
Roofline on GPUs
(advanced topics)

Samuel Williams
Computational Research Division
Lawrence Berkeley National Lab

SWWilliams@lbl.gov

mailto:SWWilliams@lbl.gov

Acknowledgements
§ Materials were provided by Nan Ding, Charlene Yang, Yunsong Wang, Khaled Ibrahim, and Thorsten Kurth
§ This material is based upon work supported by the Advanced Scientific Computing Research Program in the

U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.
§ This material is based upon work supported by the DOE RAPIDS SciDAC Institute.
§ This research used resources of the National Energy Research Scientific Computing Center (NERSC),

which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

§ This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

Roofline for Deep Learning
i.e. “Roofline for TensorFlow”

Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical
Roofline Analysis for GPUs: Accelerating Performance Optimization
for the NERSC-9 Perlmutter System", Cray User Group (CUG),
May 2019.

Performance of DL is as important as simulation

§ DOE is beginning to incorporate DL into simulation and analysis

§ Training can be extremely computationally expensive

§ Performance analysis/optimization of DL can be as important as
performance analysis of simulation.

4
Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis
for GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter
System", Cray User Group (CUG), May 2019.

§ Can Roofline be used to…
o Quantify efficiency of Deep Learning frameworks?

o Motivate optimizations to improve framework performance?

o Identify facets of architectures should be emphasized to accelerate DL for science?

conv2d from TensorFlow

§ Demonstrate Roofline methodology using TensorFlow+cuDNN

§ Setup…
input_image = tf.random_uniform(shape=input_size, minval=0., maxval=1., dtype=dtype)

output_result = conv2d(input_image, ’NHWC’, kernel_size, stride_size, dtype)

§ Forward Pass (2D conv)
exec_op = output_result

§ Backward Pass (2D conv + derivative)
opt = tf.train.GradientDescentOptimizer(0.5)

exec_op = opt.compute_gradients(output_result)

5
Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis
for GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter
System", Cray User Group (CUG), May 2019.

conv2d from TensorFlow

§ Each TensorFlow kernel includes multiple sub-kernels
o Padding, permutations, conversions, compute, etc…
o Should include all of them when analyzing performance

§ TensorFlow also includes an autotuning step
§ Must ignore autotuning when profiling/modeling…

o nvprof --profile-from-start off
o run 5 warmup iterations (autotuning / not profiled)
o start profiler (pyc.driver.start_profiler), run 20 iterations, stop profiler
o Sum up DP, SP, HP metrics. Scale NVProf TC utilization metric

§ Vary parameters to understand effects on performance

6
Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis
for GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter
System", Cray User Group (CUG), May 2019.

TensorFlow / Forward Pass

7

#Filters
o Intensity ∝ #Filters
o Low L2 data locality
o Some use of TC’s (>FP16

FMA)… partial TC ceiling

Kernel Size
o Intensity ∝ kernel size
o Low L2 data locality
o Autotuner switched FP32

algorithm to FFT at 9x9
o Some use of TC’s (>FP16

FMA)… partial TC ceiling

Batch Size
o Constant performance(?)
o FP16 performance anti-

correlated with batch size
o Performance << TC peak
o Transformation kernels
o Low L2 locality

Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis
for GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter
System", Cray User Group (CUG), May 2019.

TensorFlow / Backward Pass

Batch Size
o Autotuner chose different

(better) algorithm for FP32

with batch size = 64 (boost)

8

#Filters
o Close to FP16 TC peak

o Close to FP32 FMA peak

Kernel Size
o Good FP32 performance

trend (almost peak)

o Autotuner chose to run
9x9 FP16 in FP32 !!

Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis

for GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter

System", Cray User Group (CUG), May 2019.

How do you compare different algorithms?

9

§ Imagine 2 kernels solve the same
problem using different algorithms

§ We’re used to thinking one with higher
FLOP/s is better

R
un

 T
im

e

FLOPs per kernel

AI=M
B/2

(FLO
P/s=

pe
ak

/2)

AI=M
B/4

(FLO
P/s=

pe
ak

/4)
4x lower FLOP/s !!!

Overhead limit

AI≥M
B (P

ea
k F

LO
P/s)

2x lower run time

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Peak FLOP/s

§ Original Roofline is about FLOP/s
§ Need alternate time-based version to

compare optimizations that change the
number of FLOPs

Tensor Flow Takeaway

10

§ Performance rarely anywhere close to FP16 peak
o Serializing compute and data permutation kernels drives down AI
o Changing algorithms or precisions can confuse Roofline Analysis

§ Migrating from NVProf to Nsight Compute
o More accurate WMMA counts
o >10x faster

Ø Need alternate time formulation of Roofline
i.e. differentiating architectural efficiency from algorithmic efficiency

Ø Need a better way of analyzing mixed precision codes
i.e. understanding bottlenecks when mixing FP32, FP16, and tensor core instructions

Instruction Roofline Model
“FLOP/s aren’t that important to me”

Nan Ding, Samuel Williams, "An Instruction Roofline Model for

GPUs", Performance Modeling, Benchmarking, and Simulation

(PMBS), November, 2019.

How do we go beyond the FLOP Roofline?

§ Think about classifying applications by instruction mix…
o Heavy floating-point (rare in DOE)
o Mix of integer and floating-point
o Integer-only (e.g. bioinformatics, graphs, etc…)
o Mixed precision

12

§ FLOP/s → IntOP/s → FLOP/s+IntOP/s
o Adopted by Intel Advisor
o Useful when wanting to understand ‘performance’ rather than bottlenecks
o What is an “Integer Op”? LEA but not an SIB byte?
o Instruction Fetch/Decode/Issue bottlenecks?
o Functional Unit Bottlenecks?

Ø Need to create a true instruction Roofline

NVIDIA GPU Instruction Roofline

§ Instructions/second? Instructions per Byte?

13

§ What is an ‘Instruction’ on a GPU?
o Thread-level hides issue limits?
o Warp-level hides predication effects?
o Scale non-predicated threads down by the warp size (divide by 32)
o Show warp instructions per second
o Break instructions into subclasses (integer, FP32, FP64, LDST, WMMA)

§ Naively, one would think instruction intensity should use ‘bytes’
o Matches well to existing Roofline; works with well-known bandwidths

§ GPUs access memory using ‘transactions’
o 32B for global/local/L2/HBM
o 128B for shared memory
Ø “Instructions/Transaction” preserves traditional Roofline,

but enables a new way of understanding memory access

Instruction Roofline

14

Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

L2
 ca

ch
e G

B/s

Arithmetic Intensity
(FLOP:Byte)

Peak GFLOP/s

Instruction Roofline

15

Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s

Peak GIPS
GIPS = min

IIDRAM * DRAM GB/s A
tt
a
in

a
b
le

 G
IP

S

H
B
M

 G
B
/s

L2
 c
ac

he
 G

B
/s

Instruction Intensity

(Instruction:Byte)

Peak GIPS

Instructions per Byte

Nan Ding, Samuel Williams, "An Instruction Roofline

Model for GPUs", PMBS, November, 2019.

Instruction Roofline on GPUs

16

Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s

Peak GIPS
GIPS = min

IIDRAM * DRAM GB/s A
tt
a
in

a
b
le

 G
IP

S

H
B
M

 G
B
/s

L2
 c
ac

he
 G

B
/s

Instruction Intensity

(Instruction:Byte)

Peak GIPS

Warp
Instructions

As the natural quanta for GPU
memory access is a “transaction”…

Nan Ding, Samuel Williams, "An Instruction Roofline

Model for GPUs", PMBS, November, 2019.

Instruction Roofline on GPUs

17

Peak GFLOP/s
GFLOP/s = min

AIDRAM * DRAM GB/s

Peak GIPS
GIPS = min

IIDRAM * DRAM GB/s At
ta

in
ab

le
 G

IP
S

HBM G
TXN/s

L2
 ca

ch
e G

TXN/s

Instruction Intensity
(Instruction:Transaction)

Peak GIPS

Peak GIPS
GIPS = min

IIDRAM * DRAM GTXN/s IIx (Instruction Intensity at level “x”) =

Instructions / Transactions (to/from level “x”)

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

10-2 10-1 100 101 102

Instruction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

HBM 25.9 GTXN/s

L2 93.6 GTXN/s

L1 437.5 GTXN/s
Thoeretical Peak: 489.6 warp GIPS

Instruction Roofline on NVIDIA GPUs

§ Instruction Intensity (II)
o (Warp or equivalent) Instructions / Transaction
o Refine into L1 (global+local+shared), L2, HBM Instruction Intensities
o Further refine based on instruction type (LDST instructions / global transaction)

§ Peak Performance and Peak Bandwidths
o Instruction:

o 80 SMs * 4 warps * 1.53GHz ~ 490 GIPS (warp-level)

o Use ERT for memory (convert from GB/s)
o L1: 80 SMs * 4 transactions/cycle * 1.53 GHz ~ 490 GTXN/s
o L2: 94 GTXN/s (empirical)
o HBM: 26 GTXN/s (empirical)

18Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Efficiency of Global Memory Access

§ (Global)LDST Instruction Intensity has a special meaning / use…
o Global LDST instructions / Global transactions
o Numerator lower than nominal II
o Denominator can be lower than nominal L1 II (no local or shared transactions)

§ Denotes efficiency of memory access

19

10-2 10-1 100 101

Instuction Intensity (Warp Instructions per Transaction)

10-1

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

St
rid

e-
0

U
ni

t S
tri

de
 (i

nt
eg

er
)

St
rid

e>
=1

28
B

Thoeretical Peak: 489.6 warp GIPS

L1 = Global 437.5 GTXN/s

Unattainably
Low Intensity

Unattainably
High Intensity

§ 3 “Walls” of interest:
o ≥1 transaction per LDST instruction

(all threads access same location)
o ≤32 transactions per LDST instruction

(gather/scatter or stride>=128B)
o Unit Stride: 1 LDST per 8 transactions

(double precision)

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Efficiency of Shared Memory Access

§ (Shared)LDST Instruction Intensity also has a special meaning / use
o Shared LDST instructions / Shared transactions
o II is similarly loosely related to nominal II

§ Can be used to infer the number of bank conflicts

20

10-2 10-1 100 101 102

Instuction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

N
o

ba
nk

 c
on

fli
ct

32
-w

ay
 b

an
k

co
nf

lic
t

Thoeretical Peak: 489.6 warp GIPS

Shared 109.3 GTXN/s

Can never have less
than 0 bank conflicts

§ 2 “Walls” of interest:
o Minimum of 1 transaction per shared

LDST instruction (no bank conflicts)
o Maximum of 32 transactions per

shared LDST instruction
(all threads access different lines
in the same bank)

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Instruction Roofline for Smith-Waterman
§ Integer-only Alignment code on NVIDIA GPU
§ No predication effects, but inefficient global memory access

21

N
ai

ve

Instruction Hierarchy & Thread Predication Global Memory Efficiency Shared Memory Efficiency

C
oa

le
sc

ed

Gather/Scatter
becomes

Unit Stride

!Near peak

GIPS

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Instruction Roofline for Matrix Transpose

22

Tr
an

sp
os

e
in

Sh
ar

ed
A

rr
ay

Pa
dd

in
g

N
ai

ve

Instruction Hierarchy & Thread Predication Global Memory Efficiency

not used

Shared Memory Efficiency

High Stride
becomes

Unit Stride

Bank conflicts
are eliminated

Loss in L1 locality due
to use of shared memory

Improved L1 locality due
to elimination of bank conflicts

Bank conflict on
every access

High Stride
Access

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Other Uses of Instruction Roofline

§ Predication
o Individual threads can mask out execution when in branch-not-taken
o 16 FLOPs/SM/cycle… 1 FP warp every 2 cycles

–or –
1 FP warp every cycle with half threads predicated

o Use performance metrics to plot both warp GIPS and non-predicated threads (scaled by 32)

§ FMA, Tensor Cores, Mixed Precision, …
o Rather than counting FLOPs, count GIPS
o Can differentiate total instruction issue bandwidth from functional unit utilization (FP32, FP64)
o n.b., some GIPS should be summed (FP16+FP32) while others are have dedicated pipelines

(FP64, TC)

23Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Instruction Roofline Takeaway

24

Instruction Roofline
§ Tells us about bottlenecks

(issue and memory)

§ Use of FMA, SIMD, vectors,
tensors decreases intensity and
may decrease “performance”

§ Presence of integer instructions
increases intensity and might
increase performance.

§ Reducing precision has no affect
on intensity

Memory Walls
§ Tells us about efficiency

(memory access)

§ Intensity based on LDST
instructions and transactions

§ Predication could affect intensity
(could have zero transactions for
a LDST instruction, but not all
LDST instructions)

§ Reducing precision shifts
intensity, and the unit-stride wall

Traditional Roofline
§ Tells us about performance

(floating-point)

§ Use of FMA, SIMD, vectors,
tensors has no affect on intensity,
but may increase performance…

§ Presence of integer instructions
has no affect on intensity, but may
decrease performance

§ Reducing precision (64b, 32b,
16b) increases arithmetic intensity

Nan Ding, Samuel Williams, "An Instruction Roofline
Model for GPUs", PMBS, November, 2019.

Instruction Roofline on Vector CPUs?

25

Instruction Roofline on CPUs
§ micro-op (uOP) based à easy to see

functional unit contention

§ Memory walls can only be constructed
if VGATHER/VSCATTER generate
multiple cache performance counter
events

§ Masking/Predication effects can only
be inferred if there are counts for
individual vector lanes

Instruction Roofline on GPUs
§ Warp-based à easy to see functional unit

contention

§ LDST instructions generate multiple
transactions à memory walls

§ Predication effects inferred through
differences in (scaled) thread GIPS and
warp GIPS

Roofline Scaling Trajectories
“Is my code ready for Perlmutter, Frontier, …"

Khaled Ibrahim, Samuel Williams, Leonid Oliker, “Performance
Analysis of GPU Programming Models using the Roofline Scaling
Trajectories”, Bench, November, 2019.

Understanding SM Scalability is hard

27

§ Control SM count on Volta GPUs
§ LU NAS Parallel benchmark (in

CUDA)

§ Typical Scaling Plot
o Provide performance with SM

change,
o No insights into root causes.
o Why Class B scale better than A,
o but Class C is not better than B?

0
10

00
00

25
00

00

SM count

M
Fl

op
/s

02 04 08 16 32 48 64 80

●

●

●

●

●

●
● ●

●

CLASS A
CLASS B
CLASS C

Khaled Ibrahim, Samuel Williams, Leonid Oliker,
“Performance Analysis of GPU Programming Models using
the Roofline Scaling Trajectories”, Bench, November, 2019.

Roofline Scaling Trajectory

28

SM=2

SM=32

SM=80

§ Replot SM scalability as a
trendline on the Roofline

§ Define compute and bandwidth
ceilings as a function of #SMs

§ Ideal behavior:
�y = increase in computational

resources or share of BW

�x=0 (No change in arithmetic
intensity)

Khaled Ibrahim, Samuel Williams, Leonid Oliker,
“Performance Analysis of GPU Programming Models using
the Roofline Scaling Trajectories”, Bench, November, 2019.

Example #1 – NAS MG in OpenACC

29

0.01 0.02 0.05 0.10 0.20 0.50 1.00

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●
●●●●

roofline_summary_Total_a_MG_c_ACC

●

Class A
Class B
Class C

§ Performance scales nearly
linearly until high concurrency

§ Fall over in performance…
o HBM limited
o Exhausts cache capacity
o More SMs generate more capacity

misses
o AI degrades
o Performance degrades

Khaled Ibrahim, Samuel Williams, Leonid Oliker,
“Performance Analysis of GPU Programming Models using
the Roofline Scaling Trajectories”, Bench, November, 2019.

Example #2 – NAS FT in OpenACC

30

§ Performance scales poorly
§ Saturation in performance far

below HBM ceiling
§ Limited degradation in AI (few

capacity misses)

0.01 0.02 0.05 0.10 0.20 0.50 1.00

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●●●●●

roofline_summary_Total_a_FT_c_ACC

●

Class A
Class B
Class C

Khaled Ibrahim, Samuel Williams, Leonid Oliker,
“Performance Analysis of GPU Programming Models using
the Roofline Scaling Trajectories”, Bench, November, 2019.

Understanding Different Programming Models

31

§ CUDA delivered better AI and better scalability
§ But CUDA efficiency was initially much lower
§ Different compilers/PM have different challenges

0.01 0.02 0.05 0.10 0.20 0.50 1.00 2.00

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

HBM(SMs=80) (829)

HBM(SMs=2) (35)

●

●

●

●

●

●●●

roofline_summary_Total_a_BT_c_CUDA

●

Class A
Class B
Class C

0.01 0.02 0.05 0.10 0.20 0.50 1.00 2.00

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●
●●●●

roofline_summary_Total_a_BT_c_ACC

●

Class A
Class B

BT CUDA Implementation

C
U

D
A

AI

BT OpenACC Implementation

Khaled Ibrahim, Samuel Williams, Leonid Oliker,
“Performance Analysis of GPU Programming Models using
the Roofline Scaling Trajectories”, Bench, November, 2019.

32

Summary
§ Recasts thread scalability into the Roofline model

§ Quantitative analysis of different implementations, programming models,
or compilers

§ Infer cache behavior and efficiency

§ Codes that demonstrate a good Roofline Scaling Trajectory will
likely scale to Perlmutter, Frontier, and Aurora

Khaled Ibrahim, Samuel Williams, Leonid Oliker,
“Performance Analysis of GPU Programming Models using
the Roofline Scaling Trajectories”, Bench, November, 2019.

Questions?

