
Roofline on
CPU-based Systems

Samuel Williams
Computational Research Division
Lawrence Berkeley National Lab

SWWilliams@lbl.gov

With slides from Charlene Yang,
Doug Doerfler, and Zakhar Matveev

mailto:SWWilliams@lbl.gov

§ This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

§ This material is based upon work supported by the DOE RAPIDS SciDAC Institute.
§ This research used resources of the National Energy Research Scientific Computing Center (NERSC),

which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

Acknowledgements

Machine
Characterization

Machine Characterization
§ “Theoretical Performance”

numbers can be highly optimistic…
• Pin BW vs. sustained bandwidth

• TurboMode / Underclock for AVX

• compiler failings on high-AI loops.

4

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

https://github.com/cyanguwa/nersc-roofline/

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

§ LBL developed the Empirical
Roofline Toolkit (ERT)…
• Characterize CPU/GPU systems

• Peak Flop rates

• Bandwidths for each level of memory

• MPI+OpenMP/CUDA == multiple GPUs

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.quadflat.2t/Run.002)

2450.0 GFLOPs/sec (Maximum)

L1
 - 6

44
2.9

 G
B/s

L2
 - 1

96
5.4

 G
B/s

DRAM - 4
12

.9
GB/s

Cori / KNL

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.summitdev.ccs.ornl.gov.02.MPI4/Run.001)

17904.6 GFLOPs/sec (Maximum)

L1
 - 6

50
6.5

 G
B/s

DRAM - 1
92

9.7
 G

B/s

SummitDev / 4GPUs

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

ERT Configuration

5
https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

https://github.com/cyanguwa/nersc-roofline/

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Driver.c
§ setup
§ call kernels
§ loop over parameters

Kernel.c
§ actual compute
§ customizable

job script
§ submit the job and run it

config script
§ set up ranges of parameters

Driver.c (uses some Macros from config.txt)

initialize MPI, OpenMP
loop over dataset sizes <= ERT_MEMORY_MAX

loop over trial sizes >= ERT_TRIALS_MIN
start timer
call kernel
end timer

Kernel.c

loop over ntrials
distribute dataset on threads and each

computes ERT_FLOPS

Kernel.h

ERT_FLOPS=1: a = b + c
ERT_FLOPS=2: a = a x b + c

Job script

./ert config.txt

ert (Python)

create directories
loop over ERT_FLOPS, MPI_PROCS/OMP_THREADS

call driver, kernel

config.txt

ERT_FLOPS 1,2,4,8,16,32,64
ERT_MPI_PROCS 2,4,8,16,32,64
ERT_OPENMP_THREADS 1-256
ERT_MEMORY_MAX 1073741824
ERT_WORKING_SET_MIN 1
ERT_TRIALS_MIN 1
...

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

ERT Caveats
§ Nominally, ERT runs a series of benchmarks

o Read-modify-write Polynomial of degree-K on a vector of size N
o Trivially auto-vectorized
o Demands a unroll-and-jam or large OOO window to hit peak.
o 1:1 Read:Write ratio
o Varies both K and N

§ From these it extrapolates cache capacities and bandwidths
o By convention it labels the largest/slowest ‘DRAM’ and the smallest/fastest ‘L1’
o If N<LLC size, then it will identify the LLC ‘DRAM’ (e.g. on KNL, N>16GB)
o On architectures that don’t cache writes in the L1 (or are WT), ERT will label L2 as ‘L1’
o On architectures that have a 2:1 read:write cache bandwidth, ERT will underestimate

aggregate cache bandwidth (it uses a 1:1 benchmark)

6
https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

https://github.com/cyanguwa/nersc-roofline/

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Application
Characterization

Measuring AI

8

§ To characterize execution with Roofline we need…

o Time
o Flops (=> flop’s / time)

o Data movement between each level of memory (=> Flop’s / GB’s)

§ We can look at the full application…

o Coarse grained, 30-min average

o Misses many details and bottlenecks

§ or we can look at individual loop nests…

o Requires auto-instrumentation on a loop by loop basis

o Moreover, we should probably differentiate data movement or flops on a core-by-core basis.

How Do We Count Flop’s?

9

Manual Counting
§ Go thru each loop nest and

count the number of FP
operations

ü Works best for deterministic
loop bounds

ü or parameterize by the
number of iterations
(recorded at run time)

✘ Not scalable

Perf. Counters
§ Read counter before/after
ü More Accurate
ü Low overhead (<%) == can

run full MPI applications
ü Can detect load imbalance
✘ Requires privileged access
✘ Requires manual

instrumentation (+overhead)
or full-app characterization

✘ Broken counters = garbage
✘ May not differentiate

FMADD from FADD
✘ No insight into special

pipelines

Binary Instrumentation
§ Automated inspection of

assembly at run time
ü Most Accurate
ü FMA-, VL-, and mask-aware
ü Can count instructions by

class/type
ü Can detect load imbalance
ü Can include effects from

non-FP instructions
ü Automated application to

multiple loop nests
✘ >10x overhead (short runs /

reduced concurrency)

How Do We Measure Data Movement?

10

Manual Counting
§ Go thru each loop nest and

estimate how many bytes
will be moved

§ Use a mental model of
caches

ü Works best for simple loops
that stream from DRAM
(stencils, FFTs, spare, …)

✘ N/A for complex caches

✘ Not scalable

Perf. Counters
§ Read counter before/after
ü Applies to full hierarchy (L2,

DRAM,
ü Much more Accurate
ü Low overhead (<%) == can

run full MPI applications
ü Can detect load imbalance
✘ Requires privileged access
✘ Requires manual

instrumentation (+overhead)
or full-app characterization

Cache Simulation
§ Build a full cache simulator

driven by memory
addresses

ü Applies to full hierarchy and
multicore

ü Can detect load imbalance
ü Automated application to

multiple loop nests
✘ Ignores prefetchers
✘ >10x overhead (short runs /

reduced concurrency)

Performance
Counter Issues

Performance Counter Limitations

§ Capture aspects architects (not programmers) think are important
§ May lack important detail
§ Not standardized (vendor-specific)
§ Not required to be functional or correct (not part of the ISA)

12

Performance Counters and SIMD

§ SIMD instruction sets are ever evolving.

§ Today, they can incorporate…
o Different Vector Lengths (VL)… 128b, 256b, 512b, …

o Different precisions… double, single, half, … 8x64b, 16x32b, or 32x16b

o Use of FMA (1 or 2 flops per element)

o Use of masks (predicates) to disable execution on certain lanes.

§ Thus, a performance counter might be:
o VL-aware (#operations scales with VL)

o Precision-aware (#operations increases with reduced precision)

o FMA-aware (FMAs are 2 flops per element vs. 1)

o Mask-aware (#operations only incudes unmasked operations)

13

Roofline with
LIKWID

LIKWID
§ LIKWID provides easy to use wrappers for measuring performance

counters...
ü Works on NERSC production systems
ü Distills counters into user-friendly metrics (e.g. MCDRAM Bandwidth)
ü Minimal overhead (<1%)
ü Scalable in distributed memory (MPI-friendly)
ü Fast, high-level characterization
✘ No timing breakdowns
✘ Suffers from Garbage-in/Garbage Out

(i.e. hardware counter must be sufficient and correct)

15

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

LIKWID Tools

16

likwid-topology node topology

likwid-pin process/thread affinity

likwid-memsweeper cleanup memory & LLC

likwid-powermeter power measurements

likwid-setFrequencies CPU/uncore frequency manipulation

likwid-perfctr hardware counter measurements

likwid-mpirun hardware counter + MPI

likwid-bench micro-benchmarking

likwid-agent system monitoring
likwid-genTopoCfg generate and store topology file

likwid-topology

17

likwid-topology (cache, NUMA, …)

18

likwid-pin

19

§ likwid-pin -c N:0,8,16,24 ./xthi.x
§ likwid-pin -c S0:0,8@S1:0,8 ./xthi.x
Hello from rank 0, thread 0, on nid00028. (core affinity = 0)
Hello from rank 0, thread 1, on nid00028. (core affinity = 8)
Hello from rank 0, thread 2, on nid00028. (core affinity = 16)
Hello from rank 0, thread 3, on nid00028. (core affinity = 24)

§ likwid-pin -c E:N:128:2:4 ./xthi.x
Hello from rank 0, thread 0, on nid02308. (core affinity = 0)
Hello from rank 0, thread 1, on nid02308. (core affinity = 68)
Hello from rank 0, thread 2, on nid02308. (core affinity = 1)
Hello from rank 0, thread 3, on nid02308. (core affinity = 69)
* snip *
Hello from rank 0, thread 126, on nid02308. (core affinity = 63)
Hello from rank 0, thread 127, on nid02308. (core affinity = 131)

§ likwid-perfctr takes the same specification as its
processor list

HSW

KNL

Profiling with LIKWID

20

§ likwid-perfctr (threaded) + likwid-mpirun (MPI/hybrid)

§ no GUI
§ low overhead -> SDE, VTune, etc
§ no code instrumentation required -> CrayPat-tracing
§ no root access required -> VTune
§ no extra modules required to be installed -> VTune

§ use Linux ‘msr’ module to access MSR (Model Specific Register) files

§ Cori:
module load vtune
sbatch/salloc --perf=likwid
module load likwid

Profiling with LIKWID (2)

21

§ Alternately, one can construct a script and monitor only process 0

srun -n8 -c32 ./a.out args
srun -n8 -c32 ./perfctr.sh ./a.out args

where perfctr.sh is
#!/bin/bash
let SLURM_MPI_RANK=$SLURM_PROCID
if [$SLURM_MPI_RANK = 0];then
only process 0 runs likwid and it monitors only logical CPUs 0-31
likwid-perfctr -C 0-31 -g CACHES $@
else
$@
fi

Likwid-perfctr –a (KNL)

22

Using LIKWID for Roofline
§ GPP kernel from BerkeleyGW
§ Arithmetic Intensity = FLOPS / Bytes (= SDE / VTune)

= FLOPS/sec / Bytes/sec
= FLOPS_DP / Bandwidth

§ AI (DRAM) = FLOPS_DP / Bandwidth (DRAM)
§ AI (MCDRAM) = FLOPS_DP / Bandwidth (MCDRAM)
§ AI (L2) = FLOPS_DP / Bandwidth (L2)
§ AI (L1) = FLOPS_DP / Bandwidth (L1)

§ Performance = FLOPS_DP

23

Peak Flop/s

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/s

M
CDRAM

 ca
ch

e
GB/s

Arithmetic Intensity

L2
 G

B/s
L1

 G
B/s

GFlop/s
§ GPP kernel on KNL: 171.960 GFLOPS/sec

o UOPS_RETIRED_PACKED_SIMD
o UOPS_RETIRED_SCALAR_SIMD

§ likwid-perfctr -C 0-63 -g FLOPS_DP ./gpp.knl.ex 512 2 32768 20
o 8*UOPS_RETIRED_PACKED_SIMD+UOPS_RETIRED_SCALAR_SIMD

24

MCDRAM and DDR GB/s
§ kernel on KNL: DDR 2.59GB/s + MCDRAM 63.71GB/s

o MC_CAS_READS/ MC_CAS_WRITES
o EDC_RPQ_INSERTS/ EDC_WPQ_INSERTS
o EDC_MISS_CLEAN/ EDC_MISS_DIRTY

§ likwid-perfctr -C 0-63 -g HBM_CACHE ./gpp.knl.ex 512 2 32768 20

25

L2 GB/s
§ kernel on KNL: L2 96.80GB/s

o L2_REQUESTS_REFERENCE
o OFFCORE_RESPONSE_0_OPTIONS

§ likwid-perfctr -C 0-63 -g L2 ./gpp.knl.ex 512 2 32768 20

26

L1 GB/s
§ kernel on KNL: L1 170.77GB/s

o MEM_UOPS_RETIRED_ALL_LOADS
o MEM_UOPS_RETIRED_ALL_STORES

§ likwid-perfctr -C 0-63 -g DATA ./gpp.knl.ex 512 2 32768 20
o (MEM_UOPS_RETIRED_ALL_LOADS + MEM_UOPS_RETIRED_ALL_STORES)*64/runtime
o -g DATA is for load-to-store ratio, but can be used to estimate L1 bandwidth (assume all loads are vector loads)

27

Resultant Roofline

§ AI (DRAM): 66.39
§ AI (MCDRAM): 2.70
§ AI (L2): 1.78
§ AI (L1): 1.01
§ Performance: 171.960 GFLOPS/s

28

2.7TFLOP/s

At
ta

in
ab

le
 F

lo
p/

s

DDR 77
.0G

B/s

MCDRAM 36
8.5

GB/s

Arithmetic Intensity

L2
 2.

0T
B/s

L1
 12

.2T
B/s

171.96GFLOP/s

1.01 1.78 2.70 66.39

LIKWID on AMReX apps
§ Used LIKWID to characterize AMReX

applications
§ Measured cache and DRAM bytes.

o Averaged over 30min executions and 32 processes

o Only 2 applications (not counting HPGMG proxy) used
>50% of memory bandwidth on average

o Used this data to estimate average AI for each level of
the memory hierarchy

o Used this data to infer requisite cache tapering

29

8

16

32

64

128

256

512

1024

H
P

G
M

G
 (

3
2

P
x1

T
)

H
P

G
M

G
 (

4
P

x8
T

)

C
o

m
b

u
st

o
r (

3
2

P
x1

T
)

C
o

m
b

u
st

o
r (

4
P

x8
T

)

M
F

IX
 (

3
2

P
x1

T
)

N
yx

 (
3

2
P

x1
T

)

N
yx

 (
4

P
x8

T
)

P
e

le
L

M
 (3

2
P

x1
T

)

W
a

rp
X

 (
3

2
P

x1
T

)

W
a

rp
X

 (
4

P
x8

T
)

B
a
n
d
w

id
th

(G
B

/s
)

AMReX Application Characterization
(2Px16c HSW == Cori Phase 1)

L2
L3
DRAM
Roofline

Likwid-mpirun
§ srun -n 2 -c 32 --cpu-bind=cores likwid-perfctr -C 0,8 -g MEM

-o test_%h_%p_%r.txt ./xthi.x
%h hostname
%p process ID
%r MPI rank

§ likwid-mpirun -pin S0:0,8_S1:0,8 -g MEM ./xthi.x
Hello from rank 0, thread 0, on nid00191. (core affinity = 0)
Hello from rank 0, thread 1, on nid00191. (core affinity = 8)
Hello from rank 1, thread 0, on nid00191. (core affinity = 16)
Hello from rank 1, thread 1, on nid00191. (core affinity = 24)

§ Uncore counters are measured on a per-socket basis

30

HSW

Marking Specific Regions
#include <likwid.h>
……
LIKWID_MARKER_INIT;
#pragma omp parallel {

LIKWID_MARKER_THREADINIT;
}
#pragma omp parallel {

LIKWID_MARKER_START("foo");
#pragma omp for
for(i = 0; i < N; i++) {

data[i] = omp_get_thread_num();
}
LIKWID_MARKER_STOP("foo");

}
LIKWID_MARKER_CLOSE;

§ cc -qopenmp -DLIKWID_PERFMON -I$LIKWID_INCLUDE -L$LIKWID_LIB
-llikwid -dynamic test.c -o test.x

§ likwid-perfctr -C 0-3 -g MEM -m ./test.x

31

focus on specific code regions

FLOP Roofline vs. VUOP Roofline

§ Nominally, Roofline is based on Flop/s, GB/s, and Flop/Byte
§ Such metrics make sense from the user perspective.

§ On SIMD machines, one might consider vuop/s instead of flop/s
ü vuop/s (scalar + vector) can easily be mapped to vector unit utilization
ü 100% vector unit utilization can bottleneck performance
ü Performance counters give vuop/s and not flop/s
✘ 100% vector unit utilization does not imply 100% of peak (FMA, scalar vs. vector)

32

FLOP Roofline

33

Peak Flop/s

MCDRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)
3.0

Usual AI
(Flop:DRAM bytes)

Performance is
well-below the
nominal Roofline
bound

§ With performance counters alone, its
hard to deduce why performance is
well-below the FLOP Roofline.
o VL?
o Precision?
o FMA?
o Masks?
o Non-FP vector instructions

§ Moreover, one might conclude a code
is memory bound when in reality is
compute-bound

VUOP Roofline

34

Peak VUOP/s

M
CDRAM

 G
B/s

A
tt
a
in

a
b
le

 V
U

O
P

/s

Arithmetic Intensity (VUOP:Byte)

0.375

Machine
Balance

Performance
(VUOP/s) is very
close to the
VUOP Roofline

§ In a VUOP KNL Roofline
o machine peak (VUOP/s) is 16x lower
o machine balance is 16x lower (0.375)

§ Consider an example where all flops
are scalar adds (VADDSD)
o 1 FLOP / VUOP
o AI = 3 FLOPs/Byte = 3 VUOPS/Byte

§ Although FLOP/s was far from its
Roofline, VUOP/s is 16x closer to its
peak

Ø Need source code analysis to
understand VL, FMA, … issues

3.0

New
VUOP AI

35

VUOP RooflineFLOP Roofline
§ Use of FMA cuts Arithmetic Intensity in

half (half the number of VUOPS)
§ Use of FMA doesn’t change Arithmetic

Intensity (FMA == FMUL+FADD == 2 FLOPs)

§ Presence of vector integer operations
increases Arithmetic Intensity

§ Presence of vector integer operations
doesn’t change Arithmetic Intensity

§ Moving from 64b to 32b data types
doesn’t change Arithmetic Intensity

§ Moving from 64b to 32b data types
doubles AI

§ Use of SIMD reduces Arithmetic Intensity
by a factor of Vector Length (e.g. cuts
number of VUOPS by 8x)

§ Use of SIMD doesn’t change Arithmetic
Intensity

§ High fraction of Roofline implies high
vector unit utilization (but not
necessarily high performance)

§ High fraction of Roofline implies high
performance

Roofline with
SDE

Why isn’t LIKWID good enough?

§ LIKWID counts vector uops
§ KNL vuop counters aren’t…

o VL-aware
o precision-aware
o mask-aware
o FMA-aware

§ Counters don’t differentiate instruction types (FP, int, shuffle, …)
§ Flop counters were broken on Haswell.
§ Thus, LIKWID might be a good starting point, but its not perfect.

37

Ø Need tools that actually count flops correctly and ones that can be
used to understand nuances of instruction mixes.

Intel Software Development Emulator (SDE)

§ Dynamic instruction tracing
ü Accounts for actual loop lengths and branches
ü Counts instruction types, lengths, etc…
ü Can mark individual regions
ü Support for MPI+OpenMP
ü Can be used to calculate FLOPs (VL-, FMA-, and precision-aware)
✘ Post processing can be expensive.
✘ No insights into cache behavior or DRAM data movement
✘ X86 only

38
https://software.intel.com/en-us/articles/intel-software-development-emulator

https://software.intel.com/en-us/articles/intel-software-development-emulator

Compiling with SDE at NERSC

§ Makefile…
MPICC = cc
CFLAGS = -g -O3 -dynamic -qopenmp -restrict -qopt-streaming-stores always \

-DSTREAM_ARRAY_SIZE=400000000 -DNTIMES=50 \
-I$(VTUNE_AMPLIFIER_XE_2018_DIR)/include

LDFLAGS = -L$(VTUNE_AMPLIFIER_XE_2018_DIR)/lib64 -littnotify

stream_mpi.exe: stream_mpi.c Makefile
$(MPICC) $(CFLAGS) stream_mpi.c -o stream_mpi.exe $(LDFLAGS)

clean:
rm -f stream_mpi.exe

§ module load sde
make

39https://bitbucket.org/dwdoerf/stream-ai-example.git

https://bitbucket.org/dwdoerf/stream-ai-example.git

Running with SDE at NERSC

srun -n 4 -c 6 sde -ivb -d -iform 1 -omix
my_mix.out -i -global_region -start_ssc_mark
111:repeat -stop_ssc_mark 222:repeat -- foo.exe

§ -ivb is used to target Edison's Ivy Bridge ISA (for Cori use -hsw for Haswell or -knl for KNL processors)
§ -d specifies to only collect dynamic profile information
§ -iform 1 turns on compute ISA iform mix
§ -omix specifies the output file (and turns on -mix)
§ -i specifies that each process will have a unique file name based on process ID (needed for MPI)
§ -global_region will include any threads spawned by a process (needed for OpenMP)

40
http://www.nersc.gov/users/application-performance/measuring-
arithmetic-intensity/

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

Parsing the Output

§ When the job completes, you’ll have a
series of files prefixed with “sde_”.

§ Parse the output to summarize the
results…

./parse-sde.sh sde_2p16t*

§ Use the “Total FLOPs” line as the
numerator in all AI’s and performance

§ Use the “Total Bytes” line as the
denominator in the L1 AI

§ Can infer vectorization rates and
precision

41

$./parse-sde.sh sde_2p16t*
Search stanza is "EMIT_GLOBAL_DYNAMIC_STATS"
elements_fp_single_1 = 0
elements_fp_single_2 = 0
elements_fp_single_4 = 0
elements_fp_single_8 = 0
elements_fp_single_16 = 0
elements_fp_double_1 = 2960
elements_fp_double_2 = 0
elements_fp_double_4 = 999999360
elements_fp_double_8 = 0
--->Total single-precision FLOPs = 0
--->Total double-precision FLOPs = 4000000400
--->Total FLOPs = 4000000400
mem-read-1 = 8618384
mem-read-2 = 1232
mem-read-4 = 137276433
mem-read-8 = 149329207
mem-read-16 = 1999998720
mem-read-32 = 0
mem-read-64 = 0
mem-write-1 = 264992
mem-write-2 = 560
mem-write-4 = 285974
mem-write-8 = 14508338
mem-write-16 = 0
mem-write-32 = 499999680
mem-write-64 = 0
--->Total Bytes read = 33752339756
--->Total Bytes written = 16117466472
--->Total Bytes = 49869806228

Marking Regions of Interest for SDE
// Code must be built with appropriate paths for VTune include file (ittnotify.h) and

library (-littnotify)
#include <ittnotify.h>

__SSC_MARK(0x111); // start SDE tracing, note it uses 2 underscores
__itt_resume(); // start VTune, again use 2 underscores

for (k=0; k<NTIMES; k++) {
#pragma omp parallel for
for (j=0; j<STREAM_ARRAY_SIZE; j++)
a[j] = b[j]+scalar*c[j];
}

__itt_pause(); // stop VTune
__SSC_MARK(0x222); // stop SDE tracing

42
http://www.nersc.gov/users/application-performance/measuring-
arithmetic-intensity/

!Essential when

analyzing Individual

kernels

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

LIKWID vs. SDE

§ Recall, LIKWID counts vector uops while SDE counts instructions
§ Why does this matter?

o VL-aware KNL has scalar but treats 128b, 256b, and 512b as 512b
o precision-aware User has to know which precision they use
o mask-aware KNL counters ignore masks
o FMA-aware LIKWID assumes 1 flop per element
o KNL counts vector integer, stores, NT stores, and gathers as vector uops (and

thus as potential flop/s)

43

Ø LIKWID’s and SDE’s counts of #FP ops and Gflop/s can be
different (very different for linear algebra).

LIKWID vs. SDE/VTune

§ SDE FLOPS:
o sde64 -knl -d -iform 1 -omix my_mix.out -global_region -- ./gpp.knl.ex 512 2 32768 20
o ./parse-sde.sh my_mix.out
o --->Total FLOPs = 2775769815463

§ VTune Bytes:
o amplxe-cl -collect memory-access -finalization-mode=deferred -r my_vtune/ -- ./gpp.knl.ex 512 2 32768 20
o amplxe-cl -report summary -r my_vtune/ > my_vtune.summary
o ./parse-vtune.sh my_vtune.summary
o DDR --->Total Bytes = 35983553088
o HBM --->Total Bytes = 963486016448

§ http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

44

LIKWID error
2527.81 GFLOPS ~8.9%

LIKWID error
DDR: 36.28 GB ~0.8%
HBM: 892.44 GB ~7.4%

Roofline with
LIKWID + SDE

Initially Cobbled Together Tools…
§ Use tools known/observed to work on NERSC’s

Cori (KNL, HSW)…
• Used Intel SDE (Pin binary instrumentation +

emulation) to create software Flop counters
• Used Intel VTune performance tool (NERSC/Cray

approved) to access uncore counters

Ø Accurate measurement of Flop’s (HSW) and
DRAM data movement (HSW and KNL)

Ø Used by NESAP (NERSC KNL application
readiness project) to characterize apps on Cori…

46

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL’s production computing division
CRD is LBL’s Computational Research Division
NESAP is NERSC’s KNL application readiness project
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

More Recently…
§ Use tools known/observed to work on NERSC’s

Cori (KNL, HSW)…
• Used Intel SDE (Pin binary instrumentation +

emulation) to create software Flop counters
• Used LIKWID performance counter tool (NERSC/Cray

approved) to access uncore counters

Ø Accurate measurement of Flop’s (HSW) and
DRAM data movement (HSW and KNL)

Ø Used by NESAP (NERSC KNL application
readiness project) to characterize apps on Cori…

47

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL’s production computing division
CRD is LBL’s Computational Research Division
NESAP is NERSC’s KNL application readiness project
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

Hierarchical Roofline vs.
Cache-Aware Roofline

…understanding different Roofline
formulations in Intel Advisor

There are two Major Roofline Formulations:
§ Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, …)…

• Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009
• Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
• Defines multiple bandwidth ceilings and multiple AI’s per kernel

• Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

§ Cache-Aware Roofline
• Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
• Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes)

• As one looses cache locality (capacity, conflict, …) performance falls from one BW ceiling to a lower one at constant AI

49

§ Why Does this matter?
• Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
• Cache-Aware Roofline model was integrated into production Intel Advisor

• Evaluation version of Hierarchical Roofline1 (cache simulator) has also been integrated into Intel Advisor

1Experimental Feature, the look and feel and exact behavior is
subject for change

50

Cache-Aware RooflineHierarchical Roofline
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size
(capacity misses reduce AI)

§ AI is Flop:Bytes as presented to the L1
cache (plus non-temporal stores)

§ AI is Flop:Bytes after being filtered by
lower cache levels

§ Memory/Cache/Locality effects are
observed as decreased performance

§ Memory/Cache/Locality effects are
observed as decreased AI

§ Requires static analysis or binary
instrumentation to measure AI

§ Requires performance counters or
cache simulator to correctly measure AI

Example: STREAM

51

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ L1 AI…
• 2 flops
• 2 x 8B load (old)
• 1 x 8B store (new)
• = 0.08 flops per byte

§ No cache reuse…
• Iteration i doesn’t touch any data associated with

iteration i+delta for any delta.

§ … leads to a DRAM AI equal to
the L1 AI

Example: STREAM

52

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

DRAM G
B/s

A
tta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)
0.083

L1
 G

B/s

Multiple AI’s….
1) Flop:DRAM bytes
2) Flop:L1 bytes (same)

Peak Flop/s

DRAM G
B/s

A
tta

in
ab

le
 F

lo
p/

s

0.083
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Single AI based on flop:L1 bytes

Observed performance
is correlated with DRAM
bandwidth

Performance is bound to
the minimum of the two
Intercepts…

AIL1 * L1 GB/s
AIDRAM * DRAM GB/s

Example: 7-point Stencil (Small Problem)

53

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

new[k][j][i] = -6.0*old[k][j][i]
+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

§ L1 AI…
• 7 flops
• 7 x 8B load (old)
• 1 x 8B store (new)
• = 0.11 flops per byte
• some compilers may do register shuffles to reduce the

number of loads.

§ Moderate cache reuse…
• old[k][j][i+1] is reused on next iteration of i.
• old[k][j+1][i] is reused on next iteration of j.
• old[k+1][j][i] is reused on next iterations of k.

§ … leads to DRAM AI larger than
the L1 AI

Example: 7-point Stencil (Small Problem)

54

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.44

L1
 G

B/s

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Multiple AI’s….
1) flop:DRAM ~ 0.44
2) flop:L1 ~ 0.11

Performance bound is
the minimum of the two

Example: 7-point Stencil (Small Problem)

55

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

DRAM G
B/s

A
tta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.44

L1
 G

B/s

Peak Flop/s

DRAM G
B/s

A
tta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Single AI based on flop:L1 bytes

Multiple AI’s….
1) flop:DRAM ~ 0.44
2) flop:L1 ~ 0.11

Observed performance
is between L1 and DRAM lines
(== some cache locality)

Performance bound is
the minimum of the two

Example: 7-point Stencil (Large Problem)

56

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.20

L1
 G

B/s

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Single AI based on flop:L1 bytes
Multiple AI’s….
1) flop:DRAM ~ 0.20
2) flop:L1 ~ 0.11

Capacity misses reduce
DRAM AI and performance

Observed performance
is closer to DRAM line
(== less cache locality)

Example: 7-point Stencil (Observed Perf.)

57

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.20

L1
 G

B/s

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Single AI based on flop:L1 bytes

Actual observed performance
is tied to the bottlenecked resource
and can be well below a cache
Roofline (e.g. L1).

Observed performance
is closer to DRAM line
(== less cache locality)

Example: 7-point Stencil (Observed Perf.)

58

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.20

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)
0.11

L1
 G

B/s

Single AI based on flop:L1 bytes

Actual observed performance
is tied to the bottlenecked resource
and can be well below a cache
Roofline (e.g. L1).

Observed performance
is closer to DRAM line
(== less cache locality)

DRAM G
B/s

Roofline with
Intel® Advisor

slides from Zakhar Matveev (intel)

Intel Advisor
§ Includes Roofline Automation…

ü Automatically instruments applications

(one dot per loop nest/function)

ü Computes FLOPS and AI for each

function (CARM)

ü AVX-512 support that incorporates masks

ü Integrated Cache Simulator1

(hierarchical roofline / multiple AI’s)
ü Automatically benchmarks target system

(calculates ceilings)

ü Full integration with existing Advisor

capabilities

60

Memory-bound, invest into

cache blocking etc

Compute bound: invest
into SIMD,..

1Experimental Feature, the look and feel and exact behavior is

subject for change

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

Intel® Advisor: Components

61

Step 1. Compiler diagnostics + Performance Data
+ SIMD efficiency information

Guidance: detect problem and recommend how
to fix it

Step 2. “Precise” Trip Counts & FLOPs. Roofline analysis.
Characterize your application.

Step 3. Loop-Carried Dependency Analysis Step 4. Memory Access Patterns Analysis

• Roofline for INT OP/S
• Integrated Roofline (exp)
• Interactive(!) HTML export

• MAC OS viewer
• Function call counts
• Python API..

What’s new in
“2019” release

Intel® Advisor: 2-pass Approach

62

Roofline:
X-Axis (AI): #FLOPs / #Bytes
Y-Axis (FLOP/s): #FLOP(mask-aware)/time Overhead
Step 1: Survey (-collect survey)
• Records run times
• User-mode sampling; non-intrusive
• No need for root access

1x

Step 2: FLOPs (-collect tripcounts –flops)
• Record #FLOPs, #Bytes, AVX512 masks
• Precise, instrumentation-based count of the number of

instructions
• No need for root access

3-5x

(8-37x)1

1With Integrated Roofline (Cache Simulator) enabled.

Intel® Advisor: Roofline Automation

63

Each Dot represents loop or
function in YOUR APPLICATION

(profiled)

Each Ceiling provides peak
CPU/Memory throughput

of your PLATFORM (benchmarked)

Automatic and integrated – first class citizen in Intel® Advisor

NEW: Integrated Roofline

64

CARM (L1+NTS)
CPU perspective DRAM (ORM)

Not Memory
bound

Some Locality

Highly
optimized

All hotspots but 1
are not CPU-
bound

Full waveform Inversion. Seismic Workload
Data: Courtesy
Philippe Thierry

NEW: Integer, Float, Int+Float Rooflines

65

NEW: Memory Traffic in Survey Grid

66

Integrated Roofline Model

67

Old Approach…
source advixe-vars.sh
advixe-cl -collect survey --project-dir ./your_project -- <your-executable-with-parameters>
advixe-cl -collect tripcounts -enable-cache-simulation -flop --project-dir ./your_project -- <your-

executable-with-parameters>

New Approach (but not compatible with MPI)…
source advixe-vars.sh
advixe-cl -collect roofline -enable-cache-simulation --project-dir ./your_project -- <your-

executable-with-parameters>

(optional) copy data to your UI desktop system
advixe-gui ./your_project

https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor

https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor

Advisor on NERSC’s Cori

68

§ http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/

module load advisor/2018.integrated_roofline
cc -g -dynamic -openmp -O2 -o mycode.exe mycode.c

§ Best to run advisor only on rank 0... srun calls a script like…

#!/bin/bash
if [[$SLURM_PROCID == 0]];then
advixe-cl -collect=survey --project-dir knl-result -data-limit=0 -- ./a.out
else
sleep 30
./a.out
fi

http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/

Exporting Roofline Figures

69

§ Advisor can directly export a
HTML Roofline figure …

§ Alternately, you can output directly from the command line (no GUI
needed)…

advixe-cl -report roofline --project-dir ./your_project > roofline.html

Questions?

Summary

Summary

§ In this talk, we discussed several approaches to constructing

Rooflines on CPUs…

o Machine Characterization

o Using LIKWID to access performance counters

o Using SDE to get more accurate FLOP counts

o Using Advisor to provide a single tool that integrates cache simulation and accurate FLOP

counts.

72

Backup

