
Parallelism and
Performance

Samuel Williams
Computational Research Division
Lawrence Berkeley National Lab

SWWilliams@lbl.gov

mailto:SWWilliams@lbl.gov

§ This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

§ This material is based upon work supported by the DOE RAPIDS SciDAC Institute.
§ This research used resources of the National Energy Research Scientific Computing Center (NERSC),

which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

§ This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

Acknowledgements

Parallelization

node

Memory

Socket or chip

core core core core

Last Level Cache (LLC)

Multicore Node Architectures
§ Imagine a dual-socket, quad-core

node...
o Each socket has a shared last level cache

and its own directly attached memory
o Between sockets, there is an interconnect

(e.g. QPI, HT, etc…) that allows one
socket to read another’s memory/caches

4

Socket or chip

core core core

Last Level Cache (LLC)

Memory

core

node

Memory

Socket or chip

core core core core

Last Level Cache (LLC)

GPU-Accelerated Nodes
§ Imagine a dual-socket, quad-core

node...
o Each socket has a shared last level cache

and its own directly attached memory
o Between sockets, there is an interconnect

(e.g. QPI, HT, etc…) that allows one
socket to read another’s memory/caches

§ Additionally, we may attach
multiple GPUs per socket…
o Each GPU has its own cores, caches,

and memory.
o Depending on the GPU, it can directly

read host memory or other GPUs memory
via loads/stores

5

Socket or chip

core core core

Last Level Cache (LLC)

Memory

GPU

Memory

cores

GPU

Memory

cores

GPU

Memory

cores

GPU

Memory

cores

core

node

Memory

Socket or chip

core core core core

Last Level Cache (LLC)

On-Node Parallelization
§ We can apply a shared memory

programming model
(OpenMP/pthreads) and abstract
away hardware…

6

Socket or chip

core core core

Last Level Cache (LLC)

Memory

core

Process 0

On-Node Parallelization
§ We can apply a shared memory

programming model
(OpenMP/pthreads) and abstract
away hardware…

§ As such, from SW POV, all we
might see is threads and memory
(no caches, sockets, cores)

7

Memory

Thread
0

Thread
1

Thread
2

Thread
3

Thread
4

Thread
5

Thread
6

Thread
7

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Private
Stack

X[25] = 3.14;
…
temp = X[25] * Y[27]

§ Threads read/write memory
locations to exchange data

Thread0 Thread 2

X[25]

On-Node Parallelization
§ Rather than only using threads,

we can combine programming
models (Hybrid)

8

Process 0

Memory

Thread
0

Thread
1

Thread
2

Thread
3

Thread
4

Thread
5

Thread
6

Thread
7

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Process 1Process 0

On-Node Parallelization
§ Rather than only using threads,

we can combine programming
models (Hybrid)

§ For example, we can combine
MPI w/OpenMP…
o 2 processes per node
o 4 threads per process
o With proper control of affinity (srun and

omp), we can efficiently map this to
hardware.

o Each process has its own private memory
that cannot be read by the other process

9

Memory

Thread
0

Private
Stack

Thread
1

Private
Stack

Thread
2

Private
Stack

Thread
3

Private
Stack

Thread
0

Private
Stack

Thread
1

Private
Stack

Thread
2

Private
Stack

Thread
3

Private
Stack

Memory

Process 1Process 0

On-Node Parallelization
§ Communication among threads

within a process is handled via

shared memory

10

Memory

Thread

0

Private

Stack

Thread

1

Private

Stack

Thread

2

Private

Stack

Thread

3

Private

Stack

Thread

0

Private

Stack

Thread

1

Private

Stack

Thread

2

Private

Stack

Thread

3

Private

Stack

Memory

§ Processes send/receive

messages to exchange data

o Messages are tagged by rank, ID, and

communicator

o Recv’s on the destination can be posted

before a Send has been posted on the

host (blocks)

o Asynchronous communication

(isend/irecv) is non-blocking but requires

a wait to ensure completion.

Process 0 Process 1

X Y

Copy X to buf

Send buf to P2

Recv buf from P0

…

Copy buf to Y

buf buf

Process 3Process 2Process 1Process 0

On-Node Parallelization
§ We can select and combination of

processes and threads on a
node…
o Its best not to oversubscribe hardware

(procs * threads == cores)
o Always use affinity to bind processes and

threads cognizant of the underlying
hardware.

11

Memory

Thread
0

Private
Stack

Thread
1

Private
Stack

Thread
0

Private
Stack

Thread
1

Private
Stack

Thread
0

Private
Stack

Thread
1

Private
Stack

Thread
0

Private
Stack

Thread
1

Private
Stack

Memory Memory Memory

P0

On-Node Parallelization
§ We can select and combination of

processes and threads on a
node…
o Its best not to oversubscribe hardware

(procs * threads == cores)
o Always use affinity to bind processes and

threads cognizant of the underlying
hardware.

o Note, OMP_NUM_THREADS==1 is not
the same as flat MPI (no –qopenmp)

12

Mem

Thread
0

Private
Stack

P1

Mem

Thread
0

Private
Stack

P2

Mem

Thread
0

Private
Stack

P3

Mem

Thread
0

Private
Stack

P4

Mem

Thread
0

Private
Stack

P5

Mem

Thread
0

Private
Stack

P6

Mem

Thread
0

Private
Stack

P7

Mem

Thread
0

Private
Stack

P0

On-Node Parallelization
§ Newer GPUs allow multiple

processes to share a single GPU
o each gets a ‘context’
o GPU memory is portioned among

contexts
o Processes either time multiplex(older)

resources or run concurrently

13

Host
Mem

Thread
0

P1

Thread
0

P2

Thread
0

P3

Thread
0

P4

Thread
0

P5

Thread
0

P6

Thread
0

P7

Thread
0

CUDA
context

CUDA
context

CUDA
context

CUDA
context

CUDA
context

CUDA
context

CUDA
context

CUDA
context

GPU
Mem

Host
Mem

GPU
Mem

Host
Mem

GPU
Mem

Host
Mem

GPU
Mem

Host
Mem

GPU
Mem

Host
Mem

GPU
Mem

Host
Mem

GPU
Mem

Host
Mem

GPU
Mem

§ Efficiency of GPU-GPU MPI
exchanges is implementation
dependent

Process 0

On-Node Parallelization
§ One process per CPU core may

not efficiently utilize a GPU-
accelerated system

§ As such, one could run one
process per GPU…

14

Host
Mem

Thread
0

Thread
1

Process 1

Thread
0

Thread
1

Process 2

Thread
0

Thread
1

Process 3

Thread
0

Thread
1

CUDA
context

CUDA
context

CUDA
context

CUDA
context

GPU
Mem

Host
Mem

GPU
Mem

Host
Mem

GPU
Mem

Host
Mem

GPU
Mem

Process 0

On-Node Parallelization
§ As such, one process per CPU

core may not efficiently utilize a
GPU-accelerated system

§ As such, one could run one
process per GPU…

§ … or one process per socket.

15

Host
Mem

Thread
0

Thread
1

Thread
2

Thread
3

Process 1

Thread
0

Thread
1

Thread
2

Thread
3

CUDA
Stream 0, device 0

CUDA
Stream 1, device 1

CUDA
Stream 0, device 2

CUDA
Stream 1, device 3

GPU
Mem

GPU
Mem

Host
Mem

GPU
Mem

GPU
Mem

§ Unfortunately, having one
process control multiple GPUs
can be harder to program
(multiple streams)

Intra-Core Parallelization
§ Within each core there can be

parallelism…
o Multiple functional units (ILP)
o Vectors/SIMD (DLP)
o Specialized functional units (FMA, Tensor

Cores, etc…)
o Pipeline parallelism (ILP)

§ Discovery can be done at compile
time (vectors) or run time (ILP)

§ Failure to exploit these limits
performance

16

Multi-Node (Distributed Memory) Parallelization
§ MPI is used for multi-node parallelization

o From the user standpoint, on-node and inter-node MPI
looks the same

o All communication is handled via MPI (P2P or
collectives)… no shared memory communication

§ UPC, CAF, GA provide shared memory
abstraction.

§ Memory balancing…
o can’t shift memory capacity from one node to another.
o If any one node exceeds its memory capacity, the job

will crash w/OOM error

o Swap is rare (diskless compute nodes)

17

P0 P1 P2 P3 P1023

Global
Interconnect

Synchronization
§ When one thread (or process) produces data and another thread (or

process) consumes it, we have a data hazard
§ We must synchronize to resolve the data hazard and ensure

determinism & correctness.

18

Synchronization

19

§ In the P2P MPI world,
synchronization is automatic in
the irecv/isend/waitall/compute
paradigm

§ In the OpenMP world, we must
explicitly synchronize…

§ Easiest solution: leverage BSP
model…
o #pragma omp parallel implies an implicit

barrier
o Data is only exchanged between parallel

regions (never within)
o Coarse grained

§ Finer grained…
o Use OMP reductions, atomics, locks, and

critical sections

Challenges

Load Balancing
§ Imagine we have some work to

partition (e.g. computation on an
array)
o We can try and uniformly partition work

(loop iterations) among threads
o Ideally, the run time should be reduced by

1/NThreads

21

Work

T0 T1 T2 T3 T4 T5 T6 T7

T7
T6
T5
T4
T3
T2
T1
T0

Work/8

Work/8

Work/8

Work/8

Work/8

Work/8

Work/8

Work/8

Time

Load Balancing
§ Unfortunately, some loop

iterations may be more
expensive, or some threads may
run slower (e.g. cache effects)
o As a result, we can observe load

imbalance where run time is limited by the
slowest thread

o We can assess the degree of load
imbalance by measuring max/average

o A slow outlier may substantially hurt
performance, but…

22

Work

T0 T1 T2 T3 T4 T5 T6 T7

Work/8T7

Work/8T6

Work/8T5

Work/8T4

Work/8T3

Work/8T2

Work/8T1

Work/8T0

Time

Load Balancing
§ Unfortunately, some loop

iterations may be more
expensive, or some threads may
run slower (e.g. cache effects)
o As a result, we can observe load

imbalance where run time is limited by the
slowest thread

o We can assess the degree of load
imbalance by measuring max/average…

o A slow outlier may substantially hurt
performance, but…

o …a fast thread may not help or hurt much

23

Work

T0 T1 T2 T3 T4 T5 T6 T7

Work/8T7

Work/8T6

Work/8T5

Work/8T4

Work/8T3

Work/8T2

Work/8T1

Work/8T0

Time

Lack of Parallelism
§ Trends in architecture have enabled >>1000-way parallelism on a

chip (#FPUs * FPU latency)
§ Not all loop nests support 1000-way parallelization
§ Loop nests with <1000-way parallelism underutilize HW resources

§ Often codes must be restructured to enable more parallelism
o Loops are reordered/fused (OMP collapse(3))
o Variables(arrays) are privatized and reduced
o Nominally sequential functions/solvers on independent variables are performed

concurrently (MPI sub communicators or OMP Tasks)
o Workflows/multiphysics are parallelized at launch (SLURM MPMD)

24

Amdahl’s Law & Bottlenecks
§ In an application, not every loop

might be parallelized.
o Speedup = (fseq + fpar/Spar)-1

o 8x speedup on 75% of the run time
provides a 3x speedup

o Infinite speedup on 75% of the run time
only provides a 4x speedup.

25

Parallelizable loopsSequential

Sequential

Time

§ Similar effect applies to vectors,
GPUs, and other accelerators.
o e.g. GPU providing 10x on 10% of an

application = 10% speedup.

Amdahl’s Law & Bottlenecks

26

Parallelizable loopsSequential

Sequential

Time

§ On manycore processors (KNL),
single thread performance is
worse than Haswell
o Parallel parts of apps get faster
o Sequential parts get slower
o Overall benefit is less than expected

Non-Uniform Memory Access (NUMA)
§ In a shared memory, any thread

can read any memory location

§ However, memory bandwidth and
latency can vary (NUMA)
o Consider array double X[N];

o If naively allocated, all data is placed on
socket 0

o Latency/bandwidth to element x[i] is
different for thread 3 and thread 4

o Socket 0’s memory bandwidth is highly
contended while socket 1’s is
underutilized

27

node

Memory

Socket or chip

core core core core

Last Level Cache (LLC)

Socket or chip

core core core

Last Level Cache (LLC)

Memory

core

Process 0

Memory

Thread
0

Thread
1

Thread
2

Thread
3

Thread
4

Thread
5

Thread
6

Thread
7

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Private
Stack

X[0:N-1]

X[0:N-1]

Non-Uniform Memory Access (NUMA)
§ Allocate data based on how we

intend to access it
§ Rectify this NUMA effect via first

touch initialization
o Pages are allocated with affinity to the

core that first touched the data
o Parallelizing the initialization transparently

partitions the array among NUMA nodes
o n.b. This only works on the first allocation

of this memory page (subsequent
free/malloc corrupt the process)

o Explicit thread affinity is imperative

28

node

Memory

Socket or chip

core core core core

Last Level Cache (LLC)

Socket or chip

core core core

Last Level Cache (LLC)

Memory

core

Process 0

Memory

Thread
0

Thread
1

Thread
2

Thread
3

Thread
4

Thread
5

Thread
6

Thread
7

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Private
Stack

Private
Stack

X[0:N/2-1]

X[0:N/2-1]

X[N/2:N-1]

X[N/2:N-1]

Non-Uniform Memory Access (NUMA)
§ Simplest solution is to run at least

one process per NUMA node
o All data for that process is allocated on

the numa node with affinity to its cores

o All data access are restricted to that
NUMA node

29

node

Memory

Socket or chip

core core core core

Last Level Cache (LLC)

Socket or chip

core core core

Last Level Cache (LLC)

Memory

core

Process 1Process 0

Memory

Thread
0

Private
Stack

Thread
1

Private
Stack

Thread
2

Private
Stack

Thread
3

Private
Stack

Thread
0

Private
Stack

Thread
1

Private
Stack

Thread
2

Private
Stack

Thread
3

Private
Stack

MemoryX[0:N/2-1]

X[0:N/2-1]

X[0:N/2-1]

X[0:N/2-1]

Memory/Cache Capacity Contention
§ Each thread or process exerts some pressure on the cache (on-chip

L1/L2 or off-chip MCDRAM/HBM memory).
§ As thread/process-concurrency increases, the requisite active working

set can exceed cache capacity
o When this happens, capacity misses manifest, data movement increases (even if perfectly

computationally load balanced), and performance can plummet.
o If this happens in MCDRAM or HBM caches, we run at DDR speeds or Nvlink speeds.

§ To rectify this, we often tile or block loops so that the per-thread
working set remains sufficiently small.

30

Memory/Cache Bandwidth Contention
§ There is less memory bandwidth

than all cores could consume
o 1 core can drive >10GB/s of memory

bandwidth

o 16 cores (e.g. 1P HSW) could drive >160

31

#Cores (threads or processes)

%
 o

f M
em

or
y

B
an

dw
id

th

Linear scaling of bandwidth

Memory/Cache Bandwidth Contention
§ There is less memory bandwidth

than all cores could consume
o 1 core can drive >10GB/s of memory

bandwidth
o 16 cores (e.g. 1P HSW) could drive >160
o Socket only has 50GB/s available.
o memory bandwidth has become a

bottleneck
o A similar effect can emerge on LLC or

MCDRAM caches

32

#Cores (threads or processes)

%
 o

f M
em

or
y

Ba
nd

w
id

th

100%

Linear scaling of bandwidth

Memory/Cache Bandwidth Contention
§ There is less memory bandwidth

than all cores could consume
o 1 core can drive >10GB/s of memory

bandwidth
o 16 cores (e.g. 1P HSW) could drive >160
o Socket only has 50GB/s available.
o memory bandwidth has become a

bottleneck
o A similar effect can emerge on LLC or

MCDRAM caches

§ “Flops are Free”
o bottleneck or opportunity?

33

#Cores (threads or processes)

%
 o

f M
em

or
y

B
an

dw
id

th

100%

Linear scaling of bandwidth

Network Performance
§ Each message sent via MPI

incurs some non-zero overhead
(and latency)

§ We can proxy message time as:
time = overhead + size/bandwidth

§ As such, network utilization…
= size / (overhead*bandwidth + size)
= (overhead*bandwidth/size + 1)-1

34

Message Size

%
 o

f N
et

w
or

k
Ba

nd
w

id
th

100%

Latency-Bandwidth Product

1 MPI/node

2 MPI/node
4 MPI/node

Need relatively few
processes/node if
typical message size
is large

Need lots of
processes/node if

typical message size
is small

Network Performance
§ Each message sent via MPI

incurs some non-zero overhead
(and latency)

§ We can proxy message time as:
time = overhead + size/bandwidth

§ As such, network utilization…
= size / (overhead*bandwidth + size)
= (overhead*bandwidth/size + 1)-1

35

Message Size

%
 o

f N
et

w
or

k
Ba

nd
w

id
th

100%

Latency-Bandwidth Product

1 MPI/node

2 MPI/node
4 MPI/node

Incentivized to send
less data (smaller
messages)

Incentivized to send
fewer messages
(even if bigger)

Network Contention
§ We can saturate different aspects of the network…

36

§ Injection Bandwidth
o nodes cannot inject data faster into the network
o e.g. broadcasts or large messages

§ Ejection Bandwidth
o node cannot eject data from the network fast enough
o e.g. reductions (single node must receive data from all other nodes)

§ Bisection Bandwidth
o Bandwidth (links) connecting conceptual partitions of the network
o Artifact of the topology (architecture) of the network
o Job placement (and decomposition) can mitigate this

Surface:Volume

37

§ When we decompose a problem among processes, we must do so in a
manner that…
o Minimizes the number of messages (recall overhead per message)
o Minimizes the surface:volume ratio (i.e. ratio of MPI data movement : local flops)

§ Consider 8-way MPI parallelization of a PDE on a NxN structured grid…

Process 0
Process 1
Process 2
Process 3
Process 4
Process 5
Process 6
Process 7

Process 0 Process 1

Process 2 Process 3

Process 4 Process 5

Process 6 Process 7

Pr
oc

es
s

0
Pr

oc
es

s
1

Pr
oc

es
s

2
Pr

oc
es

s
3

Pr
oc

es
s

4
Pr

oc
es

s
5

Pr
oc

es
s

6
Pr

oc
es

s
7

Pr
oc

es
s

0

Pr
oc

es
s

1

Pr
oc

es
s

2

Pr
oc

es
s

3

Pr
oc

es
s

4

Pr
oc

es
s

5

Pr
oc

es
s

6

Pr
oc

es
s

7

S:V = 1.5N / N2 S:V = 1.5N / N2 S:V = 2.25N / N2S:V = 2.25N / N2

Surface:Volume

38

§ On a multicore node, think about how much data is off node
exchanges vs. on-node exchanges.

§ On-node exchanges should be faster (DRAM BW >> Network BW)
§ Different off-node surface:volume ratios leads to load imbalance.

Process 0
Process 1
Process 2
Process 3
Process 4
Process 5
Process 6
Process 7

Process 0 Process 1

Process 2 Process 3

Process 4 Process 5

Process 6 Process 7

Pr
oc

es
s

0
Pr

oc
es

s
1

Pr
oc

es
s

2
Pr

oc
es

s
3

Pr
oc

es
s

4
Pr

oc
es

s
5

Pr
oc

es
s

6
Pr

oc
es

s
7

Pr
oc

es
s

0

Pr
oc

es
s

1

Pr
oc

es
s

2

Pr
oc

es
s

3

Pr
oc

es
s

4

Pr
oc

es
s

5

Pr
oc

es
s

6

Pr
oc

es
s

7

S:V = 0.75N / N2 S:V = 0.75N / N2 S:V = 1.25N / N2S:V = 1.25N / N2

Surface:Volume

39

§ On a multicore node, think about how much data is off node
exchanges vs. on-node exchanges.

§ On-node exchanges should be faster (DRAM BW >> Network BW)
§ Different off-node surface:volume ratios leads to load imbalance.

Process 0
Process 1
Process 2
Process 3
Process 4
Process 5
Process 6
Process 7

Process 0 Process 1

Process 2 Process 3

Process 4 Process 5

Process 6 Process 7

Pr
oc

es
s

0
Pr

oc
es

s
1

Pr
oc

es
s

2
Pr

oc
es

s
3

Pr
oc

es
s

4
Pr

oc
es

s
5

Pr
oc

es
s

6
Pr

oc
es

s
7

Pr
oc

es
s

0

Pr
oc

es
s

1

Pr
oc

es
s

2

Pr
oc

es
s

3

Pr
oc

es
s

4

Pr
oc

es
s

5

Pr
oc

es
s

6

Pr
oc

es
s

7

S:V = 0.25N / N2 S:V = 0.25N / N2 S:V = 0.25N / N2S:V = 0.25N / N2

Little’s Law Redux…

40

§ Recast latency-bandwidth product for OMP/CUDA overheads & flop/s...

§ Volta GPU:

o 800 GB/s, 7 Tflop/s, ~20us CUDA launch overhead

o Can’t hit peak bandwidth on any kernel that moves less than 16MB
o Can’t hit peak flops on any kernel that does less than 140M FP operations

§ KNL (Xeon Phi Manycore):

o 400 GB/s, 2.5 Tflop/s, ~5us OMP overhead

o Can’t hit peak bandwidth on any kernel that moves less than 2MB
o Can’t hit peak flops on any kernel that does less than 13M FP operations

§ Haswell (Xeon CPU):

o 100 GB/s, 1.3 Tflop/s, ~1us OMP overhead

o Can’t hit peak bandwidth on any kernel that moves less than 100KB
o Can’t hit peak flops on any kernel that does less than 1M FP operations

Trading Process Concurrency for Thread Concurrency

41

ü Single Programming Model (MPI)
ü Maximizes MPI bandwidth
ü Implicitly addresses affinity and

NUMA
ü Minimizes superfluous

synchronization
ü Eliminates Amdahl (threading)

bottlenecks

Process-Heavy Thread-Heavy

ü Minimizes MPI data movement
ü Memory capacity friendly… avoids

duplication of data
ü Bandwidth friendly… access to

shared data is handled via caches
instead of duplication

ü Compute-friendly… ideally avoids
redundant computation

ü Load balancing is simplified.
ü Job placement is simplified.

Trading Process Concurrency for Thread Concurrency

42

64x1 32x2 16x4 8x8 4x16 2x32 1x64

Routines with perfect
parallelizationTi

m
e

(lo
g)

Thread-friendly
RoutinesAmdahl

Bottleneck

Application Performance

Performance and
Scalability

Strong vs. Weak Scaling

44

§ Strong Scaling:
o Global problem sized remains fixed
o Scale the number of nodes (per-node problem size decreases with #nodes)
o network/threading overheads/latencies quickly dominate run time

§ Weak Scaling:
o Global problem size grows proportional to the number of nodes
o Scale the number of nodes (per-node problem size remains fixed)
o Generally keeps network/ threading overheads/latencies in check
o Superlinear algorithms become extremely time consuming (Dense LU takes a day)
o Not amenable to all computational domains
o Corollary: scale per-node problem size with per-node throughput

(e.g. when moving from a 2P Xeon to a 6xGPU node)

Strong Scaling Example
§ e.g. PDE on a structured grid
§ Domain decomposition produces

an initially favorable
surface:volume ratio (MPI:local)

§ Strong scaling quickly reduces
the volume.

§ Surface (e.g. MPI) quickly
dominates.

§ If scaling continues, overheads
can dominate

45

Dominated by
On-Node Performance

Dominated by
MPI Performance

Overhead
Dominates

#Nodes

Ti
m

e
by

 C
om

po
ne

nt

Overhead / Latency

MPI P2P

Computation and DRAM data movement

Performance
Models

Why Use Performance Models or Tools?
§ Identify performance bottlenecks

§ Motivate software optimizations

§ Determine when we’re done optimizing
• Assess performance relative to machine capabilities

• Motivate need for algorithmic changes

§ Predict performance on future machines / architectures

• Sets realistic expectations on performance for future procurements

• Used for HW/SW Co-Design to ensure future architectures are well-suited for the

computational needs of today’s applications.

47

Computational Complexity
§ Assume run time is correlated

with the number of operations
(e.g. FP ops)

§ Users define parameterize their
algorithms, solvers, kernels

§ Count the number of operations
as a function of those parameters

§ Demonstrate run time is
correlated with those parameters

48

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = alpha*X[i] + Y[i];
}

DAXPY: O(N) complexity where
N is the number of elements

#pragma omp parallel for
for(i=0;i<N;i++){
for(j=0;j<N;j++){

double Cij=0;
for(k=0;k<N;k++){

Cij += A[i][k] * B[k][j];
}
C[i][j] = sum;

}}

DGEMM: O(N3) complexity
where N is the number of rows
(equations)

FFTs: O(NlogN) in the number of elements

CG: O(N1.33) in the number of elements (equations)

MG: O(N) in the number of elements (equations)

N-body: O(N2) in the number of particles (per time step)

?What are the
scaling

constants?

?Why did we
depart from ideal

scaling?

Data Movement Complexity
§ Assume run time is correlated

with the amount of data accessed

(or moved)

§ Easy to calculate amount of data

accessed… count array accesses

49

DAXPY

DGEMV

DGEMM

FFTs

CG

MG

N-body

Operation
O(N)

O(N2)

O(N3)

O(NlogN)

O(N1.33)

O(N)

O(N2)

Flop’s
O(N)

O(N2)

O(N2)

O(N)

O(N1.33)

O(N)

O(N)

Data

1Hill et al, “Evaluating Associativity in CPU Caches”, IEEE

Trans. Comput., 1989.

§ Data moved is more complex as it

requires understanding cache

behavior…

• Compulsory1 data movement (array

sizes) is a good initial guess…

• … but needs refinement for the effects of

finite cache capacities

?Which is more
expensive…

Performing Flop’s, or
Moving words from memory

Machine Balance and Arithmetic Intensity
§ Data movement and computation

can operate at different rates

50

DAXPY
DGEMV
DGEMM

FFTs
CG
MG

N-body

Operation
O(N)
O(N2)
O(N3)

O(NlogN)
O(N1.33)

O(N)
O(N2)

Flop’s
O(N)
O(N2)
O(N2)
O(N)

O(N1.33)
O(N)
O(N)

Data
O(1)
O(1)
O(N)

O(logN)
O(1)
O(1)
O(N)

AI (ideal)

Peak DP Flop/s
Peak BandwidthBalance =

§ We define machine balance as
the ratio of…

Flop’s Performed
Data MovedAI =

§ …and arithmetic intensity as the
ratio of…

!Kernels with AI

less than machine

balance are ultim
ately

bandwidth-lim
ited

Distributed Memory Performance Modeling
§ In distributed memory, one communicates by sending messages

between processors.

51

§ Messaging time can be constrained by several components…
• Overhead (CPU time to send/receive a message)
• Latency (time message is in the network; can be hidden)
• Message throughput (rate at which one can send small messages… messages/second)
• Bandwidth (rate one can send large messages… GBytes/s)

§ Distributed memory versions of our algorithms can be differently
stressed by these components depending on N and P (#processors)

§ Bandwidths and latencies are further constrained by the interplay of
network architecture and contention

Computational Depth
§ Imagine a world of infinite

parallelism & bandwidth, but finite
latencies

§ We can classify algorithms by
depth (max depth of the
algorithm’s dependency chain)

§ For iterative algorithms, this is
product of iterations and depth
per iteration

52

DAXPY
DGEMV
DGEMM

FFTs
CG
MG

N-body

Operation
O(N)
O(N2)
O(N3)

O(NlogN)
O(N1.33)

O(N)
O(N2)

Flop’s
O(N)
O(N2)
O(N2)
O(N)

O(N1.33)
O(N)
O(N)

Data
O(1)
O(1)
O(N)

O(logN)
O(1)
O(1)
O(N)

AI (ideal)
O(1)

O(logN)
O(logN)
O(logN)

O(N0.33 logN)
O(logN)
O(logN)

Depth

!Overheads can

dominate at high

concurrency or small

problems

Performance Models

53

#FP operations

Cache data movement

DRAM data movement

PCIe data movement

Depth

MPI Message Size

MPI Send:Wait ratio

#MPI Wait’s

Flop/s

Cache GB/s

DRAM GB/s

PCIe bandwidth

OMP Overhead

Network Bandwidth

Network Gap

Network Latency

§ Many different components can contribute to kernel run time.

§ Some are characteristics of the application, some are characteristics of

the machine, and some are both (memory access pattern + caches).

Performance Models

54

§ Can’t think about all these terms all the time for every application…

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Computational
Complexity

Performance Models

55

§ Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Roofline
Model

Williams et al, "Roofline: An Insightful Visual Performance Model For Multicore Architectures",
CACM, 2009.

Performance Models

56

§ Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogP

Culler, et al, "LogP: a practical model of parallel computation", CACM, 1996.

Performance Models

57

§ Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogGP

Alexandrov, et al, "LogGP: incorporating long messages into the LogP model - one step closer
towards a realistic model for parallel computation", SPAA, 1995.

Performance Models

58

§ Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogCA

Bin Altaf et al, "LogCA: A High-Level Performance Model for Hardware Accelerators", ISCA,
2017.

!Think about which

model to use

Introduction to the
Roofline Model

Performance Models / Simulators
§ Historically, many performance models and simulators tracked latencies

to predict performance (i.e. counting cycles)

§ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)
• HW stream prefetching (hardware speculatively loads data)
• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

§ Effective latency hiding has resulted in a shift from a latency-limited
computing regime to a throughput-limited computing regime

60

Roofline Model
§ Roofline Model is a throughput-

oriented performance model…
• Tracks rates not times
• Augmented with Little’s Law

(concurrency = latency*bandwidth)
• Independent of ISA and architecture (applies

to CPUs, GPUs, Google TPUs1, etc…)

611Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

(DRAM) Roofline
§ One could hope to always attain

peak performance (Flop/s)
§ However, finite locality (reuse) and

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

62

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

#FP ops / Peak GFlop/s
Time = max

#Bytes / Peak GB/s

(DRAM) Roofline
§ One could hope to always attain

peak performance (Flop/s)
§ However, finite locality (reuse) and

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

63

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

1 / Peak GFlop/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max

(DRAM) Roofline
§ One could hope to always attain

peak performance (Flop/s)
§ However, finite locality (reuse) and

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

64

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFlop/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min

(DRAM) Roofline
§ One could hope to always attain

peak performance (Flop/s)
§ However, finite locality (reuse) and

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

65

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFlop/s
GFlop/s = min

AI * Peak GB/s
Note, Arithmetic Intensity (AI) = Flops / Bytes (as presented to DRAM)

(DRAM) Roofline
§ Plot Roofline bound using

Arithmetic Intensity as the x-axis
§ Log-log scale makes it easy to

doodle, extrapolate performance
along Moore’s Law, etc…

§ Kernels with AI less than machine
balance are ultimately DRAM
bound (we’ll refine this later…)

66

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

DRAM G
B/s

Arithmetic Intensity (Flop:Byte)

DRAM-bound Compute-bound

Roofline Example #1
§ Typical machine balance is 5-10

flops per byte…
• 40-80 flops per double to exploit compute capability
• Artifact of technology and money
• Unlikely to improve

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.083 flops per byte == Memory bound

67

At
ta

in
ab

le
 F

lo
p/

s

DRAM G
B/s

Arithmetic Intensity (Flop:Byte)

TRIAD

Gflop/s ≤ AI * DRAM GB/s

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

0.083

Peak Flop/s

Roofline Example #2
§ Conversely, 7-point constant

coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• Cache can filter all but 1 read and 1 write per point
• AI = 0.44 flops per byte == memory bound,

but 5x the flop rate

68

At
ta

in
ab

le
 F

lo
p/

s

DRAM G
B/s

7-point
Stencil

Gflop/s ≤ AI * DRAM GB/s

TRIAD

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
new[ijk] = -6.0*old[ijk]

+ old[ijk-1]
+ old[ijk+1]
+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]
+ old[ijk+kStride];

}}}

Arithmetic Intensity (Flop:Byte)
0.083 0.44

Peak Flop/s

Hierarchical Roofline
§ Real processors have multiple levels of

memory
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications can have locality in each
level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have a unique

bandwidth

69

DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline
§ Construct superposition of

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the
minimum

70

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/s

MCDRAM ca
ch

e G
B/s

Arithmetic Intensity (Flop:Byte)

L2
 G

B/s

Peak Flop/s

Hierarchical Roofline
§ Construct superposition of

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the
minimum

71

At
ta

in
ab

le
 F

lo
p/

s

MCDRAM ca
ch

e G
B/s

Arithmetic Intensity (Flop:Byte)

L2
 G

B/s

DDR bottleneck
pulls performance
below MCDRAM

Roofline

Peak Flop/s

DDR G
B/s

MCDRAM ca
ch

e G
B/s

MCDRAM bound
MCDRAM AI*BW <

DDR AI*BW

Hierarchical Roofline
§ Construct superposition of

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the
minimum

72

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

L2
 G

B/s

Peak Flop/s

DDR G
B/s

Hierarchical Roofline
§ Construct superposition of

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the
minimum

73

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

MCDRAM
bottleneck pulls

performance below
DDR Roofline

Roofline Model:
In-Core Effects

Data, Instruction, Thread-Level Parallelism…
§ Modern CPUs use several techniques to increase per core Flop/s

75

Fused Multiply Add
• w = x*y + z is a common

idiom in linear algebra
• Rather than having

separate multiple and
add instructions,
processors can use a
fused multiply add (FMA)

• The FPU chains the
multiply and add in a
single pipeline so that it
can complete FMA/cycle

Vector Instructions
• Many HPC codes apply

the same operation to a
vector of elements

• Vendors provide vector
instructions that apply
the same operation to 2,
4, 8, 16 elements…
x [0:7] *y [0:7] + z [0:7]

• Vector FPUs complete 8
vector operations/cycle

Deep Pipelines
• The hardware for a FMA

is substantial.
• Breaking a single FMA

up into several smaller
operations and pipelining
them allows vendors to
increase GHz

• Little’s Law applies…
need FP_Latency *
FP_bandwidth
independent instructions

!Resurgence…

Tensor Cores,

QFMA, etc…

Data, Instruction, Thread-Level Parallelism…
§ If every instruction were an ADD

(instead of FMA), performance
would drop by 2x on KNL or 4x
on Haswell

§ Similarly, if one had no vector
instructions, performance would
drop by another 8x on KNL and
4x on Haswell

§ FP Divides can be even worse.
§ Lack of threading will reduce

performance by 64x on KNL.

76

Peak Flop/s

Add-only (No FMA)

No vectorization

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

Poor vectorization
pulls performance

below DDR
Roofline

Superscalar vs. instruction mix
§ Define in-core ceilings based on

instruction mix…

77

Peak Flop/s

25% FP

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

12% FP

≥50% FP§ e.g. Haswell
• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP
to get peak performance

Superscalar vs. instruction mix
§ Define in-core ceilings based on

instruction mix…

78

Peak Flop/s

50% FP

A
tt
a
in

a
b
le

 F
lo

p
/s

D
D
R
 G

B/s

Arithmetic Intensity (Flop:Byte)

25% FP

100% FP§ e.g. Haswell
• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP
to get peak performance

§ e.g. KNL
• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be
FP to get peak performance

Superscalar vs. instruction mix
§ Define in-core ceilings based on

instruction mix…

79

Peak Flop/s

50% FP

A
tt
a
in

a
b
le

 F
lo

p
/s

D
D
R
 G

B/s

Arithmetic Intensity (Flop:Byte)

25% FP

100% FP§ e.g. Haswell
• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP
to get peak performance

§ e.g. KNL
• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be
FP to get peak performance

non-FP instructions
can sap instruction

issue bandwidth and
pull performance
below Roofline

Roofline Model:
Cache Effects

Locality Walls
§ Naively, we can bound AI using

only compulsory cache misses

81

Peak Flop/s

No FMA

No vectorization

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
om

pu
ls

or
y

AI

#Flop’s
Compulsory MissesAI =

Locality Walls
§ Naively, we can bound AI using

only compulsory cache misses

§ However, write allocate caches
can lower AI

82

Peak Flop/s

No FMA

No vectorization

A
tt
a
in

a
b
le

 F
lo

p
/s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
o
m

p
u
ls

o
ry

 A
I

#Flop’s
Compulsory Misses + Write Allocates

AI =

+
W

ri
te

 A
llo

ca
te

Locality Walls
§ Naively, we can bound AI using

only compulsory cache misses
§ However, write allocate caches

can lower AI
§ Cache capacity misses can have

a huge penalty

83

Peak Flop/s

No FMA

No vectorization

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
om

pu
ls

or
y

A
I

#Flop’s
Compulsory Misses + Write Allocates + Capacity MissesAI =

+W
rit

e
A

llo
ca

te

+C
ap

ac
ity

 M
is

se
s

Locality Walls
§ Naively, we can bound AI using

only compulsory cache misses
§ However, write allocate caches

can lower AI
§ Cache capacity misses can have

a huge penalty
Ø Compute bound became

memory bound

84

Peak Flop/s

No FMA

No vectorization

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
om

pu
ls

or
y

A
I

#Flop’s
Compulsory Misses + Write Allocates + Capacity MissesAI =

+W
rit

e
A

llo
ca

te

+C
ap

ac
ity

 M
is

se
s

!Know the theoretical

bounds on your AI.

Roofline Model:
General Strategy Guide

General Strategy Guide
§ Broadly speaking, there are three

approaches to improving
performance:

86

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

General Strategy Guide
§ Broadly speaking, there are three

approaches to improving
performance:

§ Maximize in-core performance
(e.g. get compiler to vectorize)

87

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

General Strategy Guide
§ Broadly speaking, there are three

approaches to improving
performance:

§ Maximize in-core performance
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth
(e.g. NUMA-aware allocation)

88

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

General Strategy Guide
§ Broadly speaking, there are three

approaches to improving
performance:

§ Maximize in-core performance
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth
(e.g. NUMA-aware allocation)

§ Minimize data movement
(increase AI)

89

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

C
om

pu
ls

or
y

AI

C
ur

re
nt

 A
I

Performance
Tools

Overview

91

§ Timers
§ Performance

Counters
§ Simulators / Code

introspection (slow)
§ Sampling (data is

meaningless if it falls
below sampling
granularity)

§ Timeline
§ Time-integrated

(seconds)
§ Throughput-oriented

(Gflop/s or GB/s)

§ Machine
Characterization

§ Application
Instrumentation
(timing breakdowns)

§ Performance
Analysis

Node Characterization
§ “Marketing Numbers” can be

deceptive…
• Pin BW vs. real bandwidth

• TurboMode / Underclock for AVX

• compiler failings on high-AI loops.

92
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

§ LBL developed the Empirical
Roofline Toolkit (ERT)…
• Characterize CPU/GPU systems

• Peak Flop rates

• Bandwidths for each level of memory

• MPI+OpenMP/CUDA == multiple GPUs

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.quadflat.2t/Run.002)

2450.0 GFLOPs/sec (Maximum)

L1
 - 6

44
2.9

 G
B/s

L2
 - 1

96
5.4

 G
B/s

DRAM - 4
12

.9
GB/s

Cori / KNL

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.summitdev.ccs.ornl.gov.02.MPI4/Run.001)

17904.6 GFLOPs/sec (Maximum)

L1
 - 6

50
6.5

 G
B/s

DRAM - 1
92

9.7
 G

B/s

SummitDev / 4GPUs

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Manual Instrumentation
§ Application developers know best…

o What to time
o What to record (e.g. solver iterations, dimensions, etc…)
o How asynchrony is exploited
o How the same function might be called/used many different ways == unique timers
o Computational load imbalance (i.e. understand why timing shows imbalance)

§ Make timing instrumentation a first-class citizen when developing
an application

§ Create timing wrapper that uses either…
o omp_get_wtime()
o MPI_Wtime()
o rdtsc or equivalent

93

LIKWID
§ LIKWID provides easy to use wrappers

for measuring performance counters…
ü Works on NERSC production systems
ü Minimal overhead (<1%)

ü Scalable in distributed memory (MPI-friendly)

ü Fast, high-level characterization

x No detailed timing breakdown or optimization advice
x Limited by quality of hardware performance counter

implementation (garbage in/garbage out)

Ø Useful tool that complements other
tools

94

8

16

32

64

128

256

512

1024

H
P

G
M

G
 (

3
2

P
x1

T
)

H
P

G
M

G
 (

4
P

x8
T

)

C
o

m
b

u
st

o
r (

3
2

P
x1

T
)

C
o

m
b

u
st

o
r (

4
P

x8
T

)

M
F

IX
 (

3
2

P
x1

T
)

N
yx

 (
3

2
P

x1
T

)

N
yx

 (
4

P
x8

T
)

P
e

le
L

M
 (3

2
P

x1
T

)

W
a

rp
X

 (
3

2
P

x1
T

)

W
a

rp
X

 (
4

P
x8

T
)

B
a
n
d
w

id
th

(G
B

/s
)

AMReX Application Characterization
(2Px16c HSW == Cori Phase 1)

L2
L3
DRAM
Roofline

https://github.com/RRZE-HPC/likwid

http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

Intel Advisor
§ Includes Roofline Automation…

ü Automatically instruments applications
(one dot per loop nest/function)

ü Computes FLOPS and AI for each
function (CARM)

ü AVX-512 support that incorporates masks
ü Integrated Cache Simulator1

(hierarchical roofline / multiple AI’s)
ü Automatically benchmarks target system

(calculates ceilings)
ü Full integration with existing Advisor

capabilities

95

Memory-bound, invest into
cache blocking etc

Compute bound: invest
into SIMD,..

1Technology Preview, not in official product roadmap so far.

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

Intel VTune
ü Automatically instruments

applications (sampling)

ü Presents time-oriented execution

ü Has access to performance
counters (e.g. %bandwidth, front-
end bound, etc…)

ü Hotspot, Concurrency,
Synchronization, and Memory
Analysis Options

96

http://www.nersc.gov/users/software/performance-and-debugging-tools/vtune/

http://www.nersc.gov/users/software/performance-and-debugging-tools/vtune/

Cray PAT
ü Automatically instruments applications (sampling)
ü Tracing support for user-specified functions
ü Inherent distributed memory (MPI) support
ü Presents time-integrated results
ü Has access to performance counters (e.g. %bandwidth, flop/s, etc…)
ü Load imbalance, MPI, OpenMP, etc…
ü Text output (but Cray Reveal can visualize output)

97

http://www.nersc.gov/users/software/performance-and-debugging-tools/craypat/

http://www.nersc.gov/users/software/performance-and-debugging-tools/craypat/

TAU
ü Automatically instruments applications

ü Sampling and Tracing support

ü Presents time-oriented or time-integrated
results

ü Visualization of MPI communication &
load imbalance

ü Integrates with MPI (inherent distributed
memory support)

ü Can leverage HW performance counters

98

https://www.cs.uoregon.edu/research/tau/home.php

https://www.cs.uoregon.edu/research/tau/home.php

Questions?

Backup

Hierarchical Roofline vs.
Cache-Aware Roofline

…understanding different Roofline
formulations in Advisor

There are two Major Roofline Formulations:
§ Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, …)…

• Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009
• Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
• Defines multiple bandwidth ceilings and multiple AI’s per kernel

• Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

§ Cache-Aware Roofline
• Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
• Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes)

• As one looses cache locality (capacity, conflict, …) performance falls from one BW ceiling to a lower one at constant AI

102

§ Why Does this matter?
• Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
• Cache-Aware Roofline model was integrated into production Intel Advisor

• Evaluation version of Hierarchical Roofline1 (cache simulator) has also been integrated into Intel Advisor

1Technology Preview, not in official product roadmap so far.

103

Cache-Aware RooflineHierarchical Roofline
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size
(capacity misses reduce AI)

§ AI is Flop:Bytes as presented to the L1
cache (plus non-temporal stores)

§ AI is Flop:Bytes after being filtered by
lower cache levels

§ Memory/Cache/Locality effects are
observed as decreased performance

§ Memory/Cache/Locality effects are
observed as decreased AI

§ Requires static analysis or binary
instrumentation to measure AI

§ Requires performance counters or
cache simulator to correctly measure AI

Example: STREAM

104

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ L1 AI…
• 2 flops
• 2 x 8B load (old)
• 1 x 8B store (new)
• = 0.08 flops per byte

§ No cache reuse…
• Iteration i doesn’t touch any data associated with

iteration i+delta for any delta.

§ … leads to a DRAM AI equal to
the L1 AI

Example: STREAM

105

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

D
R
A
M

 G
B
/s

A
tt
a
in

a
b
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

0.083

L
1
 G

B
/s

Multiple AI’s….

1) Flop:DRAM bytes

2) Flop:L1 bytes (same)

Peak Flop/s

D
R
A
M

 G
B
/s

A
tt
a
in

a
b
le

 F
lo

p
/s

0.083

Arithmetic Intensity (Flop:Byte)

L
1
 G

B
/s

Single AI based on flop:L1 bytes

Observed performance

is correlated with DRAM

bandwidth

Performance is bound to

the minimum of the two

Intercepts…

AI
L1

* L1 GB/s

AI
DRAM

* DRAM GB/s

Example: 7-point Stencil (Small Problem)

106

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
new[ijk] = -6.0*old[ijk]

+ old[ijk-1]
+ old[ijk+1]
+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]
+ old[ijk+kStride];

}}}

§ L1 AI…
• 7 flops
• 7 x 8B load (old)
• 1 x 8B store (new)
• = 0.11 flops per byte
• some compilers may do register shuffles to reduce the

number of loads.

§ Moderate cache reuse…
• old[ijk] is reused on subsequent iterations of i,j,k
• old[ijk-1] is reused on subsequent iterations of i.
• old[ijk-jStride] is reused on subsequent iterations of j.
• old[ijk-kStride] is reused on subsequent iterations of k.

§ … leads to DRAM AI larger than
the L1 AI

Example: 7-point Stencil (Small Problem)

107

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.44

L1
 G

B/s

Peak Flop/s

DRAM G
B/s

At
ta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Multiple AI’s….
1) flop:DRAM ~ 0.44
2) flop:L1 ~ 0.11

Performance bound is
the minimum of the two

Example: 7-point Stencil (Small Problem)

108

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

DRAM G
B/s

A
tta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.44

L1
 G

B/s

Peak Flop/s

DRAM G
B/s

A
tta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Single AI based on flop:L1 bytes

Multiple AI’s….
1) flop:DRAM ~ 0.44
2) flop:L1 ~ 0.11

Observed performance
is between L1 and DRAM lines
(== some cache locality)

Performance bound is
the minimum of the two

Example: 7-point Stencil (Large Problem)

109

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

DRAM G
B/s

A
tta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.20

L1
 G

B/s

Peak Flop/s

DRAM G
B/s

A
tta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Single AI based on flop:L1 bytes

Multiple AI’s….
1) flop:DRAM ~ 0.20
2) flop:L1 ~ 0.11

Capacity misses reduce
DRAM AI and performance

Observed performance
is closer to DRAM line
(== less cache locality)

Example: 7-point Stencil (Observed Perf.)

110

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

A
tta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.20

L1
 G

B/s

Peak Flop/s

DRAM
 G

B/s

A
tta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

L1
 G

B/s

Single AI based on flop:L1 bytes

Actual observed performance
is tied to the bottlenecked resource
and can be well below a cache
Roofline (e.g. L1).

Observed performance
is closer to DRAM line
(== less cache locality)

Example: 7-point Stencil (Observed Perf.)

111

Cache-Aware RooflineHierarchical Roofline

Peak Flop/s

A
tta

in
ab

le
 F

lo
p/

s

0.11
Arithmetic Intensity (Flop:Byte)

0.20

Peak Flop/s

DRAM
 G

B/s

A
tta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)
0.11

L1
 G

B/s

Single AI based on flop:L1 bytes

Actual observed performance
is tied to the bottlenecked resource
and can be well below a cache
Roofline (e.g. L1).

Observed performance
is closer to DRAM line
(== less cache locality)

DRAM
 G

B/s

