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What is “Good” Performance?

5

§ Imagine running a mix of 
benchmarks on a new system 
(e.g. GPU/CPU)…
o GFLOP/s alone may not be particularly 

insightful

Kernel (or apps)

o speedup relative to the previous system 
may seem random

G
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O
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s

Ø We need a quantitative model 
that defines Good Performance



What is “Good” Performance?
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2. Must attain high utilization of the CPU/GPU’s compute and/or 

bandwidth capabilities

1. Must operate the CPU/GPU in the throughput-limited regime

not sensitive to Amdahl effects, D2H/H2D transfers, launch overheads, etc…

§ Good Performance is tied to “Efficient” execution

§ Two fundamental requirements …



Roofline Model

§ Roofline Model is a throughput-
oriented performance model

§ applies to x86, ARM, POWER 
CPUs, GPUs, Google TPUs1, 
FPGAs, etc…

§ Helps quantify Good Performance

7
1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor 
Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/


Reduced Model

§ Modern architectures can be complex
§ Don’t model / simulate full architecture
§ Make assumptions on performance and 

usage…
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Reduced Model

§ Modern architectures can be complex
§ Don’t model / simulate full architecture
§ Make assumptions on performance and 

usage…
o Peak GFLOP/s on data in L1
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Reduced Model

§ Modern architectures can be complex
§ Don’t model / simulate full architecture
§ Make assumptions on performance and 

usage…
o Peak GFLOP/s on data in L1
o Load-balanced SPMD code
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Reduced Model

§ Modern architectures can be complex
§ Don’t model / simulate full architecture
§ Make assumptions on performance and 

usage…
o Peak GFLOP/s on data in L1
o Load-balanced SPMD code
o Sufficient cache bandwidth/capacity

11
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Reduced Model

§ Modern architectures can be complex
§ Don’t model / simulate full architecture
§ Make assumptions on performance and 

usage…
o Peak GFLOP/s on data in L1
o Load-balanced SPMD code
o Sufficient cache bandwidth/capacity
Ø Basis for DRAM Roofline Model
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(DRAM) Roofline

§ Any given loop nest will perform:
o Computation (e.g. FLOPs)
o Communication (e.g. moving data to/from DRAM)

13
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Compute GFLOP/s

#FLOPs / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s

§ With perfect overlap  of communication 
and computation...
o Run time is determined by whichever is greater



(DRAM) Roofline

§ Any given loop nest will perform:
o Computation (e.g. FLOPs)
o Communication (e.g. moving data to/from DRAM)

§ With perfect overlap  of communication 
and computation...
o Run time is determined by whichever is greater
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(DRAM) Roofline

§ Any given loop nest will perform:
o Computation (e.g. FLOPs)
o Communication (e.g. moving data to/from DRAM)

§ With perfect overlap  of communication 
and computation...
o Run time is determined by whichever is greater
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Peak GFLOP/s#FLOPs
Time (#FLOPs / #Bytes) * Peak GB/s

= min



(DRAM) Roofline

§ Any given loop nest will perform:
o Computation (e.g. FLOPs)
o Communication (e.g. moving data to/from DRAM)

§ With perfect overlap  of communication 
and computation...
o Run time is determined by whichever is greater
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DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (as presented to DRAM )



Arithmetic Intensity

§ Measure of data locality (data reuse)
§ Ratio of Total Flops performed to Total Bytes moved
§ For the DRAM Roofline…

o Total Bytes to/from DRAM 
o Includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)

17



(DRAM) Roofline Model

§ Plot Roofline bound using Arithmetic 
Intensity as the x-axis

§ Log-log scale makes it easy to 
doodle, extrapolate performance 
along Moore’s Law, etc…
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(DRAM) Roofline Model
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§ Plot Roofline bound using Arithmetic 

Intensity as the x-axis

§ Log-log scale makes it easy to 

doodle, extrapolate performance 

along Moore’s Law, etc…

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )



(DRAM) Roofline Model
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§ Roofline tessellates this 2D view of 

performance into 5 regions…

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )

!
Applies to

GPUs or other 

accelerators



Roofline Example #1

§ Typical machine balance is 5-10 
FLOPs per byte…
o 40-80 FLOPs per double to exploit compute capability

o Artifact of technology and money

o Unlikely to improve
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ Consider STREAM Triad…

o 2 FLOPs per iteration

o Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])

o AI = 0.083 FLOPs per byte == Memory bound
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Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s



Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

o AI = 7 / (8*8) = 0.11 FLOPs per byte
(measured at the L1)



Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
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#pragma omp parallel for
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Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM) 
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Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM)
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0.44
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

== memory bound, but 5x the FLOP rate as TRIAD



What is “Good” Performance?

§ Think back to our mix of loop 
nests (benchmarks)…
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What is “Good” Performance?

§ Think back to our mix of loop 
nests (benchmarks)

§ We can sort kernels by their 
arithmetic intensity…
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What is “Good” Performance?

§ Think back to our mix of loop 
nests (benchmarks)

§ We can sort kernels by their 
arithmetic intensity…

§ … and compare performance 
relative to machine capabilities
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What is “Good” Performance?

§ Kernels near the roofline are 
making good use of 
computational resources
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What is “Good” Performance?

§ Kernels near the roofline are 
making good use of 
computational resources
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Ø kernels can have low performance 
(GFLOP/s), but make good use 
(%STREAM) of a machine



What is “Good” Performance?

§ Kernels near the roofline are 
making good use of 
computational resources
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Ø kernels can have low performance 
(GFLOP/s), but make good use 
(%STREAM) of a machine

Ø kernels can have high performance 
(GFLOP/s), but still make poor use of a 
machine (%peak)



How can performance ever 
be below the Roofline?



How can performance be below the Roofline?
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§ Does one always attain either…
o Peak DRAM Bandwidth
o Peak FLOP/s

§ Bottlenecks other than DRAM 
and FLOP/s…
o Insufficient cache bandwidth + locality
o Didn’t use FMA / Vectors / Tensors / …
o Too many non-FP instructions
o Load imbalance; not SPMD
etc…

HBM
 G

B/s

Peak GFLOP/s
§ Theoretical vs. Empirical 

o Use benchmarked GFLOP/s and GB/s
o Application FLOPs can be underestimated

(how many FLOPs is a divide?)
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Below the Roofline?
Theoretical vs. Empirical



Machine Characterization

§ Theoretical performance (specs) 
can be highly optimistic…
o DRAM pin bandwidth vs. sustained
o TurboMode / Underclocking
o compiler failing on high-AI loops.

36
https://bitbucket.org/berkeleylab/cs-roofline-toolkit
https://github.com/cyanguwa/nersc-roofline
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

§ Need empirical performance data
§ LBL developed the Empirical 

Roofline Toolkit (ERT)…
o Characterize CPU/GPU systems
o Peak Flop rates
o Bandwidths for each level of memory
o MPI+OpenMP/CUDA == multiple GPUs
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Theoretical vs. Empirical

§ Theoretical Roofline:
o Pin bandwidth
o FPUs * GHz
o 1 C++ FLOP = 1 ISA FLOP
o Data movement = Compulsory Misses 
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Theoretical vs. Empirical (Machine)

§ Theoretical Roofline:
o Pin bandwidth
o FPUs * GHz
o 1 C++ FLOP = 1 ISA FLOP
o Data movement = Compulsory Misses 

§ Empirical Roofline:
o Measured bandwidth
o Measured Peak FLOP/s
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Theoretical vs. Empirical (Application FLOPs)

§ Theoretical Roofline:
o Pin bandwidth
o FPUs * GHz
o 1 C++ FLOP = 1 ISA FLOP
o Data movement = Compulsory Misses 

§ Empirical Roofline:
o Measured bandwidth
o Measured Peak FLOP/s
o 1 C++ FLOP >= 1 ISA FLOP (e.g. divide)
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Theoretical vs. Empirical (Application Bytes)

§ Theoretical Roofline:
o Pin bandwidth
o FPUs * GHz
o 1 C++ FLOP = 1 ISA FLOP
o Data movement = Compulsory Misses 

§ Empirical Roofline:
o Measured bandwidth
o Measured Peak FLOP/s
o 1 C++ FLOP >= 1 ISA FLOP (e.g. divide)
o Measured data movement (cache effects)

40
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Ø True Arithmetic Intensity can be higher 
or lower than expected



Below the Roofline?
Memory Hierarchy and Cache Bottlenecks



Memory Hierarchy

§ Processors have multiple levels of 
memory/cache
o Registers
o L1, L2, L3 cache
o HBM/HBM (KNL/GPU device memory)
o DDR (main memory)
o NVRAM (non-volatile memory)
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Memory Hierarchy

§ Processors have different bandwidths 
for each level
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Memory Hierarchy

§ Processors have different bandwidths 
for each level
o different machine balances for each level
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Memory Hierarchy

§ Processors have different bandwidths 
for each level
o different machine balances for each level

§ Applications have locality in each level
o different data movements for each level
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Memory Hierarchy

§ Processors have different bandwidths 
for each level
o different machine balances for each level

§ Applications have locality in each level
o different data movements for each level
o different arithmetic intensity for each level
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Cache Bottlenecks

§ For each additional level of the memory hierarchy, we can add another 
term to our model…

47

Peak GFLOP/s
GFLOP/s = min

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )

AIDRAM * DRAM GB/s



Cache Bottlenecks

§ For each additional level of the memory hierarchy, we can add another 
term to our model…
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Peak GFLOP/s
GFLOP/s = min

AIL2 * L2 GB/s
AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )

AIDRAM * DRAM GB/s



Cache Bottlenecks

§ For each additional level of the memory hierarchy, we can add another 
term to our model…
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Peak GFLOP/s
GFLOP/s = min

AIL2 * L2 GB/s

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )

AIDRAM * DRAM GB/s

AIL1 * L1 GB/s



Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
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Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each 

level of memory
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Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each 

level of memory
o Arithmetic Intensity (dot) for each level of 

memory
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Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each 

level of memory
o Arithmetic Intensity (dot) for each level of 

memory
Ø performance is ultimately the minimum 

of these bounds
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L2 Bound
L2 AI*BW

is less than
HBM AI*BW
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Cache Bottlenecks

§ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each 

level of memory
o Arithmetic Intensity (dot) for each level of 

memory
Ø performance is ultimately the minimum 

of these bounds
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§ If L2 bound, we see DRAM dot 
well below DRAM ceiling
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Cache Bottlenecks

§ Widely separated Arithmetic 
Intensities indicate high reuse in 
the cache

55

At
ta

in
ab

le
 G

FL
O

P/
s

HBM G
B/s

L2
 ca

ch
e G

B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

High Reuse



Cache Bottlenecks

§ Widely separated Arithmetic 
Intensities indicate high reuse in 
the cache

§ Similar Arithmetic Intensities 
indicate effectively no cache 
reuse (== streaming)

56

A
tta

in
ab

le
 G

F
LO

P
/s

HBM
 G

B/s

L2
 ca

ch
e 

GB/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

no reuse
(streaming)

!All concepts

apply to GPUs



Below the Roofline?
FMA, Vectorization, Tensor Cores



Return of CISC
§ Vectors have their limits (finite DLP, register file energy scales with VL, etc…)

§ Death of Moore’s Law is reinvigorating Complex Instruction Set Computing (CISC)

58

Ø If instructions are a mix or scalar (predicated), vector, and matrix 
operations, performance is now a weighted average of them.

§ Modern CPUs and GPUs are increasingly reliant on special (fused) instructions 
that perform multiple operations (fuse common instruction sequences)…
o FMA (Fused Multiply Add): z=a*x+y …z,x,y are vectors or scalars
o 4FMA (Quad FMA): z=A*x+z …A is a FP32 matrix; x,z are vectors
o WMMA (Tensor Core): Z=AB+C …A,B are FP16 matrices; Z,C are FP32



Return of CISC

§ Consider NVIDIA Volta GPU… 
o ~100 TFLOPs for FP16 Tensor
o 15 TFLOPS for FP32 FMA
o 7.5 TFLOPs for FP32 Add

§ DL applications mix Tensor, 
FP16, and FP32 

§ DL performance may be well 
below nominal Tensor Core peak
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Return of CISC

§ Consider NVIDIA Volta GPU… 
o ~100 TFLOPs for FP16 Tensor
o 15 TFLOPS for FP32 FMA
o 7.5 TFLOPs for FP32 Add

§ DL applications mix Tensor, 
FP16, and FP32 

§ DL performance may be well 
below nominal Tensor Core peak

§ The actual mix of instructions 
introduces an effective ceiling
on performance…
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Below the Roofline?
FPU Starvation



FPU Starvation

§ Processors have finite instruction fetch/decode/issue bandwidth
§ Moreover, the number of FP units dictates the FP issue rate required to 

hit peak
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Ø Ratio of these two rates is the minimum FP instruction fraction 
required to hit peak 



FPU Starvation 
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Peak GFLOP/s

25% FP (75% int)
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≥50% FP

§ Consider…
o 4-issue superscalar
o 2 FP data paths
Ø >50% of the instructions must be FP to 

have any chance at peak performance



FPU Starvation 
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Peak GFLOP/s

50% FP (50% int)

A
tt
a
in

a
b
le

 F
L
O

P
/s

HBM
 G

B/s

Arithmetic Intensity (FLOP:Byte)

25% FP (75% int)

100% FP

§ Conversely, 
o Keeping 2 FP data paths, 

o but downscaling to 2-issue superscalar

Ø 100% of the instructions must be FP to 
get peak performance



FPU Starvation 
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Peak GFLOP/s
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§ Conversely, 

o Keeping 2 FP data paths, 

o but downscaling to 2-issue superscalar

Ø 100% of the instructions must be FP to 
get peak performance



FPU Starvation 
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non-FP instructions 
sap issue bandwidth 
and pull performance 

below the Roofline

§ Conversely, 
o Keeping 2 FP data paths, 
o but downscaling to 2-issue superscalar
o 100% of the instructions must be FP to 

get peak performance
Ø Codes that would have been memory-

bound are now decode/issue-bound.



Recap



Recap
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§ Loop Arithmetic Intensity (for each level of memory)
o Total FLOPs / Total Data Movement
o Includes all cache effects
Ø Measure of a loop’s temporal locality

§ Roofline bounds performance as a function of Arithmetic Intensity
o Horizontal Lines = Compute Ceilings
o Diagonal Lines = Bandwidth Ceilings
o Bandwidth ceilings are parallel on log-log scale
Ø Collectively, ceilings define an upper limit on performance

§ Plotting loops  on the Roofline
o Each loop has one dot per level of memory
o x-coordinate = arithmetic intensity at that level
o y-coordinate = performance (e.g. GFLOP/s)
Ø Proximity to associated ceiling is indicative of a performance bound
Ø Position of dots relative to each other is indicative of cache locality

!Same on

GPUs or other 

accelerators



What is Roofline used for?
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§ Predict performance on future machines / architectures
o Set realistic performance expectations
o Drive for HW/SW Co-Design

§ Identify performance bottlenecks & motivate software optimizations

§ Determine when we’re done optimizing code
o Assess performance relative to machine capabilities
o Track progress towards optimality
o Motivate need for algorithmic changes

§ Understand performance differences between Architectures, 
Programming Models, implementations, etc…
o Why do some Architectures/Implementations move more data than others?
o Why do some compilers outperform others?



Model is just one piece of the puzzle…
§ Roofline Model defines the basic 

concepts and equations.  
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Model is just one piece of the puzzle…
§ System Characterization defines 

the shape of the Roofline (peak 
bandwidths and FLOP/s)
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Model is just one piece of the puzzle…
§ Application Characterization 

determines…
o Intensity and Performance of each loop

o Position of any implicit ceilings
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Model is just one piece of the puzzle…
§ Visualization tools combine all 

data together and provide 
analytical capability
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Visualization
and

Analysis

Roofline
Model

(Theory)

Rest of Tutorial…
§ Charlene will demonstrate how to 

apply the Roofline model to 
NVIDIA GPUs
o GPU benchmarking
o application characterization
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Visualization
and

Analysis

Roofline
Model

(Theory)

Rest of Tutorial…
§ Charlene will demonstrate how to 

apply the Roofline model to 
NVIDIA GPUs
o GPU benchmarking
o application characterization
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System 
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Application
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§ Sam will extend this by examining 
advanced GPU topics…
o Instruction Roofline Model
o Using Roofline to analyze DL codes
o Scaling Trajectories



Rest of Tutorial…
§ Charlene will introduce and demo 

Intel® Advisor
ü Automatically instruments applications

(one dot per loop nest/function)

ü Computes FLOPS and AI for each 
function (CARM)

ü Integrated Cache Simulator 
(hierarchical roofline / multiple AI’s)

ü AVX-512 support that incorporates masks

ü Automatically benchmarks target system 
(calculates ceilings)

ü Full integration with existing Advisor 
capabilities
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Memory-bound, invest into 
cache blocking etc

Compute bound: invest 
into SIMD,..



Roofline
Model

(Theory)

Rest of Tutorial…
§ Charlene will introduce and demo 

Intel® Advisor
ü Automatically instruments applications

(one dot per loop nest/function)

ü Computes FLOPS and AI for each 
function (CARM)

ü Integrated Cache Simulator 
(hierarchical roofline / multiple AI’s)

ü AVX-512 support that incorporates masks

ü Automatically benchmarks target system 
(calculates ceilings)

ü Full integration with existing Advisor 
capabilities
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Roofline
Model

(Theory)

Rest of Tutorial…
§ Jack will discuss how Roofline is 

used by the NERSC NESAP 
teams
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Questions?



BACKUP



Performance 
Extrapolations



Setting Realistic Expectations…
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§ Consider 3 kernels (A,B,C)
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Ø kernels A and B are bound by 
memory bandwidth

Ø kernel C is bound by peak FLOP/s



Setting Realistic Expectations…
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§ Imagine you want to run on a 
machine with twice the peak 
FLOPs…
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Ø kernel C’s performance could double
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Setting Realistic Expectations…
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§ What if that machine also 
doubled memory bandwidth…
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Retrospective



Performance Model Retrospective

§ Too many components contribute to app/loop run time…
o some are characteristics of the application
o some are characteristics of the machine
o some are both (memory access pattern + caches)
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Performance Model Retrospective

§ Performance models often conceptualize the system as being 
dominated by one or more aspects of machine and application…

87

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Computational Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Computational
Complexity



Performance Model Retrospective

§ Performance models often conceptualize the system as being 
dominated by one or more aspects of machine and application…
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#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Computational Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogP

Culler, et al, "LogP: a practical model of parallel computation", CACM, 
1996.



Performance Model Retrospective

§ Performance models often conceptualize the system as being 
dominated by one or more aspects of machine and application…
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#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Computational Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

LogGP

Alexandrov, et al, "LogGP: incorporating long messages into the LogP model -
one step closer towards a realistic model for parallel computation", SPAA, 1995.



Performance Model Retrospective

§ Architectural innovations → Throughput Limited Regime
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#FP operations
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Roofline
Model

Williams et al, "Roofline: An Insightful Visual Performance Model For Multicore 

Architectures", CACM, 2009.


