. A
rrrrrrr 1 BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Parallelism and
Performance

Samuel Williams

Computational Research Division
Lawrence Berkeley National Lab

mailto:SWWilliams@lbl.gov

S

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

&5 % U.S. DEPARTMENT OF

o sty \&)
«9s ENERGY
“"«ﬂ-wzsm"\‘”

Acknowledgements

= This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

» This material is based upon work supported by the DOE RAPIDS SciDAC Institute.

= This research used resources of the National Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

= This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-000R22725.

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Parallelization

Multicore Node Architectures

* |Imagine a dual-socket, quad-core

node...
o Each socket has a shared last level cache

and its own directly attached memory
. . Socket or chi Socket or chi
o Between sockets, there is an interconnect LSt O S 1P ocket or chip
(e g QPI HT etC)that a”OWS One core| |core| |core| |core core| |core| |core| |core
.I;tt, é th norvicach T 1f If 11t T If ¥fF ¥¢
SOCKel 10 read anotners memory/caches Last Level Cache (LLC)| —] | Last Level Cache (LLC)
Memory Memory
node
— A
4 rr/rhlm

BERKELEY LAB

GPU-Accelerated Nodes

* |Imagine a dual-socket, quad-core Pl cru GPU GPU
cores cores cores cores
nOde . vt vt vt vt
o Each socket has a shared last level cache Memory Memory Memory Memory
and its own directly attached memory i It It 1
o Between sockets, there is an interconnect Socket or chip Socket or chip
(e.g. QPI HT etC) that a”OWS one core| |COre| (core| |core core| |COre| (core| |core
’ ’ R T it It it T It ¥t ¥t
socket to read another’s memory/caches Last Level Cache (LLC) | —] | Last Level Cache (LLC)
= Additionally, we may attach
multiple GPUs per socket... Memory Memory
o Each GPU has its own cores, caches, node
and memory.
o Depending on the GPU, it can directly
read host memory or other GPUs memory
.. v |aloads/stores
; o

BERKELEY LAB

On-Node Parallelization

= \We can apply a shared memory
programming model

(OpenMP/pthreads) and abstract
away hardware...

Socket or chip Socket or chip
core| |core| |core| |core core| |core| |core| |core
1+ It ¥+ It vt ¥t ¥t it
Last Level Cache (LLC)| —] | Last Level Cache (LLC)

Memory Memory

node

— A
; o

BERKELEY LAB

On-Node Parallelization

= \We can apply a shared memory
programming model
(OpenMP/pthreads) and abstract | jme| [uwr| |ue| el Jwe] jue| e
away hardware... [

= As such, from SW POV, all we](‘)F jr

might see Is threads and memory ~ X[25] Memory
(no caches, sockets, cores) Process 0
= Threads read/write memory Thread0 Thread 2

. X[25] = 3.14;
locations to exchange data

temp = X[25] * Y[27]

— A
7 /\l i

BERKELEY LAB

On-Node Parallelization

= Rather than only using threads,
we can combine programming
models (Hybrid) = B B B BE B B E

Thread Thread Thread Thread Thread Thread Thread Thread
0 1 2 3 4 5 6 7
A
Memory
Process 0

— A
; o

BERKELEY LAB

On-Node Parallelization

= Rather than only using threads,
we can combine programming
models (Hybrid) = B B BB B B

= For example, we can combine
MP| w/OpenMP...

o 2 processes per node Memory Memory

Thread Thread Thread Thread Thread Thread Thread Thread

o 4 threads per process Process 0 Process 1

o With proper control of affinity (srun and
omp), we can efficiently map this to
hardware.

o Each process has its own private memory
that cannot be read by the other process

— A
: o

BERKELEY LAB

On-Node Parallelization

= Communication among threads
within a process is handled via
shared memory e I I T O = = =

= Processes send/receive R e 1

Thread Thread Thread Thread Thread Thread Thread Thread

messages to exchange data e T ; e | e T ;
e | al v i ‘ \ 4 A 4 i Y v
o Messages are tagged by rank, ID, and i buf |5 : r;m ﬁamory
communicator Process 0 Process 1
o Recv’'s on the destination can be posted
Process 0 Process 1
before a Send has been posted on the Cony X 1 bu s .
host (blOCkS) Send buf to P2
. . Copy bufto ' Y
o Asynchronous communication
(isend/irecv) is non-blocking but requires
a wait to ensure completion.
— A
10 rr/rhlm

BERKELEY LAB

On-Node Parallelization

= \We can select and combination of
processes and threads on a
node... prl I il e R el I e I I I el B
o Its best not to oversubscribe hardware [[[[[[[[

(prOCS * threads e CoreS) Thlgad Thr1ead Thlgad Thr1ead Thlgad Thr1ead Thlgad Thr1ead
o Always use affinity to bind processes and

threads cognizant of the underlying Memory Memory Hemery Memory

hardwa re Process 0 Process 1 Process 2 Process 3

— A
11 r:>| ‘"'|

BERKELEY LAB

On-Node Parallelization

= \We can select and combination of
processes and threads on a
n Od e . Private Private Private Private Private Private Private Private

Stack Stack Stack Stack Stack Stack Stack Stack

o lIts best not to oversubscribe hardware

(prOCS * threads e COreS) Thlgad Thlgad Thlgad Thlgad Thlgad Thlgad Thlgad Thlgad
o Always use affinity to bind processes and
Mem Mem Mem Mem Mem Mem Mem Mem

threads cognizant of the underlying
hardware. PO P1 P2 P3 P4 PS5 P6 P7

o Note, OMP_NUM_THREADS==1 is not
the same as flat MPIl (no —qopenmp)

— A
12 rr/r>| "“|

BERKELEY LAB

On-Node Parallelization

= Newer GPUs allow mu!tlple — | [=50 Sy [} e -
processes to share a single GPU hem| | | [Mem Vem| | | Wem] | | [Mem
o each gets a ‘context’ coon O
o GPU memory is portioned among } g
Contexts Th0 d Th0 d Th0 d Thlgad Th0 d
o Processes either time multiplex(older) o | s o s || s
resources or run concurrently Mem| | | [Mem Mem| | | [Mem| | | [Mem
< | [P3 P5 P6 P7
= Efficiency of GPU-GPU MPI
exchanges is implementation
dependent
13 e

BERKELEY LAB

On-Node Parallelization

= One process per CPU core may
not efficiently utilize a GPU-
accelerated system

= As such, one could run one
process per GPU...

GPU

Mem
2

CUDA
context

Thread

Threa

Mem

Host

Process 0

GPU

Mem
2

CUDA
context

Thread

Threa

Mem

Host

Process 1

GPU

Mem
2

CUDA
context

Thread

Threa

Mem

Host

Process 2

GPU

Mem
2

CUDA
context

Thread Thread

Host
Mem

Process 3

-1
b
rrrrrrr H

BERKELEY LAB

On-Node Parallelization

= As such, one process per CPU
core may not efficiently utilize a
GPU-accelerated system

= As such, one could run one
process per GPU...

= .. 0rone process per socket.

= Unfortunately, having one
process control multiple GPUs
can be harder to program
(multiple streams)

~
: 0
rrrrrrr H

GPU

Mem
2

CUDA
Stream 0, device 0

GPU
Mem

CUDA
Stream 1, device 1

Thread Thread Thread Thread
0 1 3
2 2
A 4
Host
Mem
Process 0

GPU
Mem

CUDA
Stream 0, device 2

GPU
Mem

CUDA
Stream 1, device 3

Thread Thread Thread Thread
0 1 2 3
2 2
A 4
Host
Mem
Process 1

15

BERKELEY LAB

Intra-Core Parallelization

= \Within each core there can be
parallelism... ———— e el

Rename [Allocate / Retirement - - -
ReOrder Buffer (224 entries) l Ll I IZ eeeee NAHTRmA

Scheduler

[AREnUS e T Unified Reservation Station (RS)

o Multiple functional units (ILP) :
o Vectors/SIMD (DLP) ﬁ.* -

o Specialized functional units (FMA, Tensor N e B B .8 R R R R
Cores, etc...) =

Vector Physical Register Fle
(168 Registers)

g7.1S p=uiun
Aep-+ alogez
ayde) 71

||~rrn|'|:/J |||:|‘TT:|buT vuTs: e
o Pipeline parallelism (ILP) T —
= Discovery can be done at compile ===~ | —
time (vectors) or run time (ILP) T | 1

Data TLB

&
= | L1 Data Cache

= Failure to exploit these limits S| 3 | 32xis way
performance

Line Fill Buffers (LFB)
(10 entries)

= A
16 n/r>| ""|

BERKELEY LAB

Multi-Node (Distributed Memory) Parallelization

= MPI is used for multi-node parallelization

o From the user standpoint, on-node and inter-node MPI
looks the same

o All communication is handled via MPI (P2P or
collectives)... no shared memory communication

= UPC, CAF, GA provide shared memory
abstraction.

= Memory balancing...

Global
Interconnect

/

o can't shift memory capacity from one node to another. i | I | | P09
o If any one node exceeds its memory capacity, the job
will crash w/OOM error
o Swap is rare (diskless compute nodes)
17 e

BERKELEY LAB

Synchronization

= \When one thread (or process) produces data and another thread (or
process) consumes it, we have a data hazard

= We must synchronize to resolve the data hazard and ensure
determinism & correctness.

18

Synchronization

= |n the P2P MPI world, = |n the OpenMP world, we must
synchronization is automatic in explicitly synchronize...
the ireCV/isend/WaitalI/CompUte » Egsiest solution: |everage BSP
paradigm model...
o #pragma omp parallel implies an implicit
barrier

o Data is only exchanged between parallel
regions (never within)

o Coarse grained

= Finer grained...

o Use OMP reductions, atomics, locks, and
critical sections

— A
19 rfr}l "“|

BERKELEY LAB

"% U.S. DEPARTMENT OF

.2/ENERGY

{ZiTES %

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Challenges

Load Balancing

= |[magine we have some work to
partition (e.g. computation on an
array)

o We can try and uniformly partition work
(loop iterations) among threads

o ldeally, the run time should be reduced by
1/NThreads

= A
21 rr/r>| "“|

BERKELEY LAB

Load Balancing

= Unfortunately, some loop
iterations may be more
expensive, or some threads may
run slower (e.g. cache effects)

o As a result, we can observe load
Imbalance where run time is limited by the

slowest thread TO
o We can assess the degree of load E
imbalance by measuring max/average 3
o A slow outlier may substantially hurt T4
performance, but... 12
T7

= A

22 r:'}lm

BERKELEY LAB

Load Balancing

= Unfortunately, some loop
iterations may be more
expensive, or some threads may
run slower (e.g. cache effects)

o As a result, we can observe load
Imbalance where run time is limited by the
slowest thread

o We can assess the degree of load
imbalance by measuring max/average...

o A slow outlier may substantially hurt
performance, but...

o ...afast thread may not help or hurt much

- A
23 r:ml "“|

BERKELEY LAB

Lack of Parallelism

= Trends in architecture have enabled >>1000-way parallelism on a
chip (#FPUs * FPU latency)

= Not all loop nests support 1000-way parallelization
= Loop nests with <1000-way parallelism underutilize HW resources

= Often codes must be restructured to enable more parallelism
o Loops are reordered/fused (OMP collapse(3))
o Variables(arrays) are privatized and reduced

o Nominally sequential functions/solvers on independent variables are performed
concurrently (MPI sub communicators or OMP Tasks)

o Workflows/multiphysics are parallelized at launch (SLURM MPMD)

_— A
o Y

BERKELEY LAB

Amdahl’s Law & Bottlenecks

Time

e iy ey 100 |
might be parallelized. | |

o Speedup = (fseq + foa/Spar)”

o 8x speedup on 75% of the run time

provides a 3x speedup

. : Sequential
o Infinite speedup on 75% of the run time

only provides a 4x speedup.

= Similar effect applies to vectors,
GPUs, and other accelerators.

o e.g. GPU providing 10x on 10% of an
application = 10% speedup.

- A
25 Py

BERKELEY LAB

Amdahl’s Law & Bottlenecks

Time

" On manycore processors (KNL),

single thread performance is
worse than Haswell

o Parallel parts of apps get faster
o Sequential parts get slower Sequential
o Overall benefit is less than expected

- A
26 r?}l ""|

BERKELEY LAB

Non-Uniform Memory Access (NUMA)

" Inashared memory, any thread & & B B B B B B
can read any memory location

= However, memory bandwidth and |5 £ EF
latency can vary (NUMA)
o Consider array double X[N]; Process 0
o If naively allocated, all data is placed on
socket O Socket or chip Socket or chip

core| |core| |core
1t ¥t 1
st Level Cache (LLC)

o Latency/bandwidth to element x]i] is Cf;e Cf;e Cf;e

different for thread 3 and thread 4 Last Level Cac

o Socket 0's memory bandwidth is highly
contended while socket 1’s is
underutilized

-1

27 i

BERKELEY LAB

Non-Uniform Memory Access (NUMA)

" Allocate data based on how we | | (| |me| | |me| wme| |
intend to access it

Thread Thread Thread read Thread

= Rectify this NUMA effect via first
touch initialization S
o Pages are allocated with affinity to the Process 0
core that first touched the data
o Parallelizing the initialization transparently Socket or chip Socket or chip
partitions the array among NUMA nodes core| |core| |core| |core core| |core| |core
o n.b. This only works on the first allocation :a*st Let,;, Ca:; f st Let,; Ca::r:e (L:C:)
reelmall cortupt e process)
o Explicit thread affinity is imperative —
28 e

BERKELEY LAB

Non-Uniform Memory Access (NUMA)

= Simplest solution is to run at least |[us| [aa] [me] [w]||[w] [we] [=] [=
one process per NUMA node

read Thread read Thread

o All data for that process is allocated on
the numa node with affinity to its cores
o All data access are restricted to that
NUMA node Process 0 Process 1
Socket or chip Socket or chip

core| |core| |core
vt vt vt

t Level Cache (LLC)

core| |core| |core
vt vt ¥t

st Level Cache (LLC)

— A
29 rr/r>| ‘"'|

BERKELEY LAB

Memory/Cache Capacity Contention

= Each thread or process exerts some pressure on the cache (on-chip
L1/L2 or off-chip MCDRAM/HBM memory).

= As thread/process-concurrency increases, the requisite active working
set can exceed cache capacity

o When this happens, capacity misses manifest, data movement increases (even if perfectly
computationally load balanced), and performance can plummet.

o If this happens in MCDRAM or HBM caches, we run at DDR speeds or Nvlink speeds.

= To rectify this, we often tile or block loops so that the per-thread
working set remains sufficiently small.

= A
30 rr/r>| "“|

BERKELEY LAB

Memory/Cache Bandwidth Contention

= There is less memory bandwidth
than all cores could consume

o 1 core can drive >10GB/s of memory Linear scaling of bandwidth
bandwidth

o 16 cores (e.g. 1P HSW) could drive >160

% of Memory Bandwidth

#Cores (threads or processes)

— A
31 rr/r>| "“|

BERKELEY LAB

Memory/Cache Bandwidth Contention

= There is less memory bandwidth
than all cores could consume

o 1 core can drive >10GB/s of memory Linear scaling of bandwidth

bandwidth
o 16 cores (e.g. 1P HSW) could drive >160
o Socket On|y has 50GB/s available. D . 100%
o memory bandwidth has become a é

bottleneck éﬁ
o A similar effect can emerge on LLC or g

MCDRAM caches =

#Cores (threads or processes)
32 oryf

BERKELEY LAB

Memory/Cache Bandwidth Contention

= There is less memory bandwidth
than all cores could consume

o 1 core can drive >10GB/s of memory Linear scaling of bandwidth
bandwidth
o 16 cores (e.g. 1P HSW) could drive >160
o Socket On|y has 50GB/s available. D . 100%
o memory bandwidth has become a é
bottleneck éﬁ
o A similar effect can emerge on LLC or §
MCDRAM caches =
= “Flops are Free” =
o bottleneck or opportunity? #Cores (threads or processes)
33 e

BERKELEY LAB

Network Performance

= Each message sent via MPI
Incurs some non-zero overhead
(and latency)

= \We can proxy message time as:
time = overhead + size/bandwidth

= As such, network utilization...
= size / (overhead*handwidth + size) | Message Size

: : Need lots of
= * ‘\ -1
(overhead*bandwidth/size + 1) brocesses/node if

typical message size
is small

2 MPI/node
2 MPl/node

1 MPI/node

% of Network Bandwidth

- A
34 Py

BERKELEY LAB

Network Performance

= Each message sent via MPI
Incurs some non-zero overhead
(and latency)

= \We can proxy message time as:
time = overhead + size/bandwidth

= As such, network utilization...
= size / (overhead*handwidth + size) | Message Size

Incentivized to s'end
= * I i -1
(overhead*bandwidth/size + 1) fewer messages

(even if bigger)

2 MPI/node
2 MPl/node

1 MPI/node

% of Network Bandwidth

- A
35 Py

BERKELEY LAB

Network Contention

= \We can saturate different aspects of the network...

= Injection Bandwidth
o nodes cannot inject data faster into the network
o e.g. broadcasts or large messages

= Ejection Bandwidth

o node cannot eject data from the network fast enough
o e.g. reductions (single node must receive data from all other nodes)

= Bisection Bandwidth
o Bandwidth (links) connecting conceptual partitions of the network
o Artifact of the topology (architecture) of the network
o Job placement (and decomposition) can mitigate this

— A
- Y

BERKELEY LAB

Surface:Volume

= When we decompose a problem among processes, we must do so in a
manner that...

o Minimizes the number of messages (recall overhead per message)
o Minimizes the surface:volume ratio (i.e. ratio of MPI data movement : local flops)

= Consider 8-way MPI parallelization of a PDE on a NxN structured grid...
Process 7
Process 6 | Process 7 f,r, Lf,), ?, ';,
Process 6 % % % %
Process 5 3 3 3 3 olv~|N|m|gF|wv|ol|~
Process 4 | Process 5 o o a o ol ool olov|lv| ol v
Process 4 HEAR IR IR IR AR
Frocess 3 Process 2 | Process 3 21 % % | % o|8/88 82|88
Process 2 % % % % Ala|a|la|a|ala|a
Process 1 Process O | Process 1 § § § §
Process 0 o o o o
S:V =2.25N / N2 S:V=1.5N/ N2 S:V =1.5N/ N2 S:V =2.25N / N2

— A
37 nfrhl |"'|

BERKELEY LAB

Surface:Volume

= On a multicore node, think about how much data is off node
exchanges vs. on-node exchanges.

= On-node exchanges should be faster (DRAM BW >> Network BW)
» Different off-node surface:volume ratios leads to load imbalance.

Process 7

Process 6 Process 6 | Process 7 : Lf,,) f, ;
(7p] (7p] (7p] (7p]

Process 5 g g g g ofl~ ||| |w|wo]|~
Process 4 Process 4 | Process 5 o o o o ool ol al gl a| a| g
Process 3 o N ™ §§§§§§§§

D
Process 2 Process 2 | Process 3 ? @ @ @ Sl sl sl sl s s A
Process 1 Process 1 g g g g
S:V =1.25N / N2 S:V=0.75N/ N2 S:V =0.75N / N2 S:V =1.25N / N2

— A
38 rr/r>| "“|

BERKELEY LAB

Surface:Volume

= On a multicore node, think about how much data is off node
exchanges vs. on-node exchanges.

= On-node exchanges should be faster (DRAM BW >> Network BW)
» Different off-node surface:volume ratios leads to load imbalance.

Process 7

Process 6 Process 6 | Process 7 : Lg ﬁ ;
(7p] (7p] (7p] (7p]
Process 5 g g g g ol~llallo|g|wvl|lo|~
Process 4 Process 4 | Process 5 o o o o alalalal gl a| a| g
Process 3 o N ™ §§§§§§§§
A vl
Process 1 Process 0 | Process 1 g g g g
Process 0 o o o o
... S'V=025N/N2 SV=025N/N2 SV=025N/N2 SV=025N/N2

— A
39 rr/r>| ‘"'|

BERKELEY LAB

Little’s Law Redux...

= Recast latency-bandwidth product for OMP/CUDA overheads & flop/s...

= Haswell (Xeon CPU):

o 100 GB/s, 1.3 Tflop/s, ~1us OMP overhead
o Can’t hit peak bandwidth on any kernel that moves less than 100KB

o Can’t hit peak flops on any kernel that does less than 1M FP operations

= KNL (Xeon Phi Manycore):

o 400 GB/s, 2.5 Tflop/s, ~5us OMP overhead
o Can’t hit peak bandwidth on any kernel that moves less than 2MB
o Can’t hit peak flops on any kernel that does less than 13M FP operations

= \olta GPU:

o 800 GB/s, 7 Tflop/s, ~20us CUDA launch overhead
o Can’t hit peak bandwidth on any kernel that moves less than 16MB
o Can’t hit peak flops on any kernel that does less than 140M FP operations

= A
40 Py

BERKELEY LAB

Trading Process Concurrency for Thread Concurrency

Process-Heavy Thread-Heavy

x4 8x8 4x16 2X32 1x64

v Single Programming Model (MPI) v' Minimizes MPI data movement

v' Maximizes MPI bandwidth v' Memory capacity friendly... avoids

v' Implicitly addresses affinity and duplication of data
NUMA v Bandwidth friendly... access to

v' Minimizes superfluous shared data is handled via caches
synchronization instead of duplication

v Eliminates Amdahl (threading) v' Compute-friendly... ideally avoids
bottlenecks redundant computation

v Load balancing is simplified.

- A
41 Py

BERKELEY LAB

Trading Process Concurrency for Thread Concurrency

A
Application Performance
3 .
= O
) ® ® ® ®
£ Routines with perfect .
|_ . .
parallelization —0
‘.
Thread-friendly
Amdahl Routines
Bottleneck
64x1 32x2 16x4 8x8 4x16 2x32 1x64

42

~
]

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Performance and
Scalability

Strong vs. Weak Scaling

= Strong Scaling:
o Global problem sized remains fixed
o Scale the number of nodes (per-node problem size decreases with #nodes)
o network/threading overheads/latencies quickly dominate run time

= Weak Scaling:

Global problem size grows proportional to the number of nodes

Scale the number of nodes (per-node problem size remains fixed)

Generally keeps network/ threading overheads/latencies in check

Superlinear algorithms become extremely time consuming (Dense LU takes a day)
Not amenable to all computational domains

O O O O O O

Corollary: scale per-node problem size with per-node throughput
.. (e.g. when moving from a 2P Xeon to.a 6xGPU node) ...

- A
44 r:ml "“|

BERKELEY LAB

Strong Scaling Example

- e'g' PDE on a structured grid Dominated by Dominated by Overhead
- Domain decompOSition prOdUCGS OrgNode Performance MPI Performance Dominates
an initially favorable =
surface:volume ratio (MPI:local) S
= Strong scaling quickly reduces S
the volume. }i,
" Surface (e.g. MPI) quickly E | overhead! Latency
dominates. -
= |f scaling continues, overheads
can dominate X
.. #Nodes
45 oryf

BERKELEY LAB

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Performance
Models

Why Use Performance Models or Tools?

= |dentify performance bottlenecks
= Motivate software optimizations

= Determine when we’re done optimizing

« Assess performance relative to machine capabilities
« Motivate need for algorithmic changes

= Predict performance on future machines / architectures

« Sets realistic expectations on performance for future procurements

« Used for HW/SW Co-Design to ensure future architectures are well-suited for the
computational needs of today’s applications.

= A
47 rr/r>| ""|

BERKELEY LAB

Computational Complexity

= Assume run time is correlated
with the number of operations
(e.g. FP ops)

= Users define parameterize their
algorithms, solvers, kernels

= Count the number of operations
as a function of those parameters

= Demonstrate run time is
correlated with those parameters

48

#pragma omp parallel for #pragma omp parallel for
for(i=0;i<N;i++){ for(i=0;i<N;i++){

Z[i] = alpha* y Lor(j=0;j<N;j++){
1 double Ci13j=0;

r (k=0;k<N;k++){
DAX What are the 15 += A[i1[k] * BL[KI[§1;
N/ . _
scaling
- constants? _stwm O(N3) complexity

where N is the num
anqtje

/

FFTs: O(NlogN) in the number of Why did we

CG: O(N'33) in the number of .

MG: O(N) in the number of ele gepart from Ideal
N-body: O(N2) in the number o Scal [ng?

/

-1
' b
rrrrrrr H

BERKELEY LAB

Data Movement Complexity

" Assume run t|me iS COrrelated Operation Flop’s Data
with the amount of data accessed DAXEY ON) ON)
DGEMV O(N?) O(N2)
(or moved) pGEMM | OV o
= Easy to calculate amount of data o
accessed... count array accesses MG
N-body Which is more

= Data moved is more complex as it
requires understanding cache
behavior...

« Compulsory! data movement (array
sizes) is a good initial guess...

expensive...

Performing Flop’s, or \
Moving words from memory

N /

... but needs refinement for the effects of
finite cache capacities

Hill et al, “Evaluating Associativity in CPU Caches”, IEEE 49 /\lﬂ
Trans. Comput., 19809.

BERKELEY LAB

Machine Balance and Arithmetic Intensity

= Data movement and computation Operation | Flop’s pata 4 Al (ideal)
can operate at different rates gggm 02;
= We define machine balance as DGEMM O(N)
the ratio of... FFTs O(logN)
5 _ Peak DP Flop/s g
alance =

Peak Bandwidth N-body

= ...and arithmetic intensity as the
ratio of...

Al

_ Flop’s Performed
Data Moved

50

Distributed Memory Performance Modeling

= |n distributed memory, one communicates by sending messages
between processors.

= Messaging time can be constrained by several components...

 Overhead (CPU time to send/receive a message)

« Latency (time message is in the network; can be hidden)

« Message throughput (rate at which one can send small messages... messages/second)
« Bandwidth (rate one can send large messages... GBytes/s)

= Bandwidths and latencies are further constrained by the interplay of
network architecture and contention

= Distributed memory versions of our algorithms can be differently
stressed by these components depending on N and P (#processors)

— A
51 rr/r>| ""|

BERKELEY LAB

Computational Depth

- Imagine d WOrId Of |nf|n|te Operation Flop’s Data Al (ideal) Depth
parallelism & bandwidth, but finite DAXPY 1 O ON) o) o)
DGEMV O(N?) O(N?) O(logN)

latencies DGEMM OUogN)

= \We can classify algorithms by e ooy
depth (max depth of the MG
algorithm’s dependency chain) N-body)

= For iterative algorithms, this is
product of iterations and depth
per iteration

52

Performance Models

= Many different components can contribute to kernel run time.

= Some are characteristics of the application, some are characteristics of
the machine, and some are both (memory access pattern + caches).

#FP operations Flop/s

Cache data movement Cache GB/s

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead

MPI| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
.. #MPI| Wait's Network Latency

53

Performance Models

= Can't think about all these terms all the time for every application...

Computational _________________________

Complexity I #FP operations Flop/s !

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead
MPI| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
.. #MPI| Wait's Network Latency

54

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these

components.
S #FP operations Flop/s o poorine
' Cache data movement Cache GB/s .

DRAM data movement DRAM GB/s |
PCle data movement PCle bandwidth
Depth OMP Overhead
MPI| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap

.. #MPI| Wait's Network Latency

Williams et al, "Roofline: An Insightful Visual Performance Model For Multicore Architectures",

CACM, 2009. 55

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations Flop/s

Cache data movement Cache GB/s

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead

MP| Message Size Network Bandwidth
MP| Send:Wait ratio Network Gap
... #MPI| Wait's Network Latency .

Culler, et al, "LogP: a practical model of parallel computation", CACM, 1996. 56

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations Flop/s
Cache data movement Cache GB/s
DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead

- . . S S S S RS S B B S B R S - s S S S S EEE S S B EEE B B B B B B B B B B By

" MPI Message Size Network Bandwidth :/LogGP
' MPI Send:Wait ratio Network Gap
... #MPIWaltsNetworkLatency

e e e o o E S e B B SN EEm D B B SEE SEE EEE B B SEm MEm B B S SEm REm R B SEm SEm e B M M e e Em

Alexandrov, et al, "LogGP: incorporating long messages into the LogP model - one step clos
towards a realistic model for parallel computation"”, SPAA, 1995. 57

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations Flop/s
Cache data movement Cache GB/s "
DRAM data movement DRAM GR/~ o

_________________________________ K
LogcA~__| PCle data movement PCle bana. v\a‘oo“ R
Depth OMP G 4o\ ¥

- MPI Message Size Network B R\
MPI| Send:Wait ratio Network“Gay
.. #MPI| Wait's Network Lateicy

Bin Altaf et al, "LogCA: A High-Level Performance Model for Hardware Accelerators", ISCA,

2017. 58

S
A
rrrrrrr 1 BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Introduction to the
Roofline Model

Performance Models / Simulators

= Historically, many performance models and simulators tracked latencies
to predict performance (i.e. counting cycles)

= The last two decades saw a number of latency-hiding techniques...

e Out-of-order execution (hardware discovers parallelism to hide latency)
 HW stream prefetching (hardware speculatively loads data)
« Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

= Effective latency hiding has resulted in a shift from a latency-limited
computing regime to a throughput-limited computing regime

— A
60 rr/rml "“|

BERKELEY LAB

Roofline Model

°
®
B
B
{l
®

& crd.lbl.gov (@] ﬁ g R

= Roofline Model is a throughput- T comPUTTOLREsEARGr
oriented performance model... —
 Tracks rates not times

CRD 3 PERFORMANCE AND ALGORITHMS RESEARCH STAFF RESEARCH PUBLICATIONS
—
Home » Performance and Algorithms Research » Research » Roofline

Performance and Algorithms Research

 Augmented with Little’s Law

g ovance Roofline Performance Model

ALGORITHMS
RESEARCH Roofline is a visually intuitive performance model used to bound the performance of various numerical methods and operations running on
* - Ragearch i y or p i Rather than simply using percent-of-peak estimates, the model can be used to
‘ O | l ‘ l l rre | l ‘ — a e | I ‘ a n WI Auto-tunin assess the quality of attained performance by combining locality, i and different izati i into a single
. U performance figure. One can examine the resultant Roofline figure in order to determine both the implementation and inherent performance
© limitations.
EDGAR
.] GRS Arithmetic Intensity
. n e e n e n O a n a rC I e C l l re a I e S HPGMG The core parameter behind the Roofline model is Arithmetic Intensity. Arithmetic Intensity is the ratio of total floating-point operations to
Roofline total data movement (bytes). A BLAS-1 vector-vector increment (x[i+=y[i]) would have a very low arithmetic intensity of 0.0417 (N FLOPS
SciDAC /24N Bytes) and would be independent of the vector size. Conversely, FFT's perform 5*N*logN flops for a N-point double complex
TOP500 transform. If out of place on a write allocate cache architecture, the transform would move at least 48N bytes. As such, FFT's

to CPUs, GPUs, Google TPUs', etc...)

1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

61

Previous Projects

Facebook 0.1-1.0 flops per byte Typically < 2 flops per byte 0O(10) flops per byte
q A A A
S r A} r N 7 A}
Google+
|
uJ
Twitter

would have an arithmetic intensity of 0.104*logN and would grow slowly with data size. Unfortuantely, cache capacities would
limit FFT arithmetic intensity to perhaps 2 flops per byte. Finally, BLAS3 and N-Body Particle-Particle methods would have
arithmetic intensity grow very quickly.

Particle
Methods

Stencils (PDEs)

FFTs, Dense
Lattice Boltzmann Spectral Methods Linear Algebra
N Me(hodsj N L (BLAS3) ,
Y Y Y
o(1) O(log(N)) O(N)

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

>

frrereeer III|

BERKELEY LAB

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite locality (reuse) and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assume: | (©B)
|dealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)
/‘
#FP ops / Peak GFlop/s

Time = max<

_#Bytes /| Peak GB/s

62

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite locality (reuse) and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assume: | (©B)
|dealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)
Time 1/ Peak GFlop/s
= max=<
#FP ops _#Bytes | #FP ops / Peak GB/s

63

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite locality (reuse) and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assume: | &
|dealized processor/caches DRAM
Cold start (data in DRAM) LeHiEs L)
~
#FP ops _ - Peak GFlop/s
Time _(#FP ops |/ #Bytes) * Peak GB/s

64

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

CPU

= However, finite locality (reuse) and compute, flop/s)
bandwidth limit performance. | oraM Bandwictr
= Assume: | &
« |dealized processor/caches DRAM
« Cold start (data in DRAM) LeHiEs L)
/‘
Peak GFlop/s
GFlop/s = min<
_Al * Peak GB/s
Note, Arithmetic Intensity (Al) = Flops / Bytes (as presented to DRAM)
65 il

BERKELEY LAB

(DRAM) Roofline

= Plot Roofline bound using
Arithmetic Intensity as the x-axis

* Log-log scale makes it easy to Peak Flop/s / |
doodle, extrapolate performance |
along Moore’s Law, etc...

= Kernels with Al less than machine
balance are ultimately DRAM
bound (we’ll refine this later...)

Attainable Flop/s

DRAM-bound i Compute-bound
I

: >
Arithmetic Intensity (Flop:Byte)

66

Roofline Example #1

= Typical machine balance is 5-10

flops per byte...
« 40-80 flops per double to exploit compute capability Peak Flop/s
« Artifact of technology and money "
* Unlikely to improve %
T
Q
N®)
<
= Consider STREAM Triad... E
#pragma omp parallel for
for(i=0;i<N;i++){
z[i] = X[i] + alpha*Y[i];
}
| _ 0.083
* 2flops per iteration Arithmetic Intensity (Flop:Byte)

« Transfer 24 bytes per iteration (read X][i], Y[i], write Z[i])
- Al =0.083 flops per byte == Memory bound

— A
(37 .;::::q”

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant

coefficient stencill...
7 flops Peak Flop/s
« 8 memory references (7 reads, 1 store) per point "
« Cache can filter all but 1 read and 1 write per point E—
« Al =0.44 flops per byte == memory bound, z) Gtlop/s < Al * DRAM GB/s
but 5x the flop rate 'c.é |
#pragma omp parallel for E§ :
for(k=1;k<dim+1;k++){ e | 7-D0i
ForCiolii<dimiLsieayd < | 7-point
for(i=1;i<dim+l;i++){ : Stencill
int ijk = 1 + j*jStride + k*kStride; I
new[ijk] = -6.0%0oTd[1jk] .
old[ijk-1] : >
1d[1jk+1]
g1d[:’g’ktj5tr1’de] 0.083 0.44
old[ijk+jstride] Arithmetic Intensity (Flop:Byte)

old[ijk-kstride]
old[ijk+kstride];

— A
68 .:::::q"'

BERKELEY LAB

Hierarchical Roofline

= Real processors have multiple levels of
memaory
* Registers
« L1,L2, L3 cache
« MCDRAM/HBM (KNL/GPU device memory)
 DDR (main memory)
« NVRAM (non-volatile memory)

= Applications can have locality in each
level

= Unique data movements imply unique Al’'s

= Moreover, each level will have a unique
bandwidth

= A
69 rr/rml "“|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure a bandwidth Peak Flop/s

= Measure Al for each level of memory °
« Although an loop nest may have multiple i
Al's and multiple bounds (flops, L1, L2, ... %
DRAM) .. -% DDR Bound
= DDR AI"BW <
. ... performance is bound by the < MCDRAM AI'BW
minimum

- A
70 Py

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...
= Measure a bandwidth . Peak Flop/s

= Measure Al for each level of memory °

« Although an loop nest may have multiple i
Al's and multiple bounds (flops, L1, L2, ... %
DRAM)... s

. ... performance is bound by the <
minimum DDR bottleneck

pulls performance
below MCDRAM
Roofline

etic Intensity (Flop:Byte)

- A
71 Py

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure a bandwidth Peak Flop/s

= Measure Al for each level of memory °
« Although an loop nest may have multiple i
Al's and multiple bounds (flops, L1, L2, ... % MICDRAM bound
DRAM)... 5 " OORAIE
. ... performance is bound by the <
minimum

- A
72 Py

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of

: 1
Rooflines...
= Measure a bandwidth Peak Flop/s
= Measure Al for each level of memory °
« Although an loop nest may have multiple i
Al's and multiple bounds (flops, L1, L2, ... %
DRAM)... g
. ... performance is bound by the < S bottlenack pulls
minimum performance below
DDR Roofline
Arithmetic Intensity (Flop:Byte

= A
73 Py

BERKELEY LAB

S
A
rrrrrrr 1 BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model:
In-Core Effects

Data, Instruction, Thread-Level Parallelism...

» Modern CPUs use several techniques to increase per core Flop/s

Fused Multiply Add

e W=X'y+2zisgcommon
idiom in hneg” algebra

4 &hains the
mutiply and add in a
single pipeline so that it
can complete FMA/cycle

"
: b
rrrrrrr ‘ |

Vector Instructions

Many HPC codes apply
the same operation to a
vector of elements

Vendors provide vector
Instructions that apply
the same operation to 2,
4. 8, 16 elements...

x [0:7] *y [0:7] + z [0:7]

Vector FPUs complete 8
vector operations/cycle

75

Deep Pipelines

The hardware for a FMA
IS substantial.

Breaking a single FMA
up into several smaller
operations and pipelining
them allows vendors to
increase GHz

Little’s Law applies...
need FP_Latency *

FP_bandwidth
Independent instructions

BERKELEY LAB

Data, Instruction, Thread-Level Parallelism...

If every instruction were an ADD
(instead of FMA), performance
would drop by 2x on KNL or 4x
on Haswell

Similarly, if one had no vector
instructions, performance would
drop by another 8x on KNL and
4x on Haswell

FP Divides can be even worse.

Lack of threading will reduce
performance by 64x on KNL.

76

Attainable Flop/s

Add-onlyANo FMA)

Peak Flop/s

Ng\vectorization
\ ¥ 4

Poor vectorization
pulls performance
below DDR

Arithmetic Intens

Roofline

Superscalar vs. instruction mix

= Define in-core ceilings based on

instruction mix... I
= e.g. Haswell Peak Flop/s .1, ep

 4-issue superscalar ?Zl 259 EP
* Only 2 FP data paths E, 12% FP
* Requires 50% of the instructions to be FP “é

to get peak performance g

>
77 oryf

BERKELEY LAB

Superscalar vs. instruction mix

= Define in-core ceilings based on

: : : A
Instruction mix...

" e.qg. Haswell Peak Flop/s 100% EP
 4-issue superscalar ?zl 50% EP
- Only 2 FP data paths ° 25% FP
* Requires 50% of the instructions to be FP “é

to get peak performance g

» e.g. KNL
e 2-ISSue superscalar >
2 FP data paths
« Requires 100% of the instructions to be

-~ FPtogetpeak performance
78 oryf

BERKELEY LAB

Superscalar vs. instruction mix

= Define in-core ceilings based on

: : : 0
Instruction mix...
= e.g. Haswell Peak FIop’s 100 P
e 4-issue superscalar ?ZL 50% EP
- Only 2 FP data paths ° 25% FP
* Requires 50% of the instructions to be FP ‘E‘
to get peak performance g
= e.g. KNL can sap instruction
2. | issue bandwidth and
-Issue superscalar Arithmetic Intensity psglgfvrf;;zﬁ?]ce
2 FP data paths
« Requires 100% of the instructions to be
~ FPtogetpeak performance
79 oryf

BERKELEY LAB

S
A
rrrrrrr 1 BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model:
Cache Effects

Locality Walls

= Naively, we can bound Al using

: 1
only compulsory cache misses
Peak Flop/s
0
Q
[
LL
o
N®)
= <
£ No vectorizatjc&
< "D
-}
o
S
O
© >
Arithmetic Intensity (Flop:Byte)
Al = #Flop’s
Compulsory Misses
81 i

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using

: 1
only compulsory cache misses
= However, write allocate caches Peak Flop/s
can lower Al 2 il e
m &7
Q Q.Q
E S gl=
S No vectdriSafjo
< =T
e|a
£] 8
718,
Arithmetic Intensity (Flop:Byte)
Al = #Flop’s
Compulsory Misses + Write Allocates
82 oryf

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using

: 1
only compulsory cache misses
= However, write allocate caches Peak Flop/s
can lower Al 8 . oA
. . ™ >
= Cache capacity misses can have o 5
@ Ot 2|z
a huge penalty E = No vectcrigatlo}r:‘
Z 2 —
g £l
; HEN
Arithmetic Intensity (Flop:Byte)
Al = #Flop's
~ Compulsory Misses + Write Allocates + Capacity Misses
83 oryf

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using

only compulsory cache misses I
= However, write allocate caches Peak Flop/s
can lower Al 8 ol
. . TR
= Cache capacity misses can have 9
a huge penalty £
g
» Compute bound became
memory bound
Al = #Flop's
~ Compulsory Misses + Write Allocates + Capacity Misses
84 oryf

BERKELEY LAB

S
A
rrrrrrr 1 BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model:
General Strategy Guide

General Strategy Guide

= Broadly speaking, there are three
approaches to improving
performance: Peak Flop/s

Attainable Flop/s

86

General Strategy Guide

= Broadly speaking, there are three
approaches to improving
performance: Peak Flop/s

= Maximize in-core performance
(e.g. get compiler to vectorize)

Attainable Flop/s

87

General Strategy Guide

= Broadly speaking, there are three
approaches to improving
performance: Peak Flop/s

= Maximize in-core performance
(e.g. get compiler to vectorize)

= Maximize memory bandwidth
(e.g. NUMA-aware allocation)

Attainable Flop/s

88

General Strategy Guide

= Broadly speaking, there are three

approaches to improving I
performance: Peak Flop/s
= Maximize in-core performance 8
(e.g. get compiler to vectorize) P
= Maximize memory bandwidth £ <
(e.g. NUMA-aware allocation) < 2
= Minimize data movement : S
(increase Al) Arithmetic Intensity (Flop:Byte) g

89

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Performance
Tools

Overview

= Machine = Timers = Timeline
Characterization » Performance ¥ Time_integrated
= Application Counters (seconds)
Instrumentation = Simulators / Code = Throughput-oriented
(timing breakdowns) introspection (slow) (Gflop/s or GB/s)
= Performance = Sampling (data is
Analysis meaningless if it falls
below sampling
granularity)

91

Node Characterization

Cori/ KNL

= “Marketing Numbers” can be

deceptive... o re

+ Pin BW vs. real bandwidth

* TurboMode / Underclock for AVX o ¥ oo | SUMMItDev / 4GPUs

« compiler failings on high-Al loops. R R
* LBL developed the Empirical

Roofline Toolkit (ERT)... £

« Characterize CPU/GPU systems

 Peak Flop rates

e Bandwidths for each level of memory o

« MPI+OpenMP/CUDA == multiple GPUs

https://crd.Ibl.gov/departments/computer-science/PAR/research/roofline/

= A
92 rr/r>| ""|

BERKELEY LAB

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Manual Instrumentation

= Application developers know best...

What to time

What to record (e.g. solver iterations, dimensions, etc...)

How asynchrony is exploited

How the same function might be called/used many different ways == unique timers

O O O O O

Computational load imbalance (i.e. understand why timing shows imbalance)

= Make timing instrumentation a first-class citizen when developing
an application

= Create timing wrapper that uses either...

o omp_get wtime()
o MPI_Wtime()
.. O . FAISC Or €qQUIVAIENT

= A
93 rfr}l "“|

BERKELEY LAB

LIKWID

= LIKWID provides easy to use wrappers AR o Gnaracterization
for measuring performance counters... . =
v Works on NERSC production systems _ o —Roofine
v Minimal overhead (<1%) é o
v" Scalable in distributed memory (MPI-friendly) £ 128
v' Fast, high-level characterization % 64
x No detailed timing breakdown or optimization advice @ *
x Limited by quality of hardware performance counter 16
implementation (garbage in/garbage out) 8

» Useful tool that complements other
tools
https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

~
94 rj'}l ‘u||

HPGMG (32Px1T)
HPGMG (4Px8T)
Combustor (32Px1T)
Combustor (4Px8T)
MFIX (32Px1T)

Nyx (32Px1T)

Nyx (4Px8T)
PeleLM (32Px1T)
WarpX (32Px1T)
WarpX (4Px8T)

BERKELEY LAB

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

* |Includes Roofline Automation...
v Automatically instruments applications

(one dot per loop nest/function)

v Computes FLOPS and Al for each ES e T
funCtiOn (CARM) b BT B @ OsStatSuveyhnaysis[v] & @

Welcome | €000 X Start Survey Analysis
Start Trip Counts and FLOP Analysis

j) csaine Gex-
AVX_5 1 2 S u p po rt th at I n CO rpo rates m aS kS FILTER:E; Start Memory Access Patterns Analysis Threads v|| Loads and stores ~
B Summary % Survey & Start Dependencies Analysis /

AN

v Integrated Cache Simulator? B oo s, LS et e
(hierarchical roofline / multiple Al’s) B o s i i
v Automatically benchmarks target system WO ol io. Sammersnoe 0w i
(CaICUIateS Ce”mgs) Sourcel opDownI.Code aMIcsl ssemblylvRecommeerations & Why No Vectorization | | |
v Full integration with existing Advisor T o2 e oome oo
0x4107d4 492 sub $0x210, %rsp

capabilities
http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

Technology Preview, not in official product roadmap so far.

= A
or P

BERKELEY LAB

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

Intel VTune

v Automatically instruments
applications (sampling)

v" Presents time-oriented execution

v' Has access to performance
counters (e.g. %bandwidth, front-
end bound, efc...

v Hotspot, Concurrency,
Synchronization, and Memory
Analysis Options

Bl B b o mme
8 Basic Hotspots Hotspots by CPU Usage viewpoint (change) @

sis Target

Analysis Type | | B Collection Log | | i Summary | [YEReRNe] | *% Caller/Callee| | ¢% Top-down Tree| | B8

Intel VTune Amplifier XE 2013

sks and Frames

Function / Call Stack
Didle @ Poor Ok @Ideal @ Over

Grouping: [Function / Call Stack - CPU Function/CPU Stack - CPU Time [~]
» f§ Viewi d410f39 b lected stack
CPU Time by Utilizationw * Overhead — ° EEREER)

and Spin Time

Modul T 32.1% (17165 of 5.3495) |

P

Firered".:rocessireCoIIisionsRange 5349s] 0s| SystemProcedur SystemProceduralFire.DLUIFireObject:Pr..
NtWaitForSingleObject 3,575 () 3.575s ntdll.dll 3
) g L
®func@0x1001d3ed 3300 D) 05065 RenderSystem p | ystemProceduralFire. DLLIFireObject:Fi..
func@0x10006750 2181 [0s RenderSystem D | Smoke.exelParallelForBody::operator()+...
[+ AlScene:GetPOI 1.832s I 0Os SystemALDLL Smoke.exe![TBB parallel_for on class Para...
#func@0x10005050 1.375s 0s RenderSystem_D Smoke.exe!TaskManagerTBB:ParallelFo...
‘?A"imalf’UpdatEFea' : 13365 (1 0s SyStemA_I'DLL | SystemProceduralFire.DLL!FireObject:Em...
[Ogre::FileSystemArchive::open 1.247s (I 0s OgreMain.dll SystemProceduralFire.DLLIFireObjectU...
Selected 1 row(s): 5.349s 0Os - X X X
<L N Kl = . 5 SystemProceduralFire.DLL!FireObject::u...
o . ‘i Ruler Area -
{5 Advanced Hotspots Hotspors viewpoint (change) © INTELVTUNE AMPLIFIER 2018 k= =
q CollectionLog (D) Analysis Target £ Analysis Type [Summary &3 Bottom-up & Caller/Callee &3 Top-down Tree ==l Platform 3 | ||[7] Thread
Grouping: | Function / Call Stack v |5\ H alls @B Running |-
= v CPU T
CPU Time ¥ Context Switch Time |« | Context: A - ﬂ o h"“e
v 'Vernea...
Function / Call Stack Effective Time by Utilization — - !
gide @ Poor Ok @ideal @ Over Spin Time | Overhead ... | Wait Time | Inactive Time | Preempi [CPU Sample
. CPUU
v updateBusinessAccount 79155 @ L] 0s 0s 0s 0.055s ¢ . Msacieu -
v mainSompSparallel_for@269 7.915s D 0s 0s| 0s| 0.055s 1 D e
p & _ kmp_invoke_microtask — [Og 7.9155 @] 0s 0s 0s 0.042s € [l || any utiization [~]
» = updateBusinessAccount « mair Os 0s Os 0s 0.013s
» updateCustomerAccount 7.766s |0 0s 0s 0s 0.052s 1,
» _ kmpe_atomic_fixed8_add 2.772s |V D 0s 0s
» _ kmpc_critical 0s 2.021s 0s Os 0.014s SV
T —— . T r » - Yy -
L L T T T T e e T
QoQHC-Qe (5 8 s _15994:| 61s 625 63 Ruler Area &)
N e seoeonen M TEC U T (ORI (T I w £ O T T SO ety] .
OMP Worker Thread ... Vv = Region Instance
2 |OMP Worker Thread ... [Thread v
g =
£ [tmtest_openmp (TID:... [+] @8 Running
OMP Worker Thread ... [¢] Context Switches
[Preemption
CPU Time . (I} Synchfonlzahon
(] il CPU Time
< > » (V] ik Spin and Overhead ... «
FILTER 100.0% 2 | Any Proce « Any Thread v Any Modu « Any Ut w | Userfunctio » Show inlit » Functions »

http://www.nersc.gov/users/software/performance-and-debugging-tools/vtune/

96

>

A
freeere

BERKELEY LAB

http://www.nersc.gov/users/software/performance-and-debugging-tools/vtune/

Cray PAT

v Automatically instruments applications (sampling)

v" Tracing support for user-specified functions

v" Inherent distributed memory (MPI) support

v Presents time-integrated results

v Has access to performance counters (e.g. %bandwidth, flop/s, etc...)
v Load imbalance, MPI, OpenMP, etc...

v Text output (but Cray Reveal can visualize output)

http://www.nersc.gov/users/software/performance-and-debugging-tools/craypat/

97

http://www.nersc.gov/users/software/performance-and-debugging-tools/craypat/

TAU

v Automatically instruments applications
v' Sampling and Tracing support

v Presents time-oriented or time-integrated
results

v" Visualization of MPlI communication &
load imbalance

v" Integrates with MPI (inherent distributed
memory support)

v Can leverage HW performance counters

https.//www.cs.uoregon.edu/research/tau/home.php

= A
08 r:':}l "“|

BERKELEY LAB

https://www.cs.uoregon.edu/research/tau/home.php

"% U.S. DEPARTMENT OF

.2/ENERGY

{ZiTES %

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Questions?

"% U.S. DEPARTMENT OF

.2/ENERGY

{ZiTES %

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Backup

S
A
rrrrrrr 1 BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Hierarchical Roofline vs.
Cache-Aware Roofline

...understanding different Roofline
formulations in Advisor

There are two Major Roofline Formulations:

= Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, ...)...

Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009

« Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008

« Defines multiple bandwidth ceilings and multiple Al's per kernel

« Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

= Cache-Aware Roofline

 llic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
« Defines multiple bandwidth ceilings, but uses a single Al (flop:L1 bytes)
 As one looses cache locality (capacity, conflict, ...) performance falls from one BW ceiling to a lower one at constant Al

= Why Does this matter?

« Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
« Cache-Aware Roofline model was integrated into production Intel Advisor
« Evaluation version of Hierarchical Roofline' (cache simulator) has also been integrated into Intel Advisor

Technology Preview, not in official product roadmap so far.

102 i

BERKELEY LAB

Hierarchical Roofline

>
b
rrrrrrr ‘ |

Captures cache effects

Al is Flop:Bytes after being filtered by
lower cache levels

Multiple Arithmetic Intensities
(one per level of memory)

Al dependent on problem size
(capacity misses reduce Al)

Memory/Cache/Locality effects are
observed as decreased Al

Requires performance counters or
cache simulator to correctly measure Al

Cache-Aware Roofline

103

Captures cache effects

Al is Flop:Bytes as presented to the L1
cache (plus non-temporal stores)

Single Arithmetic Intensity

Al independent of problem size

Memory/Cache/Locality effects are
observed as decreased performance

Requires static analysis or binary
instrumentation to measure Al

BERKELEY LAB

Example: STREAM

= |1 AI.. #pragma omp parallel for
. 2ﬂ0ps 'FOI"('I=0;'I<N;‘I++){

z[1] = X[1] + alpha*Y[i];

2 x 8B load (old) }
1 x 8B store (new)

= 0.08 flops per byte
= No cache reuse...

lteration i doesn’t touch any data associated with
iteration i+delta for any delta.

= ... leads to a DRAM Al equal to
the L1 Al

104 il

BERKELEY LAB

Example: STREAM

Hierarchical Roofline
,T

| Peak Flop/s

A, *L1GBIs
Aloray * DRAM GB/s

Attainable Flop/s

«— Multiple Al’s....

Arithmetic Intensity (Flop:Byte)

Cache-Aware Roofline

Attainable Flop/s

,T

| Peak Flop/s

Performa/nce is bound to
the mymimum of the two Obseryved performance
Inte/rcepts. . is correlated with DRAM

bahdwidth

i 1) Flop:DRAM bytes «— Single Al based on flop:L1 bytes
| 2) Flop:L1 bytes (same) |
I > 1 >

0.083 0.083

Arithmetic Intensity (Flop:Byte)

105 i

BERKELEY LAB

Example: 7-point Stencil (Small Problem)

O |_1 A| #pragma omp parallel for
for(k=1;k<dim+1;k++){
* [flops for(j=1;j<dim+l;j++){
« 7 x 8B load (old) for(i=1;i<dim+1;1++){
. int 1jk = 1 + j*jStride + k*kStride;
1 x 88 store (new) new[ijk] = -6.0%01d[jk]
« =0.11 flops per byte old[ijk-1]
- some compilers may do register shuffles to reduce the old[ijk+1]
number of loads. old[ijk-jstride]
old[1jk+jStride]
= Moderate cache reuse... old[ijk-kstride]

old[1jk+kStride];

« old[ijk] is reused on subsequent iterations of i,j,k

« old[ijk-1] is reused on subsequent iterations of i.
« old[ijk-jStride] is reused on subsequent iterations of j.
« old[ijk-kStride] is reused on subsequent iterations of k.

= ... leads to DRAM Al larger than
the L1 Al

106 2l

BERKELEY LAB

Example: 7-point Stencil (Small Problem)

Hierarchical Roofline Cache-Aware Roofline
A A

Peak Flop/s Peak Flop/s

Berformance bound is
the minimum of the two

Attainable Flop/s
Attainable Flop/s

: Multiple Al’s....
«— 1) flop:DRAM ~ 0.44

—— 2) flop:L1 ~0.11
0.11 0.44 g 0.11
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

107 i

BERKELEY LAB

Example: 7-point Stencil (Small Problem)

Hierarchical Roofline Cache-Aware Roofline
A A

Peak Flop/s Peak Flop/s

n n : /
3 g |
o o !
L ™ I
= = Observed’performance
:) 7/ .

@ erforrr?ance bound is 3 is between L1 and DRAM lines
< <

Multiple Al’s....

+«— 1) flop:DRAM ~ 0.44 '« Single Al based on flop:L1 bytes
2) flop:L1 ~ 0.11 | J p-=TBY
> >
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

108 Rl

BERKELEY LAB

Example: 7-point Stencil (Large Problem)

Hierarchical Roofline Cache-Aware Roofline
A A

Peak Flop/s Peak Flop/s

Obseweddnce

is closef to DRAM line
7 .
less cache locality)

Cgpacity misses reduce
DRAM Al and performance

. Multiple Al’s....
' «—— 1) flop:DRAM ~ 0.20

Attainable Flop/s
Attainable Flop/s

'« Single Al based on flop:L1 byt
& 2) flop:L1 ~ 0.11 - SINgie ATLased on Top-L1 byles
' > >
0.11 0.20
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

109 i

BERKELEY LAB

Example: 7-point Stencil (Observed Pert.)

Hierarchical Roofline Cache-Aware Roofline
A A

Peak Flop/s Peak Flop/s

Obseweddnce

is closef to DRAM line
7 .
less cache locality)

Actual observed performance

£ . o is tied to the bottlenecked resource
i and can be well below a cache

E Roofline (e.g. L1).

Attainable Flop/s
Attainable Flop/s

0.11 0.20

110 i

BERKELEY LAB

Example: 7-point Stencil (Observed Pert.)

Hierarchical Roofline Cache-Aware Roofline
A A

| Peak Flop/s ! Peak Flop/s
2 : n | /
B_ | B_ |
O ' [e) l
LL : ™ I
% i % Qbsewe/d performa.nce
3 . © is closef to DRAM line
© . Actual observed performance ® less cache locality)
< 7 is tied to the bottlenecked resource <

(_______
. and can be well below a cache
> Roofline (e.g. L1). '« Single Al based on flop:L1 bytes
O ' > >
0.11 0.20
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

111 i

BERKELEY LAB

