational Research Division, Lawrence Berkeley Na-

tional Laboratory, Berkeley, CA 94720, USA, (nanding|

swwilliams@lbl.gov)
‡Scalable Solvers Group, Lawrence Berkeley National Labora-

tory, Berkeley, CA 94720, USA, (liuyangzhuan|xsli@lbl.gov)

the demand for ever finer-resolution problems calls for
SpTRSV to use ever larger scales of parallelism. While
the demands from the application side continue to grow,
the memory capacity per node of HPC architectures
has barely changed from Titan [12] to Sunway [13]
with 32GB memory per node. The newly announced
NO.1 supercomputer Summit [14] has 512GB per node,
but it’s still insufficient to fit the whole application
and its intermediate data within one node. Thus, as
distributed-memory parallelism has become an essential
component in scientific computing, communication has
become a critical performance bottleneck for SpTRSV
as well as other directed acyclic graph (DAG) based
methods [15].

Parallel scalability of SpTRSV is increasingly ex-
pensive due to (1) the complex data dependencies and
limited parallelism, and (2) high inter-node communi-
cation costs. In recent years, substantial efforts have
focused on the distributed-memory parallelization of Sp-
TRSV including efforts that focus on analyzing the ma-
trix structure to exploit more parallelism [9]. Unfortu-
nately, such approaches limit (strong) scaling. By re-
structuring the communication patterns to reduce the
latency and balance the communication volume among
processors, others have enabled scalibility to 4000 pro-
cesses [4]. Despite their effectiveness, inter-node com-
munication time still dominates the total SpTRSV time.
This makes the performance of parallel SpTRSV far
from satisfactory.

As an attractive methodology to improve the com-
munication efficiency, one-sided communication has
started to gain popularity since modern interconnects
offer remote direct memory access (RDMA) features.
RDMA enables a process to directly access memory on
remote processes without involvement of the activities
at the remote side [16–18]. foMPI [19] is a fast, MPI-
3.0 RDMA library interface on Cray systems. It uses
distributed-memory application (DMAPP [20]) and XP-
MEM [21] for fast inter-node and intra-node one-sided
communication. The light-weight asynchronous one-
sided communication primitives enable a powerful pro-
gramming model that provides a pathway to efficient
DAG execution and accelerator-based exascale solvers
thereby opening a new frontier for numerical methods
in high-performance distributed computing.

Copyright c© 2019
Copyright retained by the Regents of the University of California



Aligned with the advances in hardware and commu-
nication paradigms, performance modeling of SpTRSV
is critical to assess potential performance gains in terms
of machine capability. Modeling SpTRSV depends
heavily on the structure of a given matrix and the under-
lying architecture. Whereas the roofline model [22] can
effectively bound performance and identify bottlenecks
for well-structured, load-balanced codes, it can only pro-
vide a very loose bound on performance for codes like
SpTRSV. To that end, Wittmann et al. analyzed Sp-
TRSV in the sparse direct solver package PARDISO [23]
focusing on data transfers and floating point operations.
This served as inputs for the Roofline to establish real-
istic bandwidth ceilings.

In this paper, we implement and evaluate a one-
sided communication-based distributed-memory Sp-
TRSV and construct a critical path performance model
in order to assess our observed performance relative to
machine capabilities. We (1) exploit the higher effective
network bandwidth and lower synchronization costs of
one-sided communication paradigms, and use a passive
target mode in one-sided communication to implement a
synchronization-free task queue to manage the messag-
ing between producer-consumer pairs within the DAG.
This task queue mechanism can support any DAG exe-
cution; (2) construct a critical path performance model
in order to assess our observed performance relative to
machine capabilities and drive future code optimization;
(3) reduce SpTRSV communication time by up to 2.5×
compared to the Cray MPI two-sided implementation
through the use of foMPI one-sided communication, and
(4) integrate our foMPI one-sided implementation of
SpTRSV into SuperLU DIST and attain up to 2.4× SP-
TRSV speedup from a scale of 64 to 4,096 processes on
Cray supercomputers.

2 Related Work

Exploring high performance of SpTRSV is becom-
ing ever more crucial in the multi- and many-core era.
Most existing parallel triangular solvers focus on opti-
mizing the on-node performance on various parallel ar-
chitectures [3, 5–8, 10, 11]. Due to the complex data
dependencies in SpTRSV, algorithm optimization has
been mainly based on the level-set methods and color-
set methods for various parallel architectures. Addition-
ally, there is research focused on optimizing the block
structure [9], or analyzing nonzero layout and selecting
the best sparse kernels by using machine learning and
deep learning methods [24–26].

Despite their effectiveness on a single node, we
can still see that the high inter-node communication
costs associated with these techniques limit their per-
formance. Totoni et al. [27] propose a non-blocked tri-

angular solver using a 1D process layout with improved
computation load balance. A 2D cyclic process layout
is used to further improve the computation load bal-
ance for triangular solves [28, 29], and an asynchronous
binary-tree is proposed to reduce the communication la-
tency [4]. Raghavan et al. [30] computes inverse of the
triangular matrices as a sequence of matrix factors to
replace substitution steps via more efficient distributed
matrix-vector multiplications. Venkat et al. [31, 32] de-
veloped several techniques that automatically generate
wavefront parallelization of sparse matrix computations
with faster level-set scheduling being one of the key tar-
gets of their research.

Our baseline is a two-sided SPTRSV implemen-
tation that uses a supernodal DAG [33] to express
the computation dependency. However, whereas previ-
ous work leveraged highly-synchronized two-sided MPI
communication, we use a passive target mode in one-
sided communication to implement a synchronization-
free task queue to manage the messaging between
producer-consumer pairs within the DAG. To validate
the proposed method, we construct a critical path per-
formance model in order to assess our observed perfor-
mance relative to machine capabilities.

3 Parallel Triangular Solvers

SpTRSV computes a solution vector x for a n × n
linear system Lx = b 1, where L is a lower triangular
matrix, and b is a n × k right-hand side (RHS) matrix
or vector (k = 1). For a sparse matrix L, the compu-
tation of xi needs some or all of the previous solution
rows xj , j < i, depending on the sparsity pattern of
the ith row of L. This computation dependency can be
precisely expressed by a DAG. In SuperLU DIST [4], a
supernodal DAG [33] is used. For a lower triangular ma-
trix L, a supernode is a set of consecutive columns of L
with the triangular block just below the diagonal being
full, and the same nonzero structure below the triangu-
lar block. After a supernode partition is obtained along
the columns of L, we apply the same partition row-
wise to obtain a 2D block partitioning. The nonzero
block pattern defines the supernodal DAG. We assume
b(K) and x(K) represent the subvector associated with
supernode K. L(I,K) denotes the nonzero submatrix
corresponding to supdernodes I and K. Thus, the so-
lution of subvector x(K) can be computed as Eq. (3.1).

x(K) = L(K,K)−1
(
b(K)−

K−1∑
I=1

L(K, I) · x(I)
)

(3.1)

1We use lower triangular matrix to formulate the problem in

the paper. Note that the proposed methodology can be easily
ported to solve an upper triangular system Ux = b.

Copyright c© 2019
Copyright retained by the Regents of the University of California



0 1 2
3 4 5
6 7 8

3 x 3 process decomposition

1

2

Figure 1: Data flow and process decomposition of
SuperLU DIST. The dashed arrows represent the data
flow during the solve phase. The numbers represent two
communication behaviors: 1© block column broadcast,
and 2© block row reduction.

SuperLU DIST partitions the matrix L among mul-
tiple processes using a 2D block cyclic layout. Each pro-
cess is in charge of a subset of solution subvectors x(K).
The solution of these subvectors and partial summation
results need communication during the solve phase. Fig-
ure 1 describes the data flow of a sparse triangular solve
using a 3× 3 process decomposition. Processes that as-
signed to the diagonal blocks (diagonal processes) com-
pute the corresponding blocks of x components. Within
one block column, the process owning x(I) sends x(I)
to the process of L(K, I) as No. 1© in Figure 1. After
receiving the required x(I) entries, each process com-
putes its local summation. Within one row, the local
sums are sent to the diagonal processes which performs
the inversion (No. 2© in Figure 1). An asynchronous
binary-tree is used to perform the column broadcast and
row reduction to reduce the communication latency via
MPI Isend/MPI Recv. The binary tree is built in the
setup phase that is executed once for multiple solves. A
broadcast tree per supernode column K is built for the
processes participating in the column broadcast. Sim-
ilarly, one reduction tree is built per supernode row I
within the processes participating the row reduction.
Note that each process in a tree only keeps track of its
parent and children.

Table 1: Communication fractions on NERSC’s Cori
KNL and Cori Haswell as a function of core concurrency.

Matrix
Cori KNL Cori Haswell

256 1024 4096 64 256 1024

A30 46.02% 90.04% 91.98% 55.09% 91.02% 92.34%

chipcool0 36.74% 90.20% 93.33% 44.56% 97.25% 98.34%

shipsec1 45.82% 75.47% 85.18% 40.32% 67.57% 95.56%

gas sensor 51.00% 87.38% 93.49% 94.59% 95.10% 97.49%

g7jac160 60.04% 67.16% 96.57% 76.09% 85.78% 93.81%

copter2 76.34% 81.96% 88.42% 48.47% 60.06% 89.36%

Table 1 shows that despite all of SuperLU’s opti-
mizations, communication still dominates the solve time
— at 1024 processes, communication takes over 90% of
the time. The communication fraction is calculated as
total communication time divided by total solve time.

4 Experiment Setup

Throughout this paper, we conduct the experiments
on the Cray XC40 system with two different kinds of
nodes: (1)“Cori Haswell” system at NERSC, and (2)
“Cori KNL” system at NERSC. Cori Haswell is a Cray
XC40 system and consists of 2,388 dual-socket nodes
with Intel Xeon E5-2698v3 processors with 16 cores per
socket. Each node runs at 2.3 GHz and is equipped
with 128GB of DDR4 memory at 2133MHz. The
nodes are connected through the Cray Aries Dragonfly
interconnect [34]. Cori KNL is on the same Cray Aries
high speed inter-node network and consists of 9,688
nodes. Each Cori KNL node is a single-socket Intel
Xeon Phi 7250 processor with 68 cores per node running
at 1.4 GHz. All experiments in the paper use one
thread per MPI process. We use 32 processes per node
on Cori Haswell and 64 processes per node on Cori
KNL. On both Cori Haswell and Cori KNL, we use
the Intel Compiler version 18.0.2 with -Ofast, uGNI
version 6.0.14, DMAPP 7.1.1, and XPMEM 2.2.15.

Table 2 presents the key facets of the matrices used
in this paper. These matrices have also been used in
various computational research [35–38]. Matrix A30 is
generated from M3D-C1, a fusion simulation code used
for magnetohydrodynamics modeling of plasma [36].
All other matrices are publicly available through the
SuiteSparse Matrix Collection [39]. The selected matri-
ces cover a wide range of matrix properties (i.e., matrix
size, sparsity structure, the number of level-sets and ap-
plication domain). The matrices are first factorized via
SuperLU DIST with METIS ordering for fill-in reduc-
tion [40]. The resultant lower triangular matrices are
used with the proposed one-sided implementation.

5 Task Queues Using One-sided
Communication

For SpTRSV, it is well-known that avoiding syn-
chronization is important in attaining high perfor-
mance. Moreover, such asynchronous communica-
tion patterns require a great deal of effort to manage
producer-consumer pairings. The producer-consumer
communications require two basic semantics: (1) data
transmission and (2) “handshaking”. Both semantics
are provided by the receiver. However, for many al-
gorithms like SpTRSV, the additional network trans-
actions (“handshaking”) from the consumers are not
needed. To that end, we exploit one-sided communica-

Copyright c© 2019
Copyright retained by the Regents of the University of California



Table 2: Test matrices. nnb is number of nonzero-blocks after factorization. Parallelism=nnb/levels.

Matrix nnz in L nnb levels avg. parallelism description

chipcool0 4,051,030 22,068 43 513 Model Reduction Problem

A30 6,880,248 11,414 54 211 Magnetohydrodynamics

g7jac160 9,297,606 403,144 3 134,381 Economic Problem

copter2 16,402,818 172,502 93 1,854 Computational Fluid Dynamics Problem

gas sensor 22,802,879 40,409 59 684 Model Reduction Problem

shipsec1 38,252,451 78,548 8 9,818 Structural Problem

tion to facilitate the overlap of communication and local
computation. The lower overhead associated with one-
sided communication compared to the traditional two-
sided communication has the potential to increase the
performance at scale by increasing the effective network
bandwidth and reducing synchronization overheads.

One-sided MPI offers two synchronization modes:
the active target mode and passive target mode [41].
The active mode requires four MPI operations per mes-
sage: MPI Win post and MPI Win wait from the con-
sumer, MPI Win start and MPI Win complete from the
producer. In the passive target mode, only producers
are involved in message transfers. There are two kinds
of passive target mode: using locks or no lock. Using
locks means that other processes can not access the ex-
posed RMA buffer before unlock. No lock means that
all processes can access the RMA buffer at any time.
As a consequence, the active target mode has at least
four times as many MPI operations as the passive target
mode. Furthermore, in the passive target mode, using
locks has at least twice as many MPI operations as no
lock.

Due to the frequent and asynchronous messages
in one solve, we use a passive target mode with no
lock (MPI Win lock all and MPI Win unlock all) at
the beginning and ending of one solve for each block
column and each block row. All the enqueue operations
and dequeue operations in one block column (or block
row) are performed within a pair of MPI Win lock all

and MPI Win unlock all. Therefore, we avoid the extra
synchronization overhead compared to both passive
target mode using locks and the active target mode.

For each message, we focus on two kinds of one-
sided communication: MPI Put and MPI Accumulate

with MPI Sum. These two operations are supported
by both the Cray MPI [42, 43] and foMPI [19] im-
plementations. Each task queue is allocated once us-
ing MPI Win create which exposes the local memory to
RMA operations by other processes in a communicator.
The resultant task queue is reused on multiple solves.

Figure 2 shows the computational structure for solv-
ing a lower triangular system when using a 3 × 3 pro-

cess decomposition. Process numbers are marked with
colors, and the number in each circle is the block num-
ber. The dashed arrows represent the enqueue opera-
tion among different processes. Recall that there are
two kinds of communication in SpTRSV: block column
broadcasts and block row reductions. Processes par-
ticipating in the block column broadcast send the cor-
responding components of the solution vector (xi) to
their children. Processes participating in the block row
reduction send the corresponding partial sum (lsumi)
to the diagonal process. Reflecting these two commu-
nication patterns, we create two task queues for each
process: a broadcast task queue (BTq) and a reduc-
tion task queue (RTq) to enqueue the ready tasks from
block column broadcasts and block row reductions. We
allocate the task queues of each process before entering
the solving phase bounding the size of the task queue
(TqS) according to the block size and process decompo-
sition as Eq. (5.2) shows. The TqS is a function of the
number of processes along block columns/rows (Px/Py)
and the message count of the processes in each block
column/row. In Eq. (5.2), Ci is the received number of
tasks from process i and mz is the maximum size of an
individual message.

Figure 2: The computational structure for solving a
lower triangular system. The dashed arrows represents
the enqueue operation among different processes. Pro-
cess rank is denoted by color, while the number in each
circle is the block number.

Copyright c© 2019
Copyright retained by the Regents of the University of California



(5.2) TqS =

{∑Py

i=0 Ci ·mz, if BTq∑Px

i=0 Ci ·mz, if RTq

Let us consider how BTq and RTq operate in the
context of Figure 2. We commence solving the lower
triangular system with the diagonal blocks (block 0, 1
in Figure 2) that have no non-zero blocks within the
same block row. We then enqueue the corresponding
x components to the BTq of its children, e.g. 1 → 2
and 1 → 14. When it comes to row reductions, we
enqueue the corresponding partial sum lsum to the
diagonal process within the same block row, e.g. 2→ 3,
7→ 9 and 8→ 9. Once each process fetches a new task
from the task queue, the process will check whether it
has children in the binary communication tree that was
built in the setup phase. If it has children in BTq,
the process will send the x components first and then
begin local computation, e.g. process 0 (owns block 5)
will enqueue its x components to process 3 (owns block
8) and process 6 (owns block 10), and then begins to
compute block 5. When a process has more than one
task in the BTq such as process 4 in Figure 2, process 4
will compute the leaf node block 1 first, and then send
corresponding x components to process 7 (owns block
2). After that, process 4 begins to compute block 6.
If it has children in the RTq, the process will send the
corresponding partial sum lsum to its parent after the
local computation completes.

Without two-sided MPI’s “handshaking” between
the producer-consumer pairs, we provide two methods,
EnQueue payload and EnQueue counter, for the con-
sumers to ensure data arrival completion. Figure 3 il-
lustrates the task queue design for block column broad-

0

3

6

1

4
7

2

5
8

0

3

6

3x3 process layout Sub-communicators

1

4
7

2

5
8

EnQueue_payload

EnQueue_counter

block number
x components
checksum

… …

received tasks from process 2 received tasks from process 5

Broadcast task queue

… …N1 N2

Figure 3: One-sided implementation of task queues.
Ni in EnQueue counter represents the number of re-
ceived tasks from process i. The size of BTq us-
ing EnQueue payload is

∑
Ci words larger than the

two-sided implementation. The size of RTq using En-
Queue counter is

√
P words larger than the two-sided

implementation.

casts using a 3 × 3 process decomposition as an exam-
ple. We split the global communicator into three sub-
communicators. In each sub-communicator, processes
will perform broadcasts within block columns with each
process maintaining a broadcast task queue. The tasks
from different producers have different offsets in the task
queue. We compute these offsets according to the de-
pendency graph in the setup phase. Reduction task
queues within block rows use the same idea.

In the case of EnQueue counter, we keep counters
for each producer. The value of the counter Ni indicates
the total number of enqueued tasks for process i as
Figure 3 shows. The size of the task queues using
EnQueue counter (Eq. (5.3)) needs an additional

√
P

words for the counter compared to Eq. (5.2) when using
a 2D process decomposition. Once the producer sends
a message, it then performs an atomic read-modify-
write operation that is implemented by MPI Accumulate

with MPI Sum. This atomic read-modify-write operation
increases the counter of the corresponding task queue by
one each time. We also track the number of dequeued
tasks. Thus, the difference of these two values is the
number of tasks that can be solved in the current queue.
When Ni equals to Ci, it indicates that the consumer
has received all tasks from process i.

(5.3) TqS =

{∑Py

i=0(Py + Ci ·mz), if BTq∑Px

i=0(Px + Ci ·mz), if RTq

In the case of EnQueue payload, since each indi-
vidual message may be split into packets for out-of-
order transmission and certainly not delivered atomi-
cally, we employ a checksum [44] to determine when
the data for each individual message has completely ar-
rived. The checksum is a function of the summation of
the block number and the corresponding components of
x (or partial summation) in each message in BTq (or
RTq). Once a message arrives, the consumer will con-
duct a checksum for the received task. If the checksum
equals the payload at the end of this received task, the
consumer deems that all data has arrived. The con-
sumer spins until the checksum succeeds (data from the
sender is RDMA’d). The TqS for the EnQueue payload
(Eq. (5.4)) needs an extra

∑
Ci words compared to

Eq. (5.2).

(5.4) TqS =

{∑Py

i=0 Ci · (mz + 1), if BTq∑Px

i=0 Ci · (mz + 1), if RTq

6 SpTRSV Performance Model

We constructed a performance model (Algorithm 1)
in order to understand SpTRSV performance and quan-
tify the potential performance benefits without running
the SpTRSV code. The challenge lies in how to abstract

Copyright c© 2019
Copyright retained by the Regents of the University of California



1

2 3
4 5

6 7 8 9

1110
1312

161514

0

0 1

4 26

5 3

78

9

10

11

12

15

16

13

14L 0

L 1

L 2

L 2

L 4

L 5
L 6

L 7 L 8

L 0

L 1

L 2

L 3

L 4

L 5

L 6

L 7

L 8

(a) The initial critical path is the path
that goes through every level: 0 → 4 →
5→ 10→ 11→ 12→ 13→ 15→ 16.

process 0

0 1

4 26
5 3

78

9

10

11

12

15
16

13

141

2 3
4 5

6 7 8 9

1110
1312

161514

0 L 0

L 1

L 2

L 3

L 4

L 5
L 6

L 7 L 8

L 0

L 1

L 2

L 3

L 4

L 5

L 6

L 7

L 8

process 1

(b) The refined critical path using 2 × 1
processes: 0 → 4, 14 → 5 → 7, 8 →
11→ 12→ 13→ 15→ 16.

0 1

4 26 14

5 3

78

9

10

11
12

15

16

13

1

2 3
4 5

6 7 8 9

1110
1312

161514

0 L 0

L 1

L 2

L 3

L 4

L 5
L 6

L 7 L 8

L 0

L 1

L 2

L 3

L 4

L 5

L 6

L 7

L 8

process 0 process 1 process 3 process 4

(c) The refined critical path using 2 × 2
processes: 0 → 2, 6 → 5 → 10 → 11 →
12→ 13→ 15→ 16.

Figure 4: The initial critical path based on the level-set method using BFS and the refined critical paths assuming
a 2×1 and 2×2 process decomposition. The dashed red circle is the block that is replaced by the solid red circles
within the same level when refine the critical path according to the process decomposition. Li represents level i.

the code behavior to characterize the performance fea-
tures for such a complicated asynchronous code. To ad-
dress this, we first conduct a critical path analysis. We
then model the computation time and communication
time separately based on the critical path.

Critical path analysis: The critical path analysis
follows the task dependency graph of the sparse matrix
based on the well-known level-set method [45, 46] using
a breadth-first search [47]. The critical path analysis has
two phases: (1) find the initial critical path according
to the task dependencies, and (2) refine the critical path
in (1) according to the process decomposition.

Figure 4a shows the initial critical path of an 8× 8
sparse lower triangular matrix based on the level-set
method. The numbers represent the non-zero block
number. We first find the task dependency of the
matrix, and then group the blocks that can be solved in
parallel. Thus, blocks in the same level (Li represents
level i in Figure 4a) can be solved concurrently. In this
way, the initial critical path of the matrix is the path
that goes through every level. The initial critical path
is 0→ 4→ 5→ 10→ 11→ 12→ 13→ 15→ 16.

The next step in our performance modeling is to refine
the critical path according to the process decomposition.
The refined critical path could become longer due to limited
resources. When a process owns multiple blocks in a level,
timing is adjusted to reflect intra-process serialized execution
of blocks as Figure 4b shows. Here we use the timing
from the process who has the maximum number of blocks
to represent the computation run time within a level. For
example, the time cost of level 1 (L1 in Figure 4b) depends
on block 4 and block 14 since these two blocks need to
be executed sequentially in process 0. The time cost of
level 3 depends on block 7 and block 8 since these two
blocks are assigned to process 1 while process 0 has only
one block. So the refined critical path using a 2× 1 process
decomposition has 11 blocks: 0 → 4, 14 → 5 → 7, 8 →
11 → 12 → 13 → 15 → 16. Similarly, in Figure 4c, we
use block 2 and block 6 (from process 1) to replace block 4

from process 3 in the initial critical path. Thus, the refined
critical path using a 2×2 process decomposition (10 blocks)
is 0 → 2, 6 → 5 → 10 → 11 → 12 → 13 → 15 → 16. With
more processes being used, the length of the refined critical
path using a 2× 2 process decomposition is reduced by one
compared to the refined critical path using a 2 × 1 process
decomposition. Following this idea, we conduct the critical
path analysis according to the matrix pattern and critical
path refinement according to the process decomposition.

Modeling computation: We modeled the computa-
tion time using a lower bound (LB, line 4 in Algorithm 1)
and an upper bound (UB, line 6 in Algorithm 1). The
real run time lies in between this range. The closer to the
lower bound, the better the task placement the current code
achieves. Both UB and LB are bandwidth-constrained mod-
els. We use a fixed peak memory bandwidth per process
(BWmem) in the model to estimate the maximum number
of processes the code can be scaled to. For each block, its
computation time is modeled using total data movement
(Bytes) divided by the BWmem. The UB is modeled by
accumulating the computation time of blocks on the criti-
cal path. Note that the LB is the maximum time among
all processes. The LB is never a better estimate compared
to the perfect parallelization because perfect parallelization
is a simple, highly-optimistic linear scaling estimate from a
sequential implementation that ignores any potential load
imbalance, communications, or critical path dependencies.

Modeling communication: The communication time
of a lower triangular matrix is modeled using the in-
degree (#in) and out-degree (#out) of the diagonal blocks
(#row = #col) on the critical path (line 7- 13 in Algo-
rithm 1). Here we count the #in and #out according to the
process decomposition. No communication is needed if the
blocks are assigned to the same process with the diagonal
block. The #out refers to the number of messages this di-
agonal block will send to the others when performing block
column broadcast. Each message has a size of the width
of block column i (wi). The latency of multiple sends can
be overlapped because all the messages are coming from the
same producer. Let’s assume there are P processes partic-

Copyright c© 2019
Copyright retained by the Regents of the University of California



Algorithm 1 Performance modeling SpTRSV

Model inputs: wi: width of block i
Model inputs: hi: height of block i
Model inputs: BWmem: peak memory bandwidth per process
(words/second)
Model inputs: BWnet: inter-node network bandwidth
(words/second)
Model inputs: Lnet: inter-node network latency
Model inputs: P : number of processes
Model outputs: LB: Computation lower bound
Model outputs: UB: Computation upper bound
Model outputs: COMM : Communication time

1: procedure modeling
2: Analyze the critical path C
3: Count #in and #out of diagonal blocks

4: LB = max(
∑ wi·hi

BWmem
| blocki ∈ Pi), 0 ≤ i < P

5: while block(#row,#col) ∈ C do

6: UB +=
wi·hi

BWmem
7: if block(#row,#col) is a diagonal block then
8: if Binary-tree then

9: COMM += log2(#in) · (Lnet +
roundup(hi,2)

BWnet
)

+Lnet +
log2(#out)·roundup(wi,2)

BWnet
10: else . Flat-tree
11: COMM += #in · (Lnet +

roundup(hi,2)

BWnet
)

+Lnet +
#out·roundup(wi,2)

BWnet
12: end if
13: end if
14: end while
15: end procedure

ipating in the block column broadcast. When using a bi-
nary communication tree, each process that participates in
the block column broadcast sends at most two messages to
its children instead of the P − 1 messages associated with
a flat communication tree. This reduces the send message
count of the corresponding process from P−1 to log2P . The
#in represents the number of messages this diagonal block
should receive to complete its local computation when per-
forming the block row reduction. Each message size equals
the height of block rows i (hi). The parent nodes in the
reduction tree must serialize incoming data from their chil-
dren. This pattern causes congestion. Each process par-
ticipating in the block row reduction receives two messages
instead of P − 1 messages when using a binary communi-
cation tree. Note that the latency difference between the
binary tree and the flat tree is reflected at line 9 and line 11
of Algorithm 1. We use a round-trip ping pong benchmark
to characterize the network parameters inter-node network
bandwidth (BWnet) and inter-node network latency (Lnet)
for each communication runtime. BWnet and Lnet are pa-
rameterized by benchmarked message sizes. roundup(x, 2)
rounds the message size x to the next power of two to match
the corresponding BWnet in the model.

7 Performance and Analysis

In this section, we first illustrate how to use the pro-
posed performance model to conduct performance analy-
sis including the computation/communication time and the
performance impact with different process decompositions.
We then show the performance improvement of our one-sided
implementation on Cori KNL and Cori Haswell.

7.1 Understanding the run time. Model-based
performance analysis is critical to assess potential perfor-
mance gains in terms of machine capability. In this section,
we first demonstrate how we extract the model parameters.
In order to affect a concise, yet detailed performance anal-
ysis of computation and communication time, we visualize
the results of our critical path performance model and apply
it to two representative matrices: A30 and g7jac160. The
two selected matrices have very different features (Table 2):
e.g., number of non-zero blocks, number of levels, and num-
ber of parallelisms, which can cover a wide range of matrix
properties.

Extracting model parameters: We evaluate four
different implementations of SpTRSV:

• Cray’s two-sided MPI: MPI Isend and MPI Recv

• Cray’s one-sided MPI: MPI Put

• foMPI (Enqueue payload): foMPI Put

• foMPI (Enqueue counter): foMPI Accumulate with
foMPI Sum

Note, Cray’s two-sided MPI implementation is highly-
optimized for the Aries network, is considered a gold-
standard, and is the default at NERSC. It thus provides an
exceptionally challenging baseline and forms the basis for
our comparisons to foMPI in the rest of the paper.

The network parameters (BWnet and Lnet) integral to
our performance model are measured using a round-trip
ping-pong within any two of the total processes. Figure 5
shows the results on Cori KNL using 16 nodes. The
BWnet and Lnet used in our model are averaged across
multiple ping-pongs among all pairs of multiple nodes. The
foMPI(Enqueue payload) implementation achieves up to 3×
and 8× speedup compared to the Cray MPI two-sided and
Cray MPI one-sided implementations respectively.

The implementation with foMPI (Enqueue counter)
does not achieve better performance due to (1) the dou-
bling of message counts (for each message the producer sends
one message containing data and the other message with
a counter), and (2) the reduced performance of the atomic
read-modify-write operation via foMPI Accumulate together
with foMPI Sum.

Figure 5: Microbenchmark showing BWnet on 16 Cori
KNL nodes. The tan stripe highlights the typical
message size in SpTRSV of 64 bytes to 256 bytes.
Observe the substantial potential of fompi over two-
sided MPI for these sizes.

Copyright c© 2019
Copyright retained by the Regents of the University of California



28 210 212

Number of processes

10-3

10-1

100

101
Ti

m
e 

(m
s)

Modeled upper bound
Perfect parallel
Measured
Modeled lower bound

Figure 6: Computation upper and lower bounds for
matrix A30. The gap between the modeled lower
bound and the measured data indicates the potential
performance benefit from further optimizations that
improve task placement.

Computation: Figure 6 shows the modeled upper
bound and the lower bound of matrix A30. The measured
data is close to the upper bound at first and then the gap
with the upper bound becomes large. This reflects the
fact that our implementation assigns blocks with smaller
block row number higher execution priority. Thus, at
low concurrency, each process has less idle time. This
optimization will not shorten the critical path but will
reduce the dependencies from critical path refinement, and
will improve load balance. The gap between the modeled
lower bound and the measured data indicates the potential
performance benefit from further optimization that improve
task placement. We can see there is a large gap between
the modeled lower bound and perfect parallelization. Recall
that perfect parallelization is a simple, highly-optimistic
linear scaling estimate from a sequential implementation
that ignores any potential load imbalance, communication,
or critical path dependencies. As such, our model’s lower
bound provides more realistic best case than the unrealistic
perfect parallelization.

Communication: Table 3 shows the modeling re-
sults of matrix A30 and matrix g7jac160 using three differ-
ent implementations: (1) Cray’s two-sided MPI, (2) foMPI
(Enqueue payload), and (3) foMPI (Enqueue counter).
The speedup is calculated by using the two-sided mod-
eled/measured time divided by modeled/measured time of
the other two implementations. The measured speedup of
foMPI (Enqueue payload) is less than the modeled ones due
to the overhead to check the data complete arrival.

As we discussed in Algorithm 1, we can determine that a
smaller number of dependent diagonal blocks on the critical
path leads to less communication time. Figure 7 is a visu-
alization of the critical path of matrix A30 using 256(left)
and 4096(right) processes. In essence, this is a sparsity plot
of the matrix wherein grey points represent non-zero blocks,
the blue line is the critical path using 256 processes, and
dependent blocks are marked with orange dots according

Table 3: Communication time (ms) of matrix A30 and
g7jac160 on Cori KNL as a function of core concur-
rency and three implementations. Note that imple-
mentation of foMPI Enqueue counter has a low per-
formance due to the atomic read-modify-write opera-
tion via MPI Accumulate with MPI Sum. Speedup (S)
equals to the two-sided modeled/measured time divided
by modeled (M)/measured (R) time of the other two
implementations.

A30 g7jac160

256 1024 4096 256 1024 4096

Cray MPI M 9.9 8.1 6.9 43.7 27.0 12.0

two-sided R 9.2 7.1 6.2 36.6 28.0 10.9

foMPI M 3.6 2.9 2.1 21.6 13.1 7.7

one-sided R 4.2 3.4 2.6 21.5 15.9 6.8

with SM 2.7× 2.7× 3.2× 2.0× 2.0× 1.6×
payload SR 2.2× 2.0× 2.4× 1.7× 1.8× 1.6×
foMPI M 67.6 52.2 41.0 221.8 202.9 112.5

one-sided R 71.7 46.3 37.8 251.8 233.6 130.4

with SM 0.15× 0.16× 0.16× 0.19× 0.13× 0.10×
counter SR 0.13× 0.15× 0.16× 0.15× 0.12× 0.08×

to the critical path refinement. Thus, all diagonal blocks
(#in and #out) on the critical path contribute to the total
communication time. When comparing Figure 7(left) and
(right), both the number of off-diagonal blocks and diagonal
blocks decrease as the number of processes increases. This
indicates both computation time and communication time
scale. We can use the model to estimate how total solve time
scales. Assume that we use a 2D square process decompo-
sition with three parallel decompositions: 8×8, 10×10, and
12×12. The corresponding numbers of blocks as observed on
their critical paths are 192, 115, and 85 respectively. That is
to say the total solve time can scale with

√
P . Moreover, the

number of diagonal blocks are 125, 77, and 82 respectively
which indicates that reductions in run time are derived from
both improvements in communication computation from 256
to 1024 processes. However, from 1024 to 4096 processes,
communication time increases. Nevertheless, there is still
a performance benefit from 1024 to 4096 processes due to
reductions in computation time.

7.2 Understanding the process decomposition.
An optimal process decomposition can achieve a faster
solve time. In this section, we show how performance
differentiates across varying process decompositions using
two matrices with extreme sparsity patterns: a dense lower
triangular matrix and a bi-diagonal lower triangular matrix.
Note that the optimal process decomposition for a general
sparse matrix depends heavily on the matrix size, pattern,
and the architecture. We consider 2D square and 1D
process decompositions here, but other irregular or adaptive
decompositions can also be analyzed with the proposed
performance model.

For the dense lower triangular matrix (Figure 8), we can
still see the computation time and total solve time scale while
the communication time does not. As for the bi-diagonal

Copyright c© 2019
Copyright retained by the Regents of the University of California



Non-zero block Initial critical path Refined critical path
Level 0

Level 54Level 53

Level 52

Level 51

Level 50

…0

500

1000

1600
0 500 1000 1600

B
lo

ck
 ro

w
 n

um
be

r

Block column number

Level 0

Level 54Level 53

Level 52

Level 51

Level 50

…0

500

1000

1600
0 500 1000 1600

B
lo

ck
 ro

w
 n

um
be

r
Block column number

Figure 7: Critical path visualization of matrix A30 with
256(left) and 4,096 processes(right). Fewer off-diagonal
blocks improves computation time. Fewer diagonal
blocks improves communication time.

64 256 1024
Number of processes

10-1

100

101

102

Ti
m

e 
(m

s)

Figure 8: Solid vs. dashed are for total solve time
and communication time of the dense lower triangular
matrix with different process decomposition. The com-
munication time does not scale because all the diagonal
blocks and sub-diagonal blocks are on the critical path.
The total solve time scales due to the increasing com-
putation parallelism from the off-diagonal blocks.

lower triangular matrix (Figure 10), both computation time
and communication time do not scale. We use m × n to
represent the 2D process decomposition, where m is the
number of processes in each block column. The dense
lower triangular matrix is of size 1200×1200 stored in sparse
format where each non-zero block is of size 1×1. Figure 8
shows the scalability as a function of process decomposition.
The communication time does not scale because all the
diagonal blocks and sub-diagonal blocks are on the critical
path. The total solve time scales with P because there is
still ample parallelism among the off-diagonal blocks. That
is to say, reductions in solve time are derived solely from
scaling computation time.

We illustrate these effects by examining a small (16×16
where each non-zero block is of size 1×1) dense matrix.
Figure 9a shows the critical path of the small dense matrix
with different process decompositions. We can see that
all the diagonal blocks and and sub-diagonal blocks are on
the critical path regardless of process decomposition. The

(a) 1×9 process de-

composition

(b) 3×3 process de-

composition

Figure 9: The sparsity plot as observed on the critical
path of the dense matrix wherein process numbers are
marked with colors. Less off-diagonal blocks indicts a
less computation run time.

64 256 1024
Number of processes

101

102

Ti
m

e 
(m

s)

Figure 10: Solid vs. dashed are for total solve time
and communication time of the bi-diagonal matrix with
different process decomposition. Both the total time
and the communication time do not scale since all blocks
of the bi-diagonal matrix are on the critical path.

communication time using the 1×P process decomposition
is larger than the P×1 process decomposition and the√
P ×

√
P process decomposition because the block row

reduction for the diagonal processes serializes all incoming
data. The total #in of all diagonal blocks using the 1×9
process decomposition is 2.2× larger than the one using
the 1×4 process decomposition. Similarly, the P×1 process
decomposition will not scale either. The difference is that
the total network latency of the 1×P process decomposition
is P× larger than the P×1 process decomposition. So the
performance of the P×1 process decomposition is better
than the 1×P process decomposition. The 3×3 process
decomposition in Figure 9b shows fewer dependencies of off-
diagonal blocks on the critical path, but its row reduction
cost makes it slower than the P×1 process decomposition.

Figure 10 shows the scaling performance of a bi-diagonal
matrix of 1000×1000 non-zeros where each non-zero block is
of size 1×1. The communication time does not scale because
all blocks of the matrix are on the critical path. Unlike the
dense lower triangular matrix, the total solve time for the

Copyright c© 2019
Copyright retained by the Regents of the University of California



1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

(a) 1×4

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

(b) 4×1

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

(c) 2×2

Figure 11: The critical path of the bi-diagonal ma-
trix with different process decomposition. Different pro-
cesses are marked with different colors. The message
count of 1×P and P×1 equals the number of block col-
umn/row. The message count of

√
P×
√
P equals to the

sum of the number of block columns and the number of
block rows.

matrix does not scale either since there are no off-diagonal
blocks in the matrix. That is, all the blocks in matrix have to
be executed sequentially. The performance of the

√
P ×
√
P

process decomposition is worse than the other two since the
message count of the

√
P×
√
P process decomposition equals

the sum of the number of block columns and the number
of block rows. The message counts of the 1×P process
decomposition and the P×1 process decomposition equal the
number of block columns and block rows, respectively.

Figure 11 presents the critical path of a small bi-
diagonal (8×8 blocks). Once again, the critical path using
different process decomposition is the same as the original
matrix. In the example in Figure 11, the total message count
of the

√
P×
√
P process decomposition is 2× larger than the

one using 1×P (or P×1) process decomposition. To be more
specific, the communication time with the

√
P ×
√
P process

decomposition equals to the sum of the communication time
using 1×P process decomposition plus the communication
time using P×1 process decomposition.

7.3 Overall Performance. Figure 12 shows the over-
all performance on Cori KNL. Our one-sided SpTRSV im-
plementation using foMPI (Enqueue payload) reduces com-
munication time by 1.5× to 2.5× and attains a speedup of
up to 2.4× on 256 to 4,096 processes compared against Su-
perLU DIST’s two-sided implementation. Recall that mi-
crobenchmarks showed that Cray’s MPI one-sided is 8×
slower than foMPI (and thus slower than Cray’s high-quality
two-sided implementation). As such, we do not include
Cray’s MPI one-sided in this discussion. Figure 13 presents
performance on Cori Haswell where our one-sided SpTRSV
implementation reduces communication time by 1.5× to
2.5× and improves SpTRSV performance by up to 2.3× on
64 to 1024 processes. Note, the communication time in the
figures contains both the one-sided MPI time and the check-
sum time used to verify data arrival. The total run time
speedup is lower than the speedup from the model due to
the computation cost. The one-sided implementation of task
queues outperforms the two-sided producer-consumer imple-
mentation without too much coding effort (3, 500 LOCs at

0

0.01

0.02

0.03

0.04

0.05

256 1024 4096 256 1024 4096 256 1024 4096 256 1024 4096 256 1024 4096 256 1024 4096

A30 chipcool0 shipsec1 gas_sensor g7jac160 copter2

Ti
m

e (
s)

two-sided computation fompi computation
two-sided communication fompi communication

096

Figure 12: Lower triangular solve time on Cori
KNL using foMPI (Enqueue payload) compared to
two-sided MPI. Our SpTRSV implementation reduces
communication time by 1.5× to 2.5× and attains a
speedup of up to 2.4× on 256 to 4,096.

0

0.01

0.02

0.03

64 256 1024 64 256 1024 64 256 1024 64 256 1024 64 256 1024 64 256 1024

A30 chipcool0 shipsec1 gas_sensor g7jac160 copter2
Ti

m
e (

s)

two-sided computation fompi computation
two-sided communication fompi communication

1024

Figure 13: Lower triangular solve time on Cori
Haswell using foMPI (Enqueue payload) compared to
two-sided MPI. Our one-sided implementation reduces
communication time by 1.5× to 2.5× and attains a
speedup of up to 2.3× on 64 to 1,024 processes.

software level).

8 Conclusions and Future Work

The low arithmetic intensity, complex data dependen-
cies, and high inter-node communication present immense
performance impediments for SpTRSV at high concurrency.
In this work, we use foMPI one-sided communication to im-
plement a synchronization-free task queue to manage the
messaging between producer-consumer pairs in SpTRSV.
We construct a critical path performance model in order
to assess our observed performance relative to machine ca-
pabilities. The performance model takes the matrix spar-
sity, process layouts, network bandwidth/latency and mem-
ory bandwidth into account to validate the SpTRSV solve
time. In alignment with our model, from a scale of 64 to
4,096 processes, our foMPI-based one-sided implementation
of SpTRSV reduces communication time by 1.5× to 2.5×
and improves SpTRSV performance by up to 2.4× when
compared to SuperLU DIST’s implementation using Cray’s
optimized two-sided MPI.

It is worth noting that even though our work is con-
ducted on manycore architectures, we believe that our pro-
posed method can bring insightful experience for DAG-
based computations on emerging accelerated architectures.
To that end, in the future, we will extend our one-sided
task queue methodology and evaluate other one-sided PGAS
models like OpenSHMEM [17]. We will assess the efficacy

Copyright c© 2019
Copyright retained by the Regents of the University of California



of generalizing and encapsulating our work into a one-sided
task queue library to facilitate high-performance distributed
memory DAG computations.

References

[1] István Z Reguly, Gihan R Mudalige, Carlo Bertolli,
Michael B Giles, Adam Betts, Paul HJ Kelly, and David
Radford. Acceleration of a full-scale industrial CFD
application with OP2. IEEE Transactions on Parallel
and Distributed Systems, 27(5):1265–1278, 2016.

[2] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny
Bickson, Carlos Guestrin, and Joseph M Hellerstein.
Graphlab: A new parallel framework for machine learn-
ing. In Conference on uncertainty in artificial intelli-
gence (UAI), pages 340–349, 2010.

[3] Xinliang Wang, Weifeng Liu, Wei Xue, and Li Wu.
swSpTRSV: a fast sparse triangular solve with sparse
level tile layout on Sunway architectures. In ACM
SIGPLAN Notices, volume 53, pages 338–353. ACM,
2018.

[4] Yang Liu, Mathias Jacquelin, Pieter Ghysels, and
Xiaoye S Li. Highly scalable distributed-memory sparse
triangular solution algorithms. In Proceedings of the
Seventh SIAM Workshop on Combinatorial Scientific
Computing, pages 87–96. SIAM, 2018.

[5] Weifeng Liu, Ang Li, Jonathan D. Hogg, Iain S. Duff,
and Brian Vinter. Fast synchronization-free algorithms
for parallel sparse triangular solves with multiple right-
hand sides. Concurrency and Computation: Practice
and Experience, 29(21):e4244–n/a, 2017. ISSN 1532-
0634. doi: 10.1002/cpe.4244. URL http://dx.doi.

org/10.1002/cpe.4244. e4244 cpe.4244.

[6] Weifeng Liu, Ang Li, Jonathan Hogg, Iain S Duff, and
Brian Vinter. A synchronization-free algorithm for par-
allel sparse triangular solves. In European Conference
on Parallel Processing, pages 617–630. Springer, 2016.

[7] Andrew M. Bradley. A hybrid multithreaded di-
rect sparse triangular solver. In Proceedings of
SIAM Workshop on Combinatorial Scientific Comput-
ing, pages 13–22, 2016. doi: 10.1137/1.9781611974690.
ch2. URL http://epubs.siam.org/doi/abs/10.1137/

1.9781611974690.ch2.

[8] Jongsoo Park, Mikhail Smelyanskiy, Narayanan Sun-
daram, and Pradeep Dubey. Sparsifying synchroniza-
tion for high-performance shared-memory sparse trian-
gular solver. In International Supercomputing Confer-
ence, pages 124–140. Springer, 2014.

[9] Ehsan Totoni, Michael T Heath, and Laxmikant V
Kale. Structure-adaptive parallel solution of sparse
triangular linear systems. Parallel Computing, 40(9):
454–470, 2014.

[10] Ruipeng Li and Yousef Saad. GPU-accelerated precon-
ditioned iterative linear solvers. The Journal of Super-
computing, 63(2):443–466, 2013.

[11] Jan Mayer. Parallel algorithms for solving linear
systems with sparse triangular matrices. Computing,
86(4):291, Sep 2009. ISSN 1436-5057. doi: 10.1007/
s00607-009-0066-3. URL https://doi.org/10.1007/

s00607-009-0066-3.

[12] Oak Ridge Leadership Computing Facility.
https://www.olcf.ornl.gov/olcf-resources/

compute-systems/titan/.

[13] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning
Wang, Zhenya Song, Xiaomeng Huang, Chao Yang, Wei
Xue, Fangfang Liu, Fangli Qiao, et al. The Sunway Tai-
huLight supercomputer: system and applications. Sci-
ence China Information Sciences, 59(7):072001, 2016.

[14] Jonathon Anderson, Patrick J Burns, Daniel Milroy,
Peter Ruprecht, Thomas Hauser, and Howard Jay
Siegel. Deploying RMACC summit: an HPC resource
for the Rocky Mountain Region. In Proceedings of the
Practice and Experience in Advanced Research Comput-
ing 2017 on Sustainability, Success and Impact, page 8.
ACM, 2017.

[15] Simon Handley. On the use of a directed acyclic graph
to represent a population of computer programs. In
Proceedings of the First IEEE Conference on Evolution-
ary Computation. IEEE World Congress on Computa-
tional Intelligence, pages 154–159. IEEE, 1994.

[16] Robert Alverson, Duncan Roweth, and Larry Kaplan.
The gemini system interconnect. In 2010 18th IEEE
Symposium on High Performance Interconnects, pages
83–87. IEEE, 2010.

[17] Jeff R Hammond, Sayan Ghosh, and Barbara M Chap-
man. Implementing OpenSHMEM using MPI-3 one-
sided communication. In Workshop on OpenSHMEM
and Related Technologies, pages 44–58. Springer, 2014.

[18] Sreeram Potluri, Nathan Luehr, and Nikolay
Sakharnykh. Simplifying Multi-GPU Communication
with NVSHMEM. In GPU Technology Conference,
2016.

[19] Roberto Belli and Torsten Hoefler. Notified access: Ex-
tending remote memory access programming models for
producer-consumer synchronization. In IEEE Interna-
tional Parallel and Distributed Processing Symposium,
pages 871–881. IEEE, 2015.

[20] Monika ten Bruggencate and Duncan Roweth. Dmapp–
an API for one-sided program models on baker systems.
In Cray User Group Conference, 2010.

[21] Michael Woodacre, Derek Robb, Dean Roe, and Karl
Feind. The SGI R© AltixTM 3000 global shared-memory
architecture. Silicon Graphics, Inc, 2005.

Copyright c© 2019
Copyright retained by the Regents of the University of California

http://dx.doi.org/10.1002/cpe.4244
http://dx.doi.org/10.1002/cpe.4244
http://epubs.siam.org/doi/abs/10.1137/1.9781611974690.ch2
http://epubs.siam.org/doi/abs/10.1137/1.9781611974690.ch2
https://doi.org/10.1007/s00607-009-0066-3
https://doi.org/10.1007/s00607-009-0066-3
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/


[22] Samuel Williams, Andrew Waterman, and David Pat-
terson. Roofline: An insightful visual performance
model for floating-point programs and multicore archi-
tectures. Technical report, Lawrence Berkeley National
Lab.(LBNL), Berkeley, CA (United States), 2009.

[23] Markus Wittmann, Georg Hager, Radim Janalik, Mar-
tin Lanser, Axel Klawonn, Oliver Rheinbach, Olaf
Schenk, and Gerhard Wellein. Multicore performance
engineering of sparse triangular solves using a modified
roofline model. In The 30th International Symposium
on Computer Architecture and High Performance Com-
puting (SBAC-PAD), pages 233–241. IEEE, 2018.

[24] Guangming Tan, Junhong Liu, and Jiajia Li. Design
and implementation of adaptive spmv library for mul-
ticore and many-core architecture. ACM Transactions
on Mathematical Software (TOMS), 44(4):46, 2018.

[25] Yue Zhao, Jiajia Li, Chunhua Liao, and Xipeng Shen.
Bridging the gap between deep learning and sparse
matrix format selection. In ACM SIGPLAN Notices,
volume 53, pages 94–108. ACM, 2018.

[26] Jiajia Li, Guangming Tan, Mingyu Chen, and Ninghui
Sun. SMAT: an input adaptive auto-tuner for sparse
matrix-vector multiplication. In ACM SIGPLAN No-
tices, volume 48, pages 117–126. ACM, 2013.

[27] Ehsan Totoni, Michael T. Heath, and Laxmikant V.
Kale. Structure-adaptive parallel solution of sparse
triangular linear systems. Parallel Computing,
40(9):454 – 470, 2014. ISSN 0167-8191. doi:
https://doi.org/10.1016/j.parco.2014.06.006. URL
http://www.sciencedirect.com/science/article/

pii/S0167819114000799.

[28] Xiaoye S. Li and James W. Demmel. Making sparse
Gaussian elimination scalable by static pivoting. In
Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing, SC ’98, pages 1–17, Washington, DC,
USA, 1998. IEEE Computer Society. ISBN 0-89791-
984-X. URL http://dl.acm.org/citation.cfm?id=

509058.509092.

[29] Xiaoye S. Li and James W. Demmel. SuperLU DIST:
a scalable distributed-memory sparse direct solver for
unsymmetric linear systems. ACM Trans. Math. Softw.,
29(2):110–140, June 2003. ISSN 0098-3500. doi: 10.
1145/779359.779361. URL http://doi.acm.org/10.

1145/779359.779361.

[30] Padma Raghavan. Efficient parallel sparse triangular
solution using selective inversion. Parallel Processing
Letters, 8(01):29–40, 1998.

[31] Anand Venkat, Mahdi Soltan Mohammadi, Jongsoo
Park, Hongbo Rong, Rajkishore Barik, Michelle Mills

Strout, and Mary Hall. Automating wavefront paral-
lelization for sparse matrix computations. In Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
page 41. IEEE Press, 2016.

[32] Anand Venkat, Mary Hall, and Michelle Strout. Loop
and data transformations for sparse matrix code. In
ACM SIGPLAN Notices, volume 50, pages 521–532.
ACM, 2015.

[33] James W Demmel, Stanley C Eisenstat, John R
Gilbert, Xiaoye S Li, and Joseph WH Liu. A supernodal
approach to sparse partial pivoting. SIAM Journal on
Matrix Analysis and Applications, 20(3):720–755, 1999.

[34] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-
driven, highly-scalable dragonfly topology. In 2008
International Symposium on Computer Architecture,
pages 77–88, June 2008. doi: 10.1109/ISCA.2008.19.

[35] Ulrike Baur, Peter Benner, Andreas Greiner, Jan G
Korvink, Jan Lienemann, and Christian Moosmann.
Parameter preserving model order reduction for MEMS
applications. Mathematical and Computer Modelling of
Dynamical Systems, 17(4):297–317, 2011.

[36] S C Jardin, N Ferraro, X Luo, J Chen, J Breslau, K E
Jansen, and M S Shephard. The M3D-C1 approach
to simulating 3D 2-fluid magnetohydrodynamics in
magnetic fusion experiments. J. Phys. Conf. Ser.,
125(1):012044, 2008. URL http://stacks.iop.org/

1742-6596/125/i=1/a=012044.

[37] Alexander Ludwig. The Gauss–Seidel–quasi-Newton
method: A hybrid algorithm for solving dynamic eco-
nomic models. Journal of Economic Dynamics and
Control, 31(5):1610–1632, 2007.

[38] Gary Kumfert and Alex Pothen. Two improved algo-
rithms for envelope and wavefront reduction. BIT Nu-
merical Mathematics, 37(3):559–590, 1997.

[39] Timothy A. Davis and Yifan Hu. The University of
Florida sparse matrix collection. ACM Trans. Math.
Softw., 38(1):1:1–1:25, December 2011. ISSN 0098-
3500. doi: 10.1145/2049662.2049663. URL http:

//doi.acm.org/10.1145/2049662.2049663.

[40] George Karypis and Vipin Kumar. A fast and high qual-
ity multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput., 20(1):359–392, 1998. doi:
10.1137/S1064827595287997. URL https://doi.org/

10.1137/S1064827595287997.

[41] MPI: A Message-Passing Interface Standard Ver-
sion 3.1. https://www.mpi-forum.org/docs/mpi-3.1/
mpi31-report.pdf.

[42] K Kandalla, David Knaak, K McMahon, N Radcliffe,
and M Pagel. Optimizing Cray MPI and Cray SHMEM

Copyright c© 2019
Copyright retained by the Regents of the University of California

http://www.sciencedirect.com/science/article/pii/S0167819114000799
http://www.sciencedirect.com/science/article/pii/S0167819114000799
http://dl.acm.org/citation.cfm?id=509058.509092
http://dl.acm.org/citation.cfm?id=509058.509092
http://doi.acm.org/10.1145/779359.779361
http://doi.acm.org/10.1145/779359.779361
http://stacks.iop.org/1742-6596/125/i=1/a=012044
http://stacks.iop.org/1742-6596/125/i=1/a=012044
http://doi.acm.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2049662.2049663
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf


for Current and Next Generation Cray-XC Supercom-
puters. Cray User Group (CUG), 2015, 2015.

[43] Douglas Doerfler, Brian Austin, Brandon Cook, Jack
Deslippe, Krishna Kandalla, and Peter Mendygral.
Evaluating the networking characteristics of the Cray
XC-40 Intel Knights Landing-based Cori supercom-
puter at NERSC. Concurrency and Computation:
Practice and Experience, 30(1):e4297, 2018.

[44] LibCRC. https://www.libcrc.org/.

[45] Edward Anderson and Youcef Saad. Solving sparse tri-
angular linear systems on parallel computers. Interna-
tional Journal of High Speed Computing, 1(01):73–95,
1989.

[46] Joel H Saltz. Aggregation methods for solving sparse
triangular systems on multiprocessors. SIAM journal
on scientific and statistical computing, 11(1):123–144,
1990.

[47] Scott Beamer, Krste Asanović, and David Patterson.
Direction-optimizing breadth-first search. Scientific
Programming, 21(3-4):137–148, 2013.

Copyright c© 2019
Copyright retained by the Regents of the University of California

https://www.libcrc.org/

	Introduction
	Related Work
	Parallel Triangular Solvers
	Experiment Setup
	Task Queues Using One-sided Communication
	SpTRSV Performance Model
	Performance and Analysis
	Understanding the run time. 
	Understanding the process decomposition. 
	Overall Performance. 

	Conclusions and Future Work

