

NATIONAL LABORATORY

Roofline on CPU-based Systems

Samuel Williams

Computational Research Division Lawrence Berkeley National Lab

With slides from Charlene Yang, Doug Doerfler, and Zakhar Matveev

LAWRENCE BERKELEY NATIONAL LABORATORY

Acknowledgements

- This material is based upon work supported by the Advanced Scientific Computing Research Program in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.
- This material is based upon work supported by the DOE RAPIDS SciDAC Institute.
- This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231.

BERKELEY NATIONAL LABORATORY

Machine Characterization

Machine Characterization

- "Theoretical Performance" numbers can be highly optimistic...
 - Pin BW vs. sustained bandwidth
 - TurboMode / Underclock for AVX
 - compiler failings on high-AI loops.
- LBL developed the Empirical Roofline Toolkit (ERT)...
 - Characterize CPU/GPU systems
 - Peak Flop rates
 - Bandwidths for each level of memory
 - MPI+OpenMP/CUDA == multiple GPUs

https://github.com/cyanguwa/nersc-roofline/

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

ERT Configuration

Kernel.c	config.txt
loop over ntrials	ERT_FLOPS 1,2,4,8,16,32,64
distribute dataset on threads and each computes ERT FLOPS	ERT_MPI_PROCS 2,4,8,16,32,64 ERT OPENMP THREADS 1-256
	ERT_MEMORY_MAX 1073741824
Kernel.h	ERT_WORKING_SET_MIN 1
ERT FLOPS=1: $a = b + c$	ERI_IRIALS_MIN I
$ERT_FLOPS=2: a = a x b + c$	
Driver.c (uses some Macros from config.txt)	Job script
Driver.c (uses some Macros from config.txt)	Job script
Driver.c (uses some Macros from config.txt) initialize MPI, OpenMP loop over dataset sizes <= ERT MEMORY MAX	Job script ./ert config.txt
Driver.c (uses some Macros from config.txt) initialize MPI, OpenMP loop over dataset sizes <= ERT_MEMORY_MAX loop over trial sizes >= ERT_TRIALS_MIN	Job script ./ert config.txt ert (Python)
<pre>Driver.c (uses some Macros from config.txt) initialize MPI, OpenMP loop over dataset sizes <= ERT_MEMORY_MAX loop over trial sizes >= ERT_TRIALS_MIN start timer call hormal</pre>	Job script ./ert config.txt ert (Python)
<pre>Driver.c (uses some Macros from config.txt) initialize MPI, OpenMP loop over dataset sizes <= ERT_MEMORY_MAX loop over trial sizes >= ERT_TRIALS_MIN start timer call kernel end timer</pre>	Job script ./ert config.txt ert (Python) create directories loop over ERT_FLOPS, MPI_PROCS/ON
<pre>Driver.c (uses some Macros from config.txt) initialize MPI, OpenMP loop over dataset sizes <= ERT_MEMORY_MAX loop over trial sizes >= ERT_TRIALS_MIN start timer call kernel end timer</pre>	Job script ./ert config.txt ert (Python) create directories loop over ERT_FLOPS, MPI_PROCS/ON call driver, kernel

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

https://github.com/cyanguwa/nersc-roofline/

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

MP THREADS

- Nominally, ERT runs a series of benchmarks
 - Read-modify-write Polynomial of degree-K on a vector of size N Ο
 - Trivially auto-vectorized Ο
 - Demands a unroll-and-jam or large OOO window to hit peak. Ο
 - 1:1 Read:Write ratio \bigcirc
 - Varies both K and N \bigcirc
- From these it extrapolates cache capacities and bandwidths
 - By convention it labels the largest/slowest 'DRAM' and the smallest/fastest 'L1' Ο
 - If N<LLC size, then it will identify the LLC 'DRAM' (e.g. on KNL, N>16GB) Ο
 - On architectures that don't cache writes in the L1 (or are WT), ERT will label L2 as 'L1' Ο
 - On architectures that have a 2:1 read:write cache bandwidth, ERT will underestimate Ο aggregate cache bandwidth (it uses a 1:1 benchmark)

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

https://github.com/cvanguwa/nersc-roofline/

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

BERKELEY NATIONAL LABORATORY

Application Characterization

Measuring Al

- To characterize execution with Roofline we need...
 - Time \bigcirc
 - **Flops** (=> flop's / time) Ο
 - **Data movement** between each level of memory (=> Flop's / GB's)
- We can look at the full application...
 - Coarse grained, 30-min average Ο
 - Misses many details and bottlenecks Ο
- or we can look at individual loop nests...
 - Requires auto-instrumentation on a loop by loop basis \bigcirc
 - Moreover, we should probably differentiate data movement or flops on a core-by-core basis. Ο

How Do We Count Flop's?

Manual Counting

- Go thru each loop nest and count the number of FP operations
- Works best for deterministic loop bounds
- or parameterize by the number of iterations (recorded at run time)
- X Not scalable

Perf. Counters

- Read counter before/after
- ✓ More Accurate
- Low overhead (<%) == can run full MPI applications
- ✓ Can detect load imbalance
- X Requires privileged access
- X Requires manual instrumentation (+overhead) or full-app characterization
- **X** Broken counters = garbage
- X May not differentiate FMADD from FADD
- X No insight into special pipelines ⁹

Binary Instrumentation

- Automated inspection of assembly at run time
- ✓ Most Accurate
- ✓ FMA-, VL-, and mask-aware
- Can count instructions by class/type
- Can detect load imbalance
- ✓ Can include effects from non-FP instructions
- ✓ Automated application to multiple loop nests
- X >10x overhead (short runs /
 - reduced concurrency)

How Do We Measure Data Movement?

Manual Counting

- Go thru each loop nest and estimate how many bytes will be moved
- Use a mental model of caches
- ✓ Works best for simple loops that stream from DRAM (stencils, FFTs, spare, ...)
- **X** N/A for complex caches
- Not scalable

Perf. Counters

- Read counter before/after
- \checkmark Applies to full hierarchy (L2, DRAM,
- ✓ Much more Accurate
- Low overhead (<%) == can run full MPI applications
- ✓ Can detect load imbalance
- Requires privileged access
- **X** Requires manual instrumentation (+overhead) or full-app characterization

Cache Simulation

- Build a full cache simulator driven by memory addresses
- ✓ Applies to full hierarchy and multicore
- Can detect load imbalance
- ✓ Automated application to multiple loop nests
- **X** Ignores prefetchers
- X >10x overhead (short runs / reduced concurrency)

BERKELEY NATIONAL LABORATORY

Performance Counter Issues

Performance Counter Limitations

- Capture aspects architects (not programmers) think are important
- May lack important detail
- Not standardized (vendor-specific)
- Not required to be functional or correct (not part of the ISA)

Performance Counters and SIMD

- SIMD instruction sets are ever evolving.
- Today, they can incorporate...
 - Different Vector Lengths (VL)... 128b, 256b, 512b, ... Ο
 - Different precisions... double, single, half, ... 8x64b, 16x32b, or 32x16b Ο
 - Use of FMA (1 or 2 flops per element) Ο
 - Use of masks (predicates) to disable execution on certain lanes.
- Thus, a performance counter might be:
 - VL-aware (#operations scales with VL) Ο
 - Precision-aware (#operations increases with reduced precision) Ο
 - FMA-aware (FMAs are 2 flops per element vs. 1) Ο
 - Mask-aware (#operations only incudes unmasked operations) Ο

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline with LIKWID

- LIKWID provides easy to use wrappers for measuring performance counters...
 - ✓ Works on NERSC production systems
 - Distills counters into user-friendly metrics (e.g. MCDRAM Bandwidth) \checkmark
 - Minimal overhead (<1%) \checkmark
 - Scalable in distributed memory (MPI-friendly) \checkmark
 - Fast, high-level characterization \checkmark
 - No timing breakdowns
 - **X** Suffers from Garbage-in/Garbage Out

(i.e. hardware counter must be sufficient and correct)

https://github.com/RRZE-HPC/likwid

http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

LIKWID Tools

likwid-topology	node topology
likwid-pin	process/thread affinity
likwid-memsweeper	cleanup memory & LLC
likwid-powermeter	power measurements
likwid-setFrequencies	CPU/uncore frequency manipulation
likwid-perfctr	hardware counter measurements
likwid-mpirun	hardware counter + MPI
likwid-bench	micro-benchmarking
likwid-agent	system monitoring
likwid-genTopoCfg	generate and store topology file

likwid-topology

CPU name: CPU type: CPU stepping:	Intel(R) Xe Intel Xeon : 1	on Phi(TM) CPU Phi (Knights La	7250 @ 1.40GHz anding) (Co)Proces	sor
Hardware Thre	ad Topology	*********		
Sockets: Cores per soc Threads per c	1 cket: 68 core: 4	* * * * * * * * * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • • •	· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
HWThread	Thread	Core	Socket	Available
Ο	Θ	Θ	Θ	*
1	Θ	1	Θ	*
2	Θ	2	Θ	*
3	Θ	3	Θ	*
4	Ο	4	Θ	*
5	0	5	Θ	*
6	0	6	Θ	*
7	0	7	Θ	*
8	Ο	8	Θ	*
9	Θ	9	Θ	*
10	Θ	10	Θ	*
11	Θ	11	Θ	*
12	Θ	12	Θ	*
13	Θ	13	Ο	*
14	0	14	Θ	*

likwid-topology (cache, NUMA,

*****	*******
Cache Topology	*********
Level:	1
Size:	32 kB
(775143211)(8)	(0 00 130 204) (1 09 137 205) (2 70 130 200) (3 71 139 207) (4 72 140 200) (5 73 141 209) (0 76 144 212) (9 77 145 213) (10 78 146 214) (11 79 147 215) (12 80 148 216) (13 81 149 217) (14
) $(15 \ 83 \ 151 \ 219) (1)$	6 84 152 220) ($17 85 153 221$) ($18 86 154 222$) ($19 87 155 223$) ($20 88 156 224$) ($21 89 157 225$) (
26) (23 91 159 227)	(24 92 160 228) (25 93 161 229) (26 94 162 230) (27 95 163 231) (28 96 164 232) (29 97 165 233)
6 234) (31 99 167 235) (32 100 168 236) (33 101 169 237) (34 102 170 238) (35 103 171 239) (36 104 172 240) (37 105
38 106 174 242) (39	107 175 243) (40 108 176 244) (41 109 177 245) (42 110 178 246) (43 111 179 247) (44 112 180 248
181 249) (46 114 182)	250) (47 115 183 251) (48 116 184 252) (49 117 185 253) (50 118 186 254) (51 119 187 255) (52 1
) (53 121 189 257) (54 122 190 258) (55 123 191 259) (56 124 192 260) (57 125 193 261) (58 126 194 262) (59 127 195 2
28 196 264) (61 129 1	97 265) (62 130 198 266) (63 131 199 267) (64 132 200 268) (65 133 201 269) (66 134 202 270) (6
/1)	
level:	2
Size:	1 MB
Cache groups:	(0 68 136 204 1 69 137 205) (2 70 138 206 3 71 139 207) (4 72 140 208 5 73 141 209) (6 74 142 210 7
) (8 76 144 212 9 77	145 213) (10 78 146 214 11 79 147 215) (12 80 148 216 13 81 149 217) (14 82 150 218 15 83 151 219) (
220 17 85 153 221) (1	8 86 154 222 19 87 155 223) (20 88 156 224 21 89 157 225) (22 90 158 226 23 91 159 227) (24 92 160 22
229) (26 94 162 230 2	27 95 163 231) (28 96 164 232 29 97 165 233) (30 98 166 234 31 99 167 235) (32 100 168 236 33 101 169
102 170 238 35 103 171	239) (36 104 172 240 37 105 173 241) (38 106 174 242 39 107 175 243) (40 108 176 244 41 109 177 245
1/8 246 43 111 1/9 24/) (44 112 180 248 45 113 181 249) (46 114 182 250 4/ 115 183 251) (48 116 184 252 49 11/ 185 253) (5
54 51 119 187 255) (5.	2 120 188 256 53 121 189 257) (54 122 190 258 55 123 191 259) (56 124 192 260 57 125 193 261) (58 126 196 264 61 126 269 66 122 261 260) (66 124 262 264 61 126 266 62 124 262 264 61 126 266 62 124 262 264 61 126 266 62 124 262 264 61 126 266 62 124 262 264 61 126 266 62 124 262 264 61 126 266 62 124 266 626 124 266 626 626 626 626 626 124 266 626 626 626 626 626 626 626 626 6
203 271)	190 204 01 129 197 205) (02 190 190 200 05 191 199 207) (04 192 200 200 05 195 201 209) (00 194 202
******	*************************
NUMA Topology	

	1
Domain:	0
Processors:	(0 68 136 204 1 69 137 205 2 70 138 206 3 71 139 207 4 72 140 208 5 73 141 209 6 74 142 210 7 75 143 211
2 9 77 145 213 10 78 14	6 214 11 79 147 215 12 80 148 216 13 81 149 217 14 82 150 218 15 83 151 219 16 84 152 220 17 85 153 221 18
19 87 155 223 20 88 156	224 21 89 157 225 22 90 158 226 23 91 159 227 24 92 160 228 25 93 161 229 26 94 162 230 27 95 163 231 28 9
9 97 165 233 30 98 166	234 31 99 167 235 32 100 168 236 33 101 169 237 34 102 170 238 35 103 171 239 36 104 172 240 37 105 173 241
242 39 107 175 243 40	$108 \ 176 \ 244 \ 41 \ 109 \ 177 \ 245 \ 42 \ 110 \ 178 \ 246 \ 43 \ 111 \ 179 \ 247 \ 44 \ 112 \ 180 \ 248 \ 45 \ 113 \ 181 \ 249 \ 46 \ 114 \ 182 \ 250 \ 47 \ 11$
8 116 184 252 49 117 18	5 253 50 118 186 254 51 119 187 255 52 120 188 256 53 121 189 257 54 122 190 258 55 123 191 259 56 124 192 50 137 105 262 60 138 106 264 61 130 107 265 62 130 108 266 62 131 100 267 64 132 200 268 65 132 201 260 66
0 67 135 202 271)	<u>59 12/ 195 265 60 126 196 264 61 129 19/ 265 62 150 198 266 63 151 199 26/ 64 152 200 268 65 153 201 269 66</u>
Distances:	10
Free memory:	93294.1 MB
Total memory:	96563.2 MB

/

likwid-pin

likwid-perfctr takes the same specification as its processor list

Profiling with LIKWID

- Iikwid-perfctr (threaded) + likwid-mpirun (MPI/hybrid)
- no GUI
- low overhead
- no code instrumentation required
- no root access required
- no extra modules required to be installed

- -> SDE, VTune, etc
 -> CrayPat-tracing
 -> VTune
 -> VTune
- use Linux 'msr' module to access MSR (Model Specific Register) files
- Cori: module load vtune sbatch/salloc --perf=likwid module load likwid

Profiling with LIKWID (2)

Alternately, one can construct a script and monitor only process 0

```
srun -n8 -c32 ./a.out args
srun -n8 -c32 ./perfctr.sh ./a.out args
where perfctr.sh is
#!/bin/bash
let SLURM MPI RANK=$SLURM PROCID
if [ $SLURM MPI RANK = 0 ];then
# only process 0 runs likwid and it monitors only logical CPUs 0-31
likwid-perfctr -C 0-31 -g CACHES $@
else
$@
fi
```


<u>Likwid-perfctr –a (KNL)</u>

Group name	Description
HBM_OFFCORE	Memory bandwidth in MBytes/s for High Bandwidth Me
TLB_INSTR	L1 Instruction TLB miss rate/ratio
FLOPS_SP	Single Precision MFLOP/s
BRANCH	Branch prediction miss rate/ratio
L2CACHE	L2 cache miss rate/ratio
ENERGY	Power and Energy consumption
FRONTEND_STALLS	Frontend stalls
ICACHE	Instruction cache miss rate/ratio
TLB_DATA	L2 data TLB miss rate/ratio
MEM	Memory bandwidth in MBytes/s
DATA	Load to store ratio
L2	L2 cache bandwidth in MBytes/s
FLOPS_DP	Double Precision MFLOP/s
CLOCK	Power and Energy consumption
HBM_CACHE	Memory bandwidth in MBytes/s for High Bandwidth Me
HBM	Memory bandwidth in MBytes/s for High Bandwidth Me
UOPS_STALLS	UOP retirement stalls

mory (HBM) mory (HBM)

mory (HBM)

Using LIKWID for Roofline

- GPP kernel from BerkeleyGW
- Arithmetic Intensity = FLOPS / Bytes (= SDE / VTune) = FLOPS/sec / Bytes/sec = FLOPS DP / Bandwidth
- AI (DRAM) = FLOPS_DP / Bandwidth (DRAM)
- Flop/s AI (MCDRAM) = FLOPS DP / Bandwidth (MCDRAM)

 - AI (L2)= FLOPS_DP / Bandwidth (L2)AI (L1)= FLOPS_DP / Bandwidth (L1)
- **Performance** = **FLOPS DP**

23

Arithmetic Intensity

Peak Flop/s

Attainable

• GPP kernel on KNL: **171.960 GFLOPS/sec**

- UOPS_RETIRED_PACKED_SIMD
- \circ UOPS_RETIRED_SCALAR_SIMD
- likwid-perfctr -C 0-63 -g FLOPS_DP ./gpp.knl.ex 512 2 32768 20
 8*UOPS_RETIRED_PACKED_SIMD+UOPS_RETIRED_SCALAR_SIMD

Metric	Sum	Min	Max
Runtime (RDTSC) [s] STAT	940.8064	14.7001	14.7001
Runtime unhalted [s] STAT	402.9130	6.2371	9.8444
Clock [MHz] STAT	96000.0155	1499.9955	1500.0007
CPI STAT	86.0772	1.3396	1.5850
DP MFLOP/s (SSE assumed) STAT	44456.2105	688.9334	729.9324
DP MFLOP/s (AVX assumed) STAT	86957 6422	1347.4354	1429.2337
DP MFLOP/s (AVX512 assumed) STAT	171960.5065	2664.4393	2827.8362
Packed MUOPS/s STAT	21250.7162	329.2510	349.6506
Scalar MUOPS/s STAT	1954.7786	30.4313	30.6312
+			

MCDRAM and DDR GB/s

kernel on KNL: DDR 2.59GB/s + MCDRAM 63.71GB/s

- MC_CAS_READS/ MC_CAS_WRITES
- EDC_RPQ_INSERTS/ EDC_WPQ_INSERTS
- EDC_MISS_CLEAN/ EDC_MISS_DIRTY

Iikwid-perfctr -C 0-63 -g HBM_CACHE ./gpp.knl.ex 512 2 32768 20

+	+	+	+
Metric	Sum	Min	Ma
Runtime (RDTSC) [s] STAT	896.4352	14.0068	14.
Runtime unhalted [s] STAT	390.2173	6.0393	9.
Clock [MHz] STAT	95979.5220	1499.6763	1499.
CPI STAT	83.4239	1.2985	1.
MCDRAM Memory read bandwidth [MBytes/s] STAT	63246.3054	0	63246.
MCDRAM Memory read data volume [GBytes] STAT	885.8769	Θ	885.
MCDRAM Memory writeback bandwidth [MBytes/s] STAT	468.4857	Θ	468.
MCDRAM Memory writeback data volume [GBytes] STAT	6.5620	0	6.
MCDRAM Memory bandwidth [MBytes/s] STAT	63714.7910	Θ	63714.
MCDRAM Memory data volume [GBytes] STAT	692.4369	0	892.
DDR Memory read bandwidth [MBytes/s] STAT	2569.3065	Θ	2569.
DDR Memory read data volume [GBytes] STAT	35.9877	Θ	35.
DDR Memory writeback bandwidth [MBytes/s] STAT	21.1772	Θ	21.
DDR Memory writeback data volume [GBytes] STAT 📕	0.2966	0	0.
DDR Memory bandwidth [MBytes/s] STAT	2590.4837	Θ	2590.
DDR Memory data volume [GBytes] STAT	36.2643	0	36.

- kernel on KNL: L2 96.80GB/s
 - L2_REQUESTS_REFERENCE
 - OFFCORE_RESPONSE_0_OPTIONS
- likwid-perfctr -C 0-63 -g L2 ./gpp.knl.ex 512 2 32768 20

	L		
Metric	Sum	Min	Max
Runtime (RDTSC) [s] STAT	895.5200	13.9925	13.992
Runtime unhalted [s] STAT	392.3078	6.0719	9.659
Clock [MHz] STAT	95999.4279	1499.9861	1499.991
CPI STAT	83.8844	1.3055	1.556
L2 non-RFO bandwidth [MBytes/s] STAT	96803.9243	1498.7686	1904.316
L2 non-RFO data volume [GByte] STAT	1354.5272	20.9715	26.646
L2 RFO bandwidth [MBytes/s] STAT	0	Θ	
L2 RFO data volume [GByte] STAT		Θ	
L2 bandwidth [MBytes/s] STAT	96803.9243	1498.7686	1904.316
L2 data volume [GByte] STAT	1.354528e+06	20971.5004	26646.129
+	++		+

- kernel on KNL: L1 170.77GB/s
 - MEM_UOPS_RETIRED_ALL_LOADS 0
 - MEM_UOPS_RETIRED_ALL_STORES 0
- likwid-perfctr -C 0-63 -g **DATA** ./gpp.knl.ex 512 2 32768 20
 - (MEM_UOPS_RETIRED_ALL_LOADS + MEM_UOPS_RETIRED_ALL_STORES)*64/runtime
 - -g DATA is for load-to-store ratio, but can be used to estimate L1 bandwidth (assume all loads are vector loads) 0

Resultant Roofline

- AI (DRAM): 66.39
- AI (MCDRAM): 2.70
- AI (L2): 1.78
- AI (L1):
- Performance: 171.960 GFLOPS/s

1.01

Arithmetic Intensity

512

Measured cache and DRAM bytes.

applications

Averaged over 30min executions and 32 processes Ο

Used LIKWID to characterize AMReX

- Only 2 applications (not counting HPGMG proxy) used Ο >50% of memory bandwidth on average
- Used this data to estimate average AI for each level of Ο the memory hierarchy
- Used this data to infer requisite cache tapering Ο

LIKWID on AMReX apps

Likwid-mpirun

- srun -n 2 -c 32 --cpu-bind=cores likwid-perfctr -C 0,8 -g MEM -o test %h %p %r.txt ./xthi.x
 - %h hostname
 - %p process ID
 - %r MPI rank
- likwid-mpirun -pin S0:0,8 S1:0,8 -g MEM ./xthi.x Hello from rank 0, thread 0, on nid00191. (core affinity = 0) Hello from rank 0, thread 1, on nid00191. (core affinity = 8) Hello from rank 1, thread 0, on nid00191. (core affinity = 16) Hello from rank 1, thread 1, on nid00191. (core affinity = 24)
- Uncore counters are measured on a per-socket basis

Marking Specific Regions

```
#include <likwid.h>
.....
LIKWID MARKER INIT;
#pragma omp parallel {
   LIKWID MARKER THREADINIT;
#pragma omp parallel {
   LIKWID MARKER START ("foo");
   #pragma omp for
   for(i = 0; i < N; i++) {
    data[i] = omp_get_thread_num();</pre>
                                             Focus on specific code regions
   LIKWID MARKER STOP("foo");
LIKWID MARKER CLOSE;
```

- CC -qopenmp -DLIKWID PERFMON -I\$LIKWID INCLUDE -L\$LIKWID LIB -llikwid -dynamic test.c -o test.x
- likwid-perfctr -C 0-3 -g MEM -m ./test.x

FLOP Roofline vs. VUOP Roofline

- Nominally, Roofline is based on Flop/s, GB/s, and Flop/Byte
- Such metrics make sense from the user perspective.
- On SIMD machines, one might consider vuop/s instead of flop/s
 - ✓ vuop/s (scalar + vector) can easily be mapped to vector unit utilization
 - ✓ 100% vector unit utilization can bottleneck performance
 - ✓ Performance counters give vuop/s and not flop/s
 - X 100% vector unit utilization does not imply 100% of peak (FMA, scalar vs. vector)

FLOP Roofline

- With performance counters alone, its hard to deduce why performance is well-below the FLOP Roofline.
 - VL? 0
 - Precision? \bigcirc
 - FMA? 0
 - Masks? \bigcirc
 - Non-FP vector instructions
- Moreover, one might conclude a code is memory bound when in reality is compute-bound

(Flop:DRAM bytes)

VUOP Roofline

understand VL, FMA, ... issues

FLOP Roofline

- Use of FMA doesn't change Arithmetic Intensity (FMA == FMUL+FADD == 2 FLOPs)
- Use of SIMD doesn't change Arithmetic Intensity
- Presence of vector integer operations doesn't change Arithmetic Intensity
- Moving from 64b to 32b data types doubles Al
- High fraction of Roofline implies high performance

VUOP Roofline

- Use of FMA cuts Arithmetic Intensity in half (half the number of VUOPS)
- Use of SIMD reduces Arithmetic Intensity by a factor of Vector Length (e.g. cuts number of VUOPS by 8x)
- Presence of vector integer operations **increases** Arithmetic Intensity
- Moving from 64b to 32b data types doesn't change Arithmetic Intensity
- High fraction of Roofline implies high vector unit utilization (but not necessarily high performance)

LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline with SDE

Why isn't LIKWID good enough?

- LIKWID counts vector uops
- KNL vuop counters aren't...
 - VL-aware
 - o precision-aware
 - o mask-aware
 - FMA-aware
- Counters don't differentiate instruction types (FP, int, shuffle, ...)
- Flop counters were broken on Haswell.
- Thus, LIKWID might be a good starting point, but its not perfect.
- Need tools that actually count flops correctly and ones that can be used to understand nuances of instruction mixes.

Intel Software Development Emulator (SDE)

Dynamic instruction tracing

- ✓ Accounts for actual loop lengths and branches
- ✓ Counts instruction types, lengths, etc...
- ✓ Can mark individual regions
- ✓ Support for MPI+OpenMP
- Can be used to calculate FLOPs (VL-, FMA-, and precision-aware)
- X Post processing can be expensive.
- X No insights into cache behavior or DRAM data movement
- X86 only

Compiling with SDE at NERSC

Makefile...

```
MPICC = cc
CFLAGS = -g -03 -dynamic -qopenmp -restrict -qopt-streaming-stores always \
         -DSTREAM ARRAY SIZE=40000000 -DNTIMES=50 \
         -I$ (VTUNE AMPLIFIER XE 2018 DIR) / include
LDFLAGS = -L$ (VTUNE AMPLIFIER XE 2018 DIR) /lib64 -littnotify
```

```
stream mpi.exe: stream mpi.c Makefile
     $(MPICC) $(CFLAGS) stream_mpi.c -o stream_mpi.exe $(LDFLAGS)
```

clean:

rm -f stream mpi.exe

module load sde make

Running with SDE at NERSC

srun -n 4 -c 6 sde -ivb -d -iform 1 -omix my mix.out -i -global region -start ssc mark 111:repeat -stop ssc mark 222:repeat -- foo.exe

- -ivb is used to target Edison's Ivy Bridge ISA (for Cori use -hsw for Haswell or -knl for KNL processors)
- -d specifies to only collect dynamic profile information
- -iform 1 turns on compute ISA iform mix
- -omix specifies the output file (and turns on -mix)
- -i specifies that each process will have a unique file name based on process ID (needed for MPI)
- -global region will include any threads spawned by a process (needed for OpenMP)

Parsing the Output

- When the job completes, you'll have a series of files prefixed with "sde".
- Parse the output to summarize the results...

./parse-sde.sh sde 2p16t*

- Use the "Total FLOPs" line as the numerator in all Al's and performance
- Use the "Total Bytes" line as the denominator in the L1 AI
- Can infer vectorization rates and precision

```
$ ./parse-sde.sh sde 2p16t*
Search stanza is "EMIT GLOBAL DYNAMIC STATS"
elements fp single 1 = 0
elements fp single 2 = 0
elements fp single 4 = 0
elements fp single 8 = 0
elements fp single 16 = 0
elements fp double 1 = 2960
elements fp double 2 = 0
elements fp double 4 = 999999360
elements fp double 8 = 0
--->Total single-precision FLOPs = 0
--->Total double-precision FLOPs = 4000000400
--->Total FLOPs = 4000000400
mem-read-1 = 8618384
mem-read-2 = 1232
mem-read-4 = 137276433
mem-read-8 = 149329207
mem-read-16 = 1999998720
mem-read-32 = 0
mem-read-64 = 0
mem-write-1 = 264992
mem-write-2 = 560
mem-write-4 = 285974
mem-write-8 = 14508338
mem-write-16 = 0
mem-write-32 = 499999680
mem-write-64 = 0
--->Total Bytes read = 33752339756
--->Total Bytes written = 16117466472
  ->Total Bytes = 49869806228
```


Marking Regions of Interest for SDE

// Code must be built with appropriate paths for VTune include file (ittnotify.h) and library (-littnotify) #include <ittnotify.h>

```
SSC MARK(0x111); // start SDE tracing, note it uses 2 underscores
itt resume(); // start VTune, again use 2 underscores
```

```
for (k=0; k<NTIMES; k++) {</pre>
#pragma omp parallel for
for (j=0; j<STREAM ARRAY SIZE; j++)</pre>
a[j] = b[j]+scalar*c[j];
```

```
itt pause(); // stop VTune
SSC MARK(0x222); // stop SDE tracing
```

http://www.nersc.gov/users/application-performance/measuringarithmetic-intensity/

LIKWID vs. SDE

- Recall, LIKWID counts vector uops while SDE counts instructions
- Why does this matter?
 - VL-aware KNL has scalar but treats 128b, 256b, and 512b as 512b
 - precision-aware User has to know which precision they use
 - mask-aware KNL counters ignore masks
 - FMA-aware LIKWID assumes 1 flop per element
 - KNL counts vector integer, stores, NT stores, and gathers as vector uops (and thus as potential flop/s)

LIKWID's and SDE's counts of #FP ops and Gflop/s can be different (very different for linear algebra).

LIKWID vs. SDE/VTune

SDE FLOPS:

- sde64 -knl -d -iform 1 -omix my_mix.out -global_region -- ./gpp.knl.ex 512 2 32768 20
- ./parse-sde.sh my mix.out 0
- --->Total FLOPs = 2775769815463

I IKWID 2527.81 GFLOPS

VTune Bytes:

- amplxe-cl -collect memory-access -finalization-mode=deferred -r my_vtune/ -- ./gpp.knl.ex 512 2 32768 20
- amplxe-cl -report summary -r my_vtune/ > my_vtune.summary Ο
- ./parse-vtune.sh my_vtune.summary Ο
- DDR --->Total Bytes = 35983553088 Ο
- HBM --->Total Bytes = 963486016448 Ο

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

BERKELEY LAB

ENCE BERKELEY NATIONAL LABORATORY

Roofline with LIKWID + SDE

Initially Cobbled Together Tools...

- Use tools known/observed to work on NERSC's Cori (KNL, HSW)...
 - Used Intel SDE (Pin binary instrumentation + ٠ emulation) to create software Flop counters
 - Used Intel VTune performance tool (NERSC/Cray ٠ approved) to access uncore counters
- Accurate measurement of Flop's (HSW) and DRAM data movement (HSW and KNL)
- Used by NESAP (NERSC KNL application) readiness project) to characterize apps on Cori...

	Powering Scie
HUME ABUUI SCIENCE AINEI	Home » For Users » Application F
» Live Status	
User Appouncements	MEA2OKING /
» My NERSC	
» Getting Started	Arithmetic intensity is a measu
Connecting to NEBSC	amount of memory accesses (
Accounts & Allocations	ratio (F/B). This application no
Computational Systems	Emulator Toolkit (SDE) and V
Storage & File Systems	on using VTune can be found
Application Performance	Performance Model.
NESAP	Historically, processor manufa
Performance	calculation. Some modern pro
IXPUG	provide counters for FLOPs. I
Performance and Debugging	memory accesses, and viune
Tools	The SDE dynamic instruction
Measuring Arithmetic	instruction length, instruction
Intensity	with SDE. In general the follo
» Data & Analytics	Edison and Cori Phase 1.
» Job Logs & Statistics	
» Training & Tutorials	This application note provides
» Software	critical for real applications as
» Policies	more than a few minutes. And
» User Surveys	An exemple common d Pro- for
» NERSC Users Group	An example command line for
» Help	
» Staff Blogs	\$ srun -n 4 -c 6 sde -ivb -d
» Request Repository Mailing	
List	
	Where:
Need Help?	 -ivb is used to target
	 -d specifies to only or
Out-of-hours Status	· G apoonica to only of
and Password help	 Itorm 1 turns on com
1-800-66-NERSC ontion 1	 -omix specifies the out
or 510-486-6821	 -i specifies that each provide the second sec
	 -global_region will inc
Account Support	a
https://nim.nersc.gov	
	An encounter an encounter of the state
accounts@nersc.gov	An example command line to

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

More Recently...

- Use tools known/observed to work on NERSC's Cori (KNL, HSW)...
 - Used Intel SDE (Pin binary instrumentation + ٠ emulation) to create software Flop counters
 - Used LIKWID performance counter tool (NERSC/Cray approved) to access uncore counters
- Accurate measurement of Flop's (HSW) and DRAM data movement (HSW and KNL)
- Used by NESAP (NERSC KNL application) readiness project) to characterize apps on Cori...

	@ ≡
HOME ABOUT SCIENCE AT NE	Powering Scie
FOR USERS	Home » For Users » Application I
Live Status Lue Announcements My NERSC Genescing Standed Connecting to MERSC Accounts & Alcoations Computational Systems Application Porting and Popping Popping	MEASURING A Arithmetic intensity is a measu- amount of memory accesses in ratio (#8). This application on Emulator_Toolkit (BOE) and y on using Vtrue can be found Performance Model.
Performance and Debugging Tools	The SDE dynamic instruction
Measuring Arithmetic Intensity > Data & Analytics	instruction length, instruction with SDE. In general the follow Edison and Cori Phase 1.
 Job Logs & Statistics Training & Tutorials Software Policies User Surveys MIRBC Leves Group 	This application note provides critical for real applications as more than a few minutes. And An example command line for
 Help Staff Blogs Request Repository Mailing List 	\$ srun -n 4 -c 6 sde -ivb -d
Need Hein?	 Where: -ivb is used to target E
Out-of-hours Status and Password help Call operations: 1-800-64-HERSC, option 1 or 510-488-6821	 -d specifies to only co -iform 1 turns on com -omix specifies the ou -i specifies that each p -global_region will incl
https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2	An example command line for

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL's production computing division CRD is LBL's Computational Research Division NESAP is NERSC's KNL application readiness project LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)

BERKELEY LAB

ORATORY

Hierarchical Roofline vs. Cache-Aware Roofline

... understanding different Roofline formulations in Intel Advisor

There are two Major Roofline Formulations:

- Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, ...)...
 - Williams, et al, "Roofline: An Insightful Visual Performance Model for Multicore Architectures", CACM, 2009 •
 - **Chapter 4 of "Auto-tuning Performance on Multicore Computers"**, 2008 •
 - Defines multiple bandwidth ceilings and multiple Al's per kernel •
 - Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines) •

Cache-Aware Roofline

- Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014 •
- Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes) ٠
- As one looses cache locality (capacity, conflict, ...) performance falls from one BW ceiling to a lower one at constant AI •

Why Does this matter?

- Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences •
- Cache-Aware Roofline model was integrated into production Intel Advisor •
- Evaluation version of Hierarchical Roofline¹ (cache simulator) has also been integrated into Intel Advisor •

49

Hierarchical Roofline

- Captures cache effects
- Al is Flop:Bytes after being *filtered by* lower cache levels
- Multiple Arithmetic Intensities (one per level of memory)
- Al *dependent* on problem size (capacity misses reduce AI)
- Memory/Cache/Locality effects are observed as decreased AI
- Requires *performance counters or* cache simulator to correctly measure Al

Cache-Aware Roofline

- Captures cache effects
- Al is Flop:Bytes as presented to the L1 cache (plus non-temporal stores)
- Single Arithmetic Intensity
- Al *independent* of problem size
- Memory/Cache/Locality effects are observed as decreased performance
- Requires static analysis or *binary instrumentation* to measure Al

Example: STREAM

• L1 Al...

- 2 flops
- 2 x 8B load (old)
- 1 x 8B store (new)
- = 0.08 flops per byte

No cache reuse…

• Iteration i doesn't touch any data associated with iteration i+delta for any delta.

... leads to a DRAM AI equal to the L1 AI

#pragma omp parallel for for(i=0;i<N;i++){ Z[i] = X[i] + alpha*Y[i]; }

Example: STREAM

Example: 7-point Stencil (Small Problem)

L1 Al...

- 7 flops •
- 7 x 8B load (old) •
- 1 x 8B store (new) •
- = 0.11 flops per byte •
- some compilers may do register shuffles to reduce the • number of loads.

Moderate cache reuse...

- old[k][j][i+1] is reused on next iteration of i. •
- old[k][j+1][i] is reused on next iteration of j. •
- old[k+1][j][i] is reused on next iterations of k. •
- ... leads to DRAM AI larger than the L1 AI

```
#pragma omp parallel for
for(k=1;k<dim+1;k++){</pre>
for(j=1;j<dim+1;j++){</pre>
for(i=1;i<dim+1;i++){</pre>
  new[k][j][i] = -6.0*old[k ][j
                      + old[k ][j
                      + old[k+1][j
}}}
```


Example: 7-point Stencil (Small Problem) Cache-Aware Roofline Hierarchical Roofline

Example: 7-point Stencil (Small Problem) **Cache-Aware Roofline Hierarchical Roofline**

Example: 7-point Stencil (Large Problem) Hierarchical Roofline Cache-Aware Roofline

Example: 7-point Stencil (Observed Perf.) **Hierarchical Roofline Cache-Aware Roofline**

Example: 7-point Stencil (Observed Perf.) Hierarchical Roofline Cache-Aware Roofline

BERKELEY LAB

NATIONAL LABORATORY

Roofline with Intel[®] Advisor

slides from Zakhar Matveev (intel)

Intel Advisor

Includes Roofline Automation...

- Automatically instruments applications (one dot per loop nest/function)
- Computes FLOPS and AI for each function (CARM)
- ✓ AVX-512 support that incorporates masks
- Integrated Cache Simulator¹ (hierarchical roofline / multiple Al's)
- Automatically benchmarks target system (calculates ceilings)
- Full integration with existing Advisor capabilities

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

¹Experimental Feature, the look and feel and exact behavior is subject for change

lysis								
Access	Pattern							
No information available								
Mixed strides								
All unit strides								
ules	Alignment							
exe								
exe								
exe								

Intel® Advisor: 2-pass Approach

Roofline:	
X-Axis (AI): #FLOPs / #Bytes	
Y-Axis (FLOP/s): #FLOP(mask-aware)/time	Ove
<pre>Step 1: Survey (-collect survey) Records run times User-mode sampling; non-intrusive No need for root access</pre>	
 Step 2: FLOPs (-collect tripcounts -flops) Record #FLOPs, #Bytes, AVX512 masks Precise, instrumentation-based count of the number of instructions 	(8)
No need for root access	
ated Roofline (Cache Simulator) enabled.	
62	

erhead **1**x

Intel® Advisor: Roofline Automation

Automatic and integrated – first class citizen in Intel® Advisor

		=
of Name	Visible	Selected
ndwidth	✓	-
dth	✓	✓
dth	✓	
dth	✓	
Peak	~	
Add Peak	✓	<
Add Peak		
FMA Peak	✓	✓
FMA Peak		
ht Representation	Cancel	Default
✓ Size	Color	Visible
4	green	✓
eshold Value 0.2	%	
6	yellow	✓
eshold Value 2	%	
8	red	✓

NEW: Integrated Roofline

		RAM	(ORM)
•	· ··.		Scalar Add Peak: 55.58	GFLOPS?
	•			
y	Not Mem bound	ory		
10	0 1000 1	0000)ata: Co	urtes

NEW: Integer, Float, Int+Float Rooflines

NEW: Memory Traffic in Survey Grid

F (Summary 🗞 Survey & Roofline 📲 Refineme	nt Reports										
공			@ Performance	Solf Time -	Total Time	Tuno	7	Memory		🏟 🔍 🕴 🚬 🔊	· · · · · · · · · · · · · · · · · · ·	
ğ			Issues	Seir nine▼	rotai nine	rype		Self L2 Loaded GB	Self L2 Stored (Show L1 Memory	Metrics	
Ę.	≥🗾 [loop in stencil_2d at tiling.cpp:41]		💡 3 Possible	1.030s 💳	1.030s 💳	Inside vec	o	21.626	0.833	Show L2 Memory	Metrics	
ħ	Solution Stencil_2d at tiling.cpp:41		💡 3 Possible in	0.200s 🛛	0.200s 🛛	Scalar		2.546	0.138	Show L3 Memory	Metrics	
	🗵 🖱 [loop in main at tiling.cpp:61]		🔋 1 Data type	0.060s I	0.060s I	Scalar		1.283	0.071	Show DRAM Mem	orv Metrics	
	🗵 🖱 [loop in main at tiling.cpp:101]		🔋 1 Data type	0.049s I	0.059s I	Scalar		1.283	0.071			
	🗵 🖱 [loop in main at tiling.cpp:82]		🔋 1 Data type	0.040s I	0.050s I	Scalar		1.283	0.071	Show Memory Loa	ads Operations	
	🗵 🖱 [loop in main at tiling.cpp:120]		🔋 1 Data type	0.030s I	0.030s I	Scalar		1.283	0.071	Show Memory Sta	ores Operations	
	🗵 🖱 [loop in main at tiling.cpp:101]			0.010s I	0.010s I	Vectorized	В	0	0	 Show All Memory 	Operations (Loads and	Store
	🗵 🖱 [loop in main at tiling.cpp:82]			0.010s I	0.010s I	Vectorized	в	0	0		operations (codds and	
	🗵 🕈 _tmainCRTStartup			0.000s I	1.469s	Function		< 0.001	0	Hide Column		
	Image: Stepsile of the ste			0.000s I	1.240s 💶	Inlined Fur	tion	< 0.001	0	Show All Columns		
	🗵 🕈 main			0.000s I	1.469s	Function		0.040	0.040			Tampy
	∑[loop in stencil_2d at tiling.cpp:41]			0.000s I	1.030s 💶	Inside vect	riz	. 0.154	0.006		🖬 outer loop was n	tiling
	🗵 🖱 [loop in stencil_2d at tiling.cpp:38]			0.000s I	1.230s 💶 🗖	Scalar		0	0		🧧 inner loop was alr	tiling
	🗵 🖱 [loop in stencil_2d at tiling.cpp:176]		🔋 1 Data type	0.000s I	1.240s 💶	Scalar		< 0.001	0		🧧 inner loop was alr	tiling
	🗵 🖱 [loop in stencil_2d at tiling.cpp:41]			0.000s I	0.200s 🛛	Scalar		0.020	0.001		🖬 outer loop was n	tiling
	Image: Second secon			0.000s I	0.040s I	Function		0	0			print
	🗵 🖱 [loop in output_l at output.c:1073]			0.000s I	0.040s I	Scalar		0	0			outp
				0.000¢1	0 040c I	Function		0.003	n			outo

Source | Top Down | Code Analytics | Assembly | 🖓 Recommendations | 🖬 Why No Vectorization?

Per loop 9.66250 9.38121	Per Iteratio 4.80000e- 4.66027e
9.66250 9.38121	4.80000e-
9.38121	4 66027-
	4.000276-
0.25532	1.26834e-
	-
37.84478	1.88000e-
	36.743
	1.0299
s	
itel(R) 64 Comp	iler for applica
	3 Itel(R) 64 Comp

Integrated Roofline Model

Old Approach...

source advixe-vars.sh

advixe-cl -collect survey --project-dir ./your project -- <your-executable-with-parameters> advixe-cl -collect tripcounts -enable-cache-simulation -flop --project-dir ./your project -- <yourexecutable-with-parameters>

<u>New Approach (but not compatible with MPI)...</u>

source advixe-vars.sh advixe-cl -collect roofline -enable-cache-simulation --project-dir ./your project -- <yourexecutable-with-parameters>

(optional) copy data to your UI desktop system advixe-gui ./your project

https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor

Advisor on NERSC's Cori

http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/

module load advisor/2018.integrated roofline cc -q -dynamic -openmp -02 -o mycode.exe mycode.c

Best to run advisor only on rank 0... srun calls a script like...

```
#!/bin/bash
if [[ $SLURM PROCID == 0 ]]; then
advixe-cl -collect=survey --project-dir knl-result -data-limit=0 -- ./a.out
else
sleep 30
./a.out
fi
```


Exporting Roofline Figures

Advisor can directly export a HTML Roofline figure ...

Alternately, you can output directly from the command line (no GUI) needed)...

advixe-cl -report roofline --project-dir ./your project > roofline.html

BERKELEY LAB

Questions?

BERKELEY LAB

Summary

- In this talk, we discussed several approaches to constructing Rooflines on CPUs...
 - Machine Characterization \bigcirc
 - Using LIKWID to access performance counters \bigcirc
 - Using SDE to get more accurate FLOP counts Ο
 - Using Advisor to provide a single tool that integrates cache simulation and accurate FLOP Ο counts.

BERKELEY LAB

Backup

