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Multicore Node Architectures
§ Imagine a dual-socket, quad-core 

node...
o Each socket has a shared last level cache 

and its own directly attached memory
o Between sockets, there is an interconnect 

(e.g. QPI, HT, etc…) that allows one 
socket to read another’s memory/caches
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GPU-Accelerated Nodes
§ Imagine a dual-socket, quad-core 

node...
o Each socket has a shared last level cache 

and its own directly attached memory
o Between sockets, there is an interconnect 

(e.g. QPI, HT, etc…) that allows one 
socket to read another’s memory/caches

§ Additionally, we may attach 
multiple GPUs per socket…
o Each GPU has its own cores, caches, 

and memory.
o Depending on the GPU, it can directly 

read host memory or other GPUs memory 
via loads/stores
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On-Node Parallelization
§ We can apply a shared memory 

programming model 
(OpenMP/pthreads) and abstract 
away hardware…
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Process 0

On-Node Parallelization
§ We can apply a shared memory 

programming model 
(OpenMP/pthreads) and abstract 
away hardware…

§ As such, from SW POV, all we 
might see is threads and memory 
(no caches, sockets, cores)
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On-Node Parallelization
§ Rather than only using threads, 

we can combine programming 
models (Hybrid)
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Process 1Process 0

On-Node Parallelization
§ Rather than only using threads, 

we can combine programming 
models (Hybrid)

§ For example, we can combine 
MPI w/OpenMP…
o 2 processes per node
o 4 threads per process
o With proper control of affinity (srun and 

omp), we can efficiently map this to 
hardware.

o Each process has its own private memory 
that cannot be read by the other process
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Process 1Process 0

On-Node Parallelization
§ Communication among threads 

within a process is handled via 

shared memory
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§ Processes send/receive 

messages to exchange data

o Messages are tagged by rank, ID, and 

communicator

o Recv’s on the destination can be posted 

before a Send has been posted on the 

host (blocks)

o Asynchronous communication 

(isend/irecv) is non-blocking but requires 

a wait to ensure completion.

Process 0 Process 1

X Y

Copy X to buf

Send buf to P2

Recv buf from P0

…

Copy buf to Y

buf buf



Process 3Process 2Process 1Process 0

On-Node Parallelization
§ We can select and combination of 

processes and threads on a 
node…
o Its best not to oversubscribe hardware 

(procs * threads == cores)
o Always use affinity to bind processes and 

threads cognizant of the underlying 
hardware.
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P0

On-Node Parallelization
§ We can select and combination of 

processes and threads on a 
node…
o Its best not to oversubscribe hardware 

(procs * threads == cores)
o Always use affinity to bind processes and 

threads cognizant of the underlying 
hardware.

o Note, OMP_NUM_THREADS==1 is not 
the same as flat MPI (no –qopenmp)
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P0

On-Node Parallelization
§ Newer GPUs allow multiple 

processes to share a single GPU
o each gets a ‘context’
o GPU memory is portioned among 

contexts
o Processes either time multiplex(older) 

resources or run concurrently
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Process 0

On-Node Parallelization
§ One process per CPU core may 

not efficiently utilize a GPU-
accelerated system

§ As such, one could run one 
process per GPU…
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Process 0

On-Node Parallelization
§ As such, one process per CPU 

core may not efficiently utilize a 
GPU-accelerated system

§ As such, one could run one 
process per GPU…

§ … or one process per socket.
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Intra-Core Parallelization
§ Within each core there can be 

parallelism…
o Multiple functional units (ILP)
o Vectors/SIMD (DLP) 
o Specialized functional units (FMA, Tensor 

Cores, etc…)
o Pipeline parallelism (ILP)

§ Discovery can be done at compile 
time (vectors) or run time (ILP)

§ Failure to exploit these limits 
performance
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Multi-Node (Distributed Memory) Parallelization
§ MPI is used for multi-node parallelization

o From the user standpoint, on-node and inter-node MPI 
looks the same

o All communication is handled via MPI (P2P or 
collectives)… no shared memory communication

§ UPC, CAF, GA provide shared memory 
abstraction.

§ Memory balancing…
o can’t shift memory capacity from one node to another.
o If any one node exceeds its memory capacity, the job 

will crash w/OOM error

o Swap is rare (diskless compute nodes)
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Synchronization
§ When one thread (or process) produces data and another thread (or 

process) consumes it, we have a data hazard
§ We must synchronize to resolve the data hazard and ensure 

determinism & correctness.
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Synchronization
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§ In the P2P MPI world, 
synchronization is automatic in 
the irecv/isend/waitall/compute 
paradigm

§ In the OpenMP world, we must 
explicitly synchronize…

§ Easiest solution: leverage BSP 
model…
o #pragma omp parallel implies an implicit 

barrier
o Data is only exchanged between parallel 

regions (never within)
o Coarse grained

§ Finer grained…
o Use OMP reductions, atomics, locks, and 

critical sections



Challenges



Load Balancing
§ Imagine we have some work to 

partition (e.g. computation on an 
array)
o We can try and uniformly partition work 

(loop iterations) among threads
o Ideally, the run time should be reduced by 

1/NThreads

21

Work

T0 T1 T2 T3 T4 T5 T6 T7

T7
T6
T5
T4
T3
T2
T1
T0

Work/8

Work/8

Work/8

Work/8

Work/8

Work/8

Work/8

Work/8

Time



Load Balancing
§ Unfortunately, some loop 

iterations may be more 
expensive, or some threads may 
run slower (e.g. cache effects)
o As a result, we can observe load 

imbalance where run time is limited by the 
slowest thread

o We can assess the degree of load 
imbalance by measuring max/average

o A slow outlier may substantially hurt 
performance, but… 
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Load Balancing
§ Unfortunately, some loop 

iterations may be more 
expensive, or some threads may 
run slower (e.g. cache effects)
o As a result, we can observe load 

imbalance where run time is limited by the 
slowest thread

o We can assess the degree of load 
imbalance by measuring max/average…

o A slow outlier may substantially hurt 
performance, but… 

o …a fast thread may not help or hurt much

23

Work

T0 T1 T2 T3 T4 T5 T6 T7

Work/8T7

Work/8T6

Work/8T5

Work/8T4

Work/8T3

Work/8T2

Work/8T1

Work/8T0

Time



Lack of Parallelism
§ Trends in architecture have enabled >>1000-way parallelism on a 

chip (#FPUs * FPU latency)
§ Not all loop nests support 1000-way parallelization
§ Loop nests with <1000-way parallelism underutilize HW resources

§ Often codes must be restructured to enable more parallelism
o Loops are reordered/fused (OMP collapse(3))
o Variables(arrays) are privatized and reduced
o Nominally sequential functions/solvers on independent variables are performed 

concurrently  (MPI sub communicators or OMP Tasks)
o Workflows/multiphysics are parallelized at launch (SLURM MPMD)
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Amdahl’s Law & Bottlenecks
§ In an application, not every loop 

might be parallelized.
o Speedup = (fseq + fpar/Spar)-1

o 8x speedup on 75% of the run time 
provides a 3x speedup

o Infinite speedup on 75% of the run time 
only provides a 4x speedup.
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Time

§ Similar effect applies to vectors, 
GPUs, and other accelerators.
o e.g. GPU providing 10x on 10% of an 

application = 10% speedup.



Amdahl’s Law & Bottlenecks
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§ On manycore processors (KNL), 
single thread performance is 
worse than Haswell
o Parallel parts of apps get faster
o Sequential parts get slower
o Overall benefit is less than expected



Non-Uniform Memory Access (NUMA)
§ In a shared memory, any thread 

can read any memory location

§ However, memory bandwidth and 
latency can vary (NUMA)
o Consider array double X[N];

o If naively allocated, all data is placed on 
socket 0

o Latency/bandwidth to element x[i] is 
different for thread 3 and thread 4

o Socket 0’s memory bandwidth is highly 
contended while socket 1’s is 
underutilized
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Non-Uniform Memory Access (NUMA)
§ Allocate data based on how we 

intend to access it
§ Rectify this NUMA effect via first 

touch initialization
o Pages are allocated with affinity to the 

core that first touched the data
o Parallelizing the initialization transparently 

partitions the array among NUMA nodes
o n.b. This only works on the first allocation 

of this memory page (subsequent 
free/malloc corrupt the process)

o Explicit thread affinity is imperative
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Non-Uniform Memory Access (NUMA)
§ Simplest solution is to run at least 

one process per NUMA node
o All data for that process is allocated on 

the numa node with affinity to its cores

o All data access are restricted to that 
NUMA node
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Memory/Cache Capacity Contention
§ Each thread or process exerts some pressure on the cache (on-chip 

L1/L2 or off-chip MCDRAM/HBM memory).  
§ As thread/process-concurrency increases, the requisite active working 

set can exceed cache capacity
o When this happens, capacity misses manifest, data movement increases (even if perfectly 

computationally load balanced), and performance can plummet.
o If this happens in MCDRAM or HBM caches, we run at DDR speeds or Nvlink speeds.

§ To rectify this, we often tile or block loops so that the per-thread 
working set remains sufficiently small.
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Memory/Cache Bandwidth Contention
§ There is less memory bandwidth 

than all cores could consume
o 1 core can drive >10GB/s of memory 

bandwidth

o 16 cores (e.g. 1P HSW) could drive >160
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Memory/Cache Bandwidth Contention
§ There is less memory bandwidth 

than all cores could consume
o 1 core can drive >10GB/s of memory 

bandwidth
o 16 cores (e.g. 1P HSW) could drive >160
o Socket only has 50GB/s available.
o memory bandwidth has become a 

bottleneck
o A similar effect can emerge on LLC or 

MCDRAM caches
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Memory/Cache Bandwidth Contention
§ There is less memory bandwidth 

than all cores could consume
o 1 core can drive >10GB/s of memory 

bandwidth
o 16 cores (e.g. 1P HSW) could drive >160
o Socket only has 50GB/s available.
o memory bandwidth has become a 

bottleneck
o A similar effect can emerge on LLC or 

MCDRAM caches

§ “Flops are Free”
o bottleneck or opportunity?
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Network Performance
§ Each message sent via MPI 

incurs some non-zero overhead 
(and latency)

§ We can proxy message time as:
time = overhead + size/bandwidth

§ As such, network utilization…
= size / (overhead*bandwidth + size)
= (overhead*bandwidth/size + 1)-1
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Network Performance
§ Each message sent via MPI 

incurs some non-zero overhead 
(and latency)

§ We can proxy message time as:
time = overhead + size/bandwidth

§ As such, network utilization…
= size / (overhead*bandwidth + size)
= (overhead*bandwidth/size + 1)-1
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Network Contention
§ We can saturate different aspects of the network…
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§ Injection Bandwidth
o nodes cannot inject data faster into the network
o e.g. broadcasts or large messages

§ Ejection Bandwidth
o node cannot eject data from the network fast enough
o e.g. reductions (single node must receive data from all other nodes)

§ Bisection Bandwidth
o Bandwidth (links) connecting conceptual partitions of the network
o Artifact of the topology (architecture) of the network
o Job placement (and decomposition) can mitigate this



Surface:Volume
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§ When we decompose a problem among processes, we must do so in a 
manner that…
o Minimizes the number of messages (recall overhead per message)
o Minimizes the surface:volume ratio (i.e. ratio of MPI data movement : local flops)

§ Consider 8-way MPI parallelization of a PDE on a NxN structured grid…
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Surface:Volume
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§ On a multicore node, think about how much data is off node 
exchanges vs. on-node exchanges.

§ On-node exchanges should be faster (DRAM BW >> Network BW)
§ Different off-node surface:volume ratios leads to load imbalance.
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Surface:Volume
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§ On a multicore node, think about how much data is off node 
exchanges vs. on-node exchanges.

§ On-node exchanges should be faster (DRAM BW >> Network BW)
§ Different off-node surface:volume ratios leads to load imbalance.
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Little’s Law Redux…
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§ Recast latency-bandwidth product for OMP/CUDA overheads & flop/s...

§ Volta GPU:

o 800 GB/s, 7 Tflop/s, ~20us CUDA launch overhead

o Can’t hit peak bandwidth on any kernel that moves less than 16MB
o Can’t hit peak flops on any kernel that does less than 140M FP operations

§ KNL (Xeon Phi Manycore):

o 400 GB/s, 2.5 Tflop/s, ~5us OMP overhead

o Can’t hit peak bandwidth on any kernel that moves less than 2MB
o Can’t hit peak flops on any kernel that does less than 13M FP operations

§ Haswell (Xeon CPU):

o 100 GB/s, 1.3 Tflop/s, ~1us OMP overhead

o Can’t hit peak bandwidth on any kernel that moves less than 100KB
o Can’t hit peak flops on any kernel that does less than 1M FP operations



Trading Process Concurrency for Thread Concurrency

41

ü Single Programming Model (MPI)
ü Maximizes MPI bandwidth
ü Implicitly addresses affinity and 

NUMA
ü Minimizes superfluous 

synchronization
ü Eliminates Amdahl (threading) 

bottlenecks

Process-Heavy Thread-Heavy

ü Minimizes MPI data movement
ü Memory capacity friendly… avoids 

duplication of data
ü Bandwidth friendly… access to 

shared data is handled via caches 
instead of duplication

ü Compute-friendly… ideally avoids 
redundant computation

ü Load balancing is simplified.
ü Job placement is simplified.



Trading Process Concurrency for Thread Concurrency
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Strong vs. Weak Scaling

44

§ Strong Scaling:
o Global problem sized remains fixed
o Scale the number of nodes (per-node problem size decreases with #nodes)
o network/threading overheads/latencies quickly dominate run time

§ Weak Scaling:
o Global problem size grows proportional to the number of nodes
o Scale the number of nodes (per-node problem size remains fixed)
o Generally keeps network/ threading overheads/latencies in check
o Superlinear algorithms become extremely time consuming (Dense LU takes a day)
o Not amenable to all computational domains
o Corollary: scale per-node problem size with per-node throughput

(e.g. when moving from a 2P Xeon to a 6xGPU node)



Strong Scaling Example
§ e.g. PDE on a structured grid
§ Domain decomposition produces 

an initially favorable 
surface:volume ratio (MPI:local)

§ Strong scaling quickly reduces 
the volume.

§ Surface (e.g. MPI) quickly 
dominates.

§ If scaling continues, overheads 
can dominate
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Why Use Performance Models or Tools?
§ Identify performance bottlenecks

§ Motivate software optimizations

§ Determine when we’re done optimizing
• Assess performance relative to machine capabilities

• Motivate need for algorithmic changes

§ Predict performance on future machines / architectures

• Sets realistic expectations on performance for future procurements

• Used for HW/SW Co-Design to ensure future architectures are well-suited for the 

computational needs of today’s applications.
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Computational Complexity
§ Assume run time is correlated 

with the number of operations 
(e.g. FP ops)

§ Users define parameterize their 
algorithms, solvers, kernels

§ Count the number of operations 
as a function of those parameters

§ Demonstrate run time is 
correlated with those parameters
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = alpha*X[i] + Y[i];
}

DAXPY: O(N) complexity where 
N is the number of elements

#pragma omp parallel for
for(i=0;i<N;i++){
for(j=0;j<N;j++){

double Cij=0;
for(k=0;k<N;k++){

Cij += A[i][k] * B[k][j];
}
C[i][j] = sum;

}}

DGEMM: O(N3) complexity 
where N is the number of rows 
(equations)

FFTs: O(NlogN) in the number of elements

CG: O(N1.33) in the number of elements (equations)

MG: O(N) in the number of elements (equations)

N-body: O(N2) in the number of particles (per time step)

?What are the 
scaling 

constants?

?Why did we 
depart from ideal 

scaling?



Data Movement Complexity
§ Assume run time is correlated 

with the amount of data accessed 

(or moved)

§ Easy to calculate amount of data 

accessed… count array accesses
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DAXPY

DGEMV

DGEMM

FFTs

CG

MG

N-body

Operation
O(N)

O(N2)

O(N3)

O(NlogN)

O(N1.33)

O(N)

O(N2)

Flop’s
O(N)

O(N2)

O(N2)

O(N)

O(N1.33)

O(N)

O(N)

Data

1Hill et al, “Evaluating Associativity in CPU Caches”, IEEE 

Trans. Comput., 1989.

§ Data moved is more complex as it 

requires understanding cache 

behavior…

• Compulsory1 data movement (array 

sizes) is a good initial guess…

• … but needs refinement for the effects of 

finite cache capacities

?Which is more 
expensive…

Performing Flop’s, or
Moving words from memory



Machine Balance and Arithmetic Intensity
§ Data movement and computation 

can operate at different rates
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DAXPY
DGEMV
DGEMM

FFTs
CG
MG

N-body

Operation
O(N)
O(N2)
O(N3)

O(NlogN)
O(N1.33)

O(N)
O(N2)

Flop’s
O(N)
O(N2)
O(N2)
O(N)

O(N1.33)
O(N)
O(N)

Data
O(1)
O(1)
O(N)

O(logN)
O(1)
O(1)
O(N)

AI (ideal)

Peak DP Flop/s
Peak BandwidthBalance = 

§ We define machine balance as 
the ratio of…

Flop’s Performed
Data MovedAI = 

§ …and arithmetic intensity as the 
ratio of…

!Kernels with AI

less than machine 

balance are ultim
ately 

bandwidth-lim
ited



Distributed Memory Performance Modeling
§ In distributed memory, one communicates by sending messages 

between processors.
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§ Messaging time can be constrained by several components…
• Overhead (CPU time to send/receive a message)
• Latency (time message is in the network; can be hidden)
• Message throughput (rate at which one can send small messages… messages/second)
• Bandwidth (rate one can send large messages… GBytes/s)

§ Distributed memory versions of our algorithms can be differently 
stressed by these components depending on N and P (#processors)

§ Bandwidths and latencies are further constrained by the interplay of 
network architecture and contention



Computational Depth
§ Imagine a world of infinite 

parallelism & bandwidth, but finite 
latencies

§ We can classify algorithms by 
depth (max depth of the 
algorithm’s dependency chain)

§ For iterative algorithms, this is 
product of iterations and depth 
per iteration
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DAXPY
DGEMV
DGEMM

FFTs
CG
MG

N-body

Operation
O(N)
O(N2)
O(N3)

O(NlogN)
O(N1.33)

O(N)
O(N2)

Flop’s
O(N)
O(N2)
O(N2)
O(N)

O(N1.33)
O(N)
O(N)

Data
O(1)
O(1)
O(N)

O(logN)
O(1)
O(1)
O(N)

AI (ideal)
O(1)

O(logN)
O(logN)
O(logN)

O(N0.33 logN)
O(logN)
O(logN)

Depth

!Overheads can 

dominate at high 

concurrency or small 

problems



Performance Models
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#FP operations

Cache data movement

DRAM data movement

PCIe data movement

Depth

MPI Message Size

MPI Send:Wait ratio

#MPI Wait’s

Flop/s

Cache GB/s

DRAM GB/s

PCIe bandwidth

OMP Overhead

Network Bandwidth

Network Gap

Network Latency

§ Many different components can contribute to kernel run time.

§ Some are characteristics of the application, some are characteristics of 

the machine, and some are both (memory access pattern + caches).



Performance Models
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§ Can’t think about all these terms all the time for every application…

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Computational
Complexity



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Roofline
Model

Williams et al, "Roofline: An Insightful Visual Performance Model For Multicore Architectures", 
CACM, 2009.



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogP

Culler, et al, "LogP: a practical model of parallel computation", CACM, 1996.



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogGP

Alexandrov, et al, "LogGP: incorporating long messages into the LogP model - one step closer 
towards a realistic model for parallel computation", SPAA, 1995.



Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of these 
components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

Flop/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogCA

Bin Altaf et al, "LogCA: A High-Level Performance Model for Hardware Accelerators", ISCA, 
2017.

!Think about which

model to use



Introduction to the
Roofline Model



Performance Models / Simulators
§ Historically, many performance models and simulators tracked latencies 

to predict performance (i.e. counting cycles)

§ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)
• HW stream prefetching (hardware speculatively loads data)
• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

§ Effective latency hiding has resulted in a shift from a latency-limited 
computing regime to a throughput-limited computing regime

60



Roofline Model
§ Roofline Model is a throughput-

oriented performance model…
• Tracks rates not times
• Augmented with Little’s Law

(concurrency = latency*bandwidth) 
• Independent of ISA and architecture (applies 

to CPUs, GPUs, Google TPUs1, etc…)

611Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/


(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

62

CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

#FP ops / Peak GFlop/s
Time = max

#Bytes / Peak GB/s



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)
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CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

1 / Peak GFlop/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)
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CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFlop/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min



(DRAM) Roofline
§ One could hope to always attain 

peak performance (Flop/s)
§ However, finite locality (reuse) and 

bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)
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CPU
(compute, flop/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFlop/s
GFlop/s = min

AI * Peak GB/s
Note, Arithmetic Intensity (AI) = Flops / Bytes (as presented to DRAM )



(DRAM) Roofline
§ Plot Roofline bound using 

Arithmetic Intensity as the x-axis
§ Log-log scale makes it easy to 

doodle, extrapolate performance 
along Moore’s Law, etc…

§ Kernels with AI less than machine 
balance are ultimately DRAM 
bound (we’ll refine this later…)
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Arithmetic Intensity (Flop:Byte)

DRAM-bound Compute-bound



Roofline Example #1
§ Typical machine balance is 5-10 

flops per byte…
• 40-80 flops per double to exploit compute capability
• Artifact of technology and money
• Unlikely to improve

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.083 flops per byte == Memory bound
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At
ta

in
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 F
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p/

s

DRAM G
B/s

Arithmetic Intensity (Flop:Byte)

TRIAD

Gflop/s ≤ AI * DRAM GB/s

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

0.083

Peak Flop/s



Roofline Example #2
§ Conversely, 7-point constant 

coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• Cache can filter all but 1 read and 1 write per point
• AI = 0.44 flops per byte == memory bound,

but 5x the flop rate
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At
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 F
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DRAM G
B/s

7-point
Stencil

Gflop/s ≤ AI * DRAM GB/s

TRIAD

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
new[ijk] = -6.0*old[ijk ]

+ old[ijk-1      ]
+ old[ijk+1      ]
+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]
+ old[ijk+kStride];

}}}

Arithmetic Intensity (Flop:Byte)
0.083 0.44

Peak Flop/s



Hierarchical Roofline
§ Real processors have multiple levels of 

memory
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications can have locality in each 
level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have a unique 

bandwidth
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DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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DDR bottleneck 
pulls performance 
below MCDRAM 

Roofline

Peak Flop/s



DDR G
B/s

MCDRAM ca
ch

e G
B/s

MCDRAM bound
MCDRAM AI*BW <

DDR AI*BW 

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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DDR G
B/s

Hierarchical Roofline
§ Construct superposition of 

Rooflines…
§ Measure a bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple 

AI’s and multiple bounds (flops, L1, L2, …
DRAM)…

• … performance is bound by the 
minimum
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Peak Flop/s
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performance below 
DDR Roofline



Roofline Model:
In-Core Effects



Data, Instruction, Thread-Level Parallelism…
§ Modern CPUs use several techniques to increase per core Flop/s
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Fused Multiply Add
• w = x*y + z is a common 

idiom in linear algebra
• Rather than having 

separate multiple and 
add instructions, 
processors can use a 
fused multiply add (FMA)

• The FPU chains the 
multiply and add in a 
single pipeline so that it 
can complete FMA/cycle

Vector Instructions
• Many HPC codes apply 

the same operation to a 
vector of elements

• Vendors provide vector 
instructions that apply 
the same operation to 2, 
4, 8, 16 elements…
x [0:7] *y [0:7] + z [0:7]

• Vector FPUs complete 8 
vector operations/cycle

Deep Pipelines
• The hardware for a FMA 

is substantial.  
• Breaking a single FMA 

up into several smaller 
operations and pipelining 
them allows vendors to 
increase GHz

• Little’s Law applies… 
need FP_Latency * 
FP_bandwidth
independent instructions

!Resurgence… 

Tensor Cores, 

QFMA, etc…



Data, Instruction, Thread-Level Parallelism…
§ If every instruction were an ADD 

(instead of FMA), performance 
would drop by 2x on KNL or 4x 
on Haswell 

§ Similarly, if one had no vector 
instructions, performance would 
drop by another 8x on KNL and 
4x on Haswell

§ FP Divides can be even worse.
§ Lack of threading will reduce 

performance by 64x on KNL.
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Roofline



Superscalar vs. instruction mix
§ Define in-core ceilings based on 

instruction mix…
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12% FP

≥50% FP§ e.g. Haswell
• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP 
to get peak performance



Superscalar vs. instruction mix
§ Define in-core ceilings based on 

instruction mix…
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100% FP§ e.g. Haswell
• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP 
to get peak performance

§ e.g. KNL
• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be 
FP to get peak performance



Superscalar vs. instruction mix
§ Define in-core ceilings based on 

instruction mix…
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25% FP

100% FP§ e.g. Haswell
• 4-issue superscalar

• Only 2 FP data paths

• Requires 50% of the instructions to be FP 
to get peak performance

§ e.g. KNL
• 2-issue superscalar

• 2 FP data paths

• Requires 100% of the instructions to be 
FP to get peak performance

non-FP instructions 
can sap instruction 

issue bandwidth and 
pull performance 
below Roofline



Roofline Model:
Cache Effects



Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
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Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses

§ However, write allocate caches 
can lower AI
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Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
§ However, write allocate caches 

can lower AI
§ Cache capacity misses can have 

a huge penalty
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Locality Walls
§ Naively, we can bound AI using 

only compulsory cache misses
§ However, write allocate caches 

can lower AI
§ Cache capacity misses can have 

a huge penalty
Ø Compute bound became 

memory bound
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!Know the theoretical

bounds on your AI.



Roofline Model:
General Strategy Guide



General Strategy Guide
§ Broadly speaking, there are three 

approaches to improving 
performance:
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General Strategy Guide
§ Broadly speaking, there are three 

approaches to improving 
performance:

§ Maximize in-core performance 
(e.g. get compiler to vectorize)

87

Peak Flop/s

No FMA

At
ta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)



General Strategy Guide
§ Broadly speaking, there are three 

approaches to improving 
performance:

§ Maximize in-core performance 
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth 
(e.g. NUMA-aware allocation)
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General Strategy Guide
§ Broadly speaking, there are three 

approaches to improving 
performance:

§ Maximize in-core performance 
(e.g. get compiler to vectorize)

§ Maximize memory bandwidth 
(e.g. NUMA-aware allocation)

§ Minimize data movement 
(increase AI)
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Performance
Tools



Overview

91

§ Timers
§ Performance 

Counters
§ Simulators / Code 

introspection (slow)
§ Sampling (data is 

meaningless if it falls 
below sampling 
granularity)

§ Timeline
§ Time-integrated 

(seconds)
§ Throughput-oriented 

(Gflop/s or GB/s)

§ Machine 
Characterization

§ Application 
Instrumentation 
(timing breakdowns)

§ Performance 
Analysis



Node Characterization
§ “Marketing Numbers” can be 

deceptive…
• Pin BW vs. real bandwidth

• TurboMode / Underclock for AVX

• compiler failings on high-AI loops.

92
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

§ LBL developed the Empirical 
Roofline Toolkit (ERT)…
• Characterize CPU/GPU systems

• Peak Flop rates

• Bandwidths for each level of memory

• MPI+OpenMP/CUDA == multiple GPUs
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Manual Instrumentation
§ Application developers know best…

o What to time
o What to record (e.g. solver iterations, dimensions, etc…)
o How asynchrony is exploited
o How the same function might be called/used many different ways == unique timers
o Computational load imbalance (i.e. understand why timing shows imbalance)

§ Make timing instrumentation a first-class citizen when developing 
an application

§ Create timing wrapper that uses either…
o omp_get_wtime()
o MPI_Wtime()
o rdtsc or equivalent
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LIKWID
§ LIKWID provides easy to use wrappers 

for measuring performance counters…
ü Works on NERSC production systems
ü Minimal overhead (<1%)

ü Scalable in distributed memory (MPI-friendly)

ü Fast, high-level characterization

x No detailed timing breakdown or optimization advice
x Limited by quality of hardware performance counter 

implementation (garbage in/garbage out)

Ø Useful tool that complements other 
tools
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AMReX Application Characterization
(2Px16c HSW == Cori Phase 1)

L2
L3
DRAM
Roofline

https://github.com/RRZE-HPC/likwid

http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid


Intel Advisor
§ Includes Roofline Automation…

ü Automatically instruments applications
(one dot per loop nest/function)

ü Computes FLOPS and AI for each 
function (CARM)

ü AVX-512 support that incorporates masks
ü Integrated Cache Simulator1

(hierarchical roofline / multiple AI’s)
ü Automatically benchmarks target system 

(calculates ceilings)
ü Full integration with existing Advisor 

capabilities
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Memory-bound, invest into 
cache blocking etc

Compute bound: invest 
into SIMD,..

1Technology Preview, not in official product roadmap so far.

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017


Intel VTune
ü Automatically instruments 

applications (sampling)

ü Presents time-oriented execution

ü Has access to performance 
counters (e.g. %bandwidth, front-
end bound, etc…)

ü Hotspot, Concurrency, 
Synchronization, and Memory 
Analysis Options
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http://www.nersc.gov/users/software/performance-and-debugging-tools/vtune/

http://www.nersc.gov/users/software/performance-and-debugging-tools/vtune/


Cray PAT
ü Automatically instruments applications (sampling)
ü Tracing support for user-specified functions
ü Inherent distributed memory (MPI) support
ü Presents time-integrated results
ü Has access to performance counters (e.g. %bandwidth, flop/s, etc…)
ü Load imbalance, MPI, OpenMP, etc…
ü Text output (but Cray Reveal can visualize output)
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http://www.nersc.gov/users/software/performance-and-debugging-tools/craypat/

http://www.nersc.gov/users/software/performance-and-debugging-tools/craypat/


TAU
ü Automatically instruments applications

ü Sampling and Tracing support

ü Presents time-oriented or time-integrated 
results

ü Visualization of MPI communication & 
load imbalance

ü Integrates with MPI (inherent distributed 
memory support)

ü Can leverage HW performance counters

98

https://www.cs.uoregon.edu/research/tau/home.php

https://www.cs.uoregon.edu/research/tau/home.php


Questions?



Backup



Hierarchical Roofline vs.
Cache-Aware Roofline

…understanding different Roofline 
formulations in Advisor



There are two Major Roofline Formulations:
§ Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, …)…

• Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009 
• Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
• Defines multiple bandwidth ceilings and multiple AI’s per kernel

• Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

§ Cache-Aware Roofline
• Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
• Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes)

• As one looses cache locality (capacity, conflict, …) performance falls from one BW ceiling to a lower one at constant AI
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§ Why Does this matter?
• Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
• Cache-Aware Roofline model was integrated into production Intel Advisor

• Evaluation version of Hierarchical Roofline1 (cache simulator) has also been integrated into Intel Advisor

1Technology Preview, not in official product roadmap so far.
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Cache-Aware RooflineHierarchical Roofline
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size
(capacity misses reduce AI)

§ AI is Flop:Bytes as presented to the L1 
cache (plus non-temporal stores)

§ AI is Flop:Bytes after being filtered by 
lower cache levels

§ Memory/Cache/Locality effects are 
observed as decreased performance

§ Memory/Cache/Locality effects are 
observed as decreased AI

§ Requires static analysis or binary 
instrumentation to measure AI

§ Requires performance counters or 
cache simulator to correctly measure AI



Example: STREAM
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ L1 AI…
• 2 flops
• 2 x 8B load (old)
• 1 x 8B store (new)
• = 0.08 flops per byte

§ No cache reuse…
• Iteration i doesn’t touch any data associated with 

iteration i+delta for any delta. 

§ … leads to a DRAM AI equal to 
the L1 AI



Example: STREAM
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Cache-Aware RooflineHierarchical Roofline
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Multiple AI’s….

1) Flop:DRAM bytes

2) Flop:L1 bytes (same)
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Example: 7-point Stencil (Small Problem)
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
new[ijk] = -6.0*old[ijk ]

+ old[ijk-1      ]
+ old[ijk+1      ]
+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]
+ old[ijk+kStride];

}}}

§ L1 AI…
• 7 flops
• 7 x 8B load (old)
• 1 x 8B store (new)
• = 0.11 flops per byte
• some compilers may do register shuffles to reduce the 

number of loads.

§ Moderate cache reuse…
• old[ijk] is reused on subsequent iterations of i,j,k
• old[ijk-1] is reused on subsequent iterations of i.
• old[ijk-jStride] is reused on subsequent iterations of j.
• old[ijk-kStride] is reused on subsequent iterations of k.

§ … leads to DRAM AI larger than 
the L1 AI



Example: 7-point Stencil (Small Problem)
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Small Problem)
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Large Problem)
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Observed Perf.)
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Cache-Aware RooflineHierarchical Roofline
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Example: 7-point Stencil (Observed Perf.)
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Cache-Aware RooflineHierarchical Roofline
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