
An Instruction Roofline Model for GPUs

Nan Ding, Samuel Williams
Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

{NanDing, SWWilliams}@lbl.gov

Abstract—The Roofline performance model provides an in-
tuitive approach to identify performance bottlenecks and guide
performance optimization. However, the classic FLOP-centric
approach is inappropriate for the emerging applications that
perform more integer operations than floating point operations.
In this paper, we propose an Instruction Roofline Model on
NVIDIA GPUs. The Instruction Roofline incorporates instruc-
tions and memory transactions across all memory hierarchies
together and provides more performance insights than the
FLOP-oriented Roofline Model, i.e., instruction throughput,
stride memory access patterns, bank conflicts, and thread
predication. We use our Instruction Roofline methodology
to analyze five proxy applications: HPGMG from AMReX,
BatchSW from merAligner, Matrix Transpose benchmarks,
cudaTensorCoreGemm, and cuBLAS. We demonstrate the
ability of our methodology to understand various aspects of
performance and performance bottlenecks on NVIDIA GPUs
and motivate code optimizations.

Keywords-Instruction Roofline Model, NVIDIA GPUs, mem-
ory patterns

I. INTRODUCTION

Migrating an application to a new architecture is a chal-
lenge, not only in porting the code but also in understanding
and tuning the performance. Rather than manually perform-
ing the analysis, developers tend to use tools to motivate
the optimization. Therefore, performance analysis tools are
becoming one of the most critical components for modern
architectures. Performance modeling, the critical technology
to quantify performance characteristics and identify potential
performance bottlenecks associated with machine capabili-
ties, is becoming an indispensable tool understanding per-
formance behaviors and guiding performance optimization.

The Roofline model [1] is a visually-intuitive method
for users to understand performance by coupling together
floating-point performance, data locality (arithmetic inten-
sity), and memory performance into a two-dimensional
graph. The Roofline model [2–4] can tell whether the code
is either memory-bound across the full memory hierarchy
or compute-bound. Unfortunately, even with sufficient data
locality, one cannot guarantee high performance. Many
applications perform more integer operations than floating-
point, and there are applications in emerging domains, e.g.,
graph analytics, genomics, etc.. that perform no floating-
point operations at all. The classic, FLOP-centric Roofline
model is inappropriate for such domains. To that end, we
develop an Instruction Roofline Model for GPUs to affect
performance analysis of integer-heavy computations.

The contributions in this paper include:

• Definition of instruction Roofline ceilings that charac-
terize the peak machine instruction throughput.

• Creation of memory walls that define a range of effi-
ciency for memory access to global or shared memory.

• Development of an application characterization
methodology that incorporates instruction throughput
and thread predication into the Roofline model.

• Development of an application execution characteri-
zation methodology that allows easy visualization of
global and shared memory access patterns.

• Evaluation of the Instruction Roofline Model and
methodology on NVIDIA’s latest V100 GPUs using
five proxy applications: HPGMG (mix of floating-point
and integer instructions), BatchSW (integer-only), Ma-
trixTranspose (load/store), and cudaTensorCoreGemm
(tensor core Warp-Matrix-Multiply-Accumulate opera-
tions) and cuBLAS (cublasGemmEx API).

II. THE CLASSIC ROOFLINE MODEL

The Roofline model characterizes a kernel’s performance
in GigaFLOPs per second (GFLOP/s) as a function of its
arithmetic intensity (AI), as described as Eq.(1). The AI is
expressed as the ratio of floating-point operations performed
to data movement (FLOPs/Bytes). For a given kernel, we
can find a point on the X-axis based on its AI. The Y-
axis represents the measured GFLOP/s. This performance
number can be compared against the bounds set by the
peak compute performance (Peak GFLOPs) and the memory
bandwidth of the system (Peak GB/s) to determine what is
limiting performance: memory or compute.

GFLOP/s ≤ min

{
Peak GFLOP/s

Peak GB/s×Arithmetic Intensity
(1)

The classic Roofline model has been successfully used
for performance analysis on different architectures. In prior
work, researchers created additional compute ceilings (e.g.
“no FMA” peak) and memory ceilings (e.g., cache lev-
els) [3, 5, 6]. However, such refinement is misplaced when
the bottleneck is not floating-point in nature but pertains to
integer instruction throughput or memory access.

III. INSTRUCTION ROOFLINE MODEL FOR GPUS

Intel Advisor [7] introduced the ability to analyze integer-
heavy applications and generate scalar and vector integer
operation (IntOP) ceilings. At its core, the Roofline model
in Intel Advisor is based on operations (floating-point or
integer). In either case, the vertical axis remains performance

(FLOP/s, int/s, or int/s+float/s) while the horizontal axis
remains Arithmetic Intensity (operations per byte).

Whereas Intel Advisor can be quite effective in this
regard, it suffers from two aspects. First, it only captures
pipeline throughput and may not detect instruction fetch-
decode-issue bottlenecks. Second, it is an x86 CPU-only
solution. The latter is particularly troublesome given the
ascendancy of accelerated computing.

In order to affect the Instruction Roofline analysis for
GPU-accelerated applications, we need to target a different
set of metrics. First, rather than counting floating-point
and/or integer operations, we count instructions. Counting
instructions allows us to both identify fetch-decode-issue
bottlenecks, and, when categorized by types, pipeline uti-
lization. Thread predication is another critical performance
factor on GPUs. When a branch is executed, threads that
don’t take the branch are predicated (masked in vector
parlance) so that they do not execute subsequent operations.
When predication is frequent, one may observe poor kernel
performance as very few threads execute work on any given
cycle. Finally, the nature of GPU computing makes efficient
data movement a critical factor in application execution time.
As such, it is essential that we also characterize the global
and shared memory access patterns to assess the efficiency of
data motion and motivate future code optimization. Although
developers can use nvprof [8] and nvvp [9] to diagnose
the performance bottlenecks discussed above, the Instruction
Roofline Model provides an approachable means of charac-
terizing performance bottlenecks in a single figure.

A. Architectural Characterization

First, we describe how we define the Instruction Roofline
ceilings and memory pattern walls. Here we use NVIDIA’s
latest V100 GPU (GV100) [10] to describe the methodology,
but it is applicable to any GPU architecture.

Instructions and Bandwidth Ceilings: Each GV100
Streaming Multiprocessor (SM) consists of four process-
ing blocks (warp schedulers), and each warp sched-
uler can dispatch one instruction per cycle. As such,
the theoretical maximum (warp-based) instruction/s is
80(SM) × 4(warp scheduler) × 1(instruction/cycle) ×
1.53(GHz) = 489.6 GIPS. Memory access is coalesced into
transactions. The transaction size for global/local memory,
the L2 cache, and HBM are 32 bytes. The shared memory
transaction size is 128 bytes. In practice, a warp-level load
may generate anywhere from 1 to 32 transactions depending
on memory patterns. This makes the “transaction” the natu-
ral unit when analyzing memory access. We leverage Yang
et al.’s methodology [2] for measuring GPU bandwidths but
rescale into billions of transactions per second (GTXN/s)
based on the transaction size.

The Instruction Roofline Model is described in Eq.(2). A
kernel’s performance, characterized in billions of instruc-
tions per second (GIPS), is a function of peak machine

bandwidth (GTXN/s), Instruction Intensity, and machine
peak GIPS. “Instruction Intensity” on the GPU is defined as
warp-based instructions per transaction. Figure 1 shows the
resultant Instruction Roofline ceilings for the GV100. L1,
L2, and HBM bandwidths of 14000, 2996, and 828 GB/s
sustain 437, 93.6, and 25.9 GTXN/s when normalized to
the typical 32-byte transaction size.

GIPS ≤ min

{
Peak GIPS

Peak GTXN/s× Instruction Intensity
(2)

10-2 10-1 100 101 102

Instuction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S) Thoeretical Peak: 489.6 warp GIPS

HBM 25.9 GTXN/s
L2 93.6 GTXN/sL1 437.5 GTXN/s

Figure 1: Instruction Roofline Model for the GV100.
1 GTXN/s is 109 transactions per second.

Global Memory Walls: When a warp executes an in-
struction to access global memory, it is crucial to consider
the access pattern of threads in that warp because inefficient
memory access can lower the performance by generating
superfluous transactions.

As discussed, a warp-level load instruction can generate
anywhere from 1 to 32 transactions. We can recast such a
ratio into two key instruction intensities: 1 and 1/32 warp-
level global loads per global transaction. The former arises
when all threads in a warp reference the same memory
location and only a single transaction is generated. We call
this “stride-0”. Conversely, the other extreme can occur for
a number of scenarios including random access, and striding
by over 32 bytes (“stride-8” if FP32/INT32 and “stride-4”
if FP64). Unit-stride (“stride-1”), memory access provides
a global LD/ST intensity of 1/8 (FP64) and 1/4 (FP32,
INT32). Thus, on the Instruction Roofline, we may plot three
intensity “walls” representing stride-0, stride-1 (unit-stride),
and stride-8.

Shared Memory Walls: GPU shared memory is a highly-
banked structure within each SM providing 4-byte access.
In theory, this allows for all 32 threads in a warp to
make concurrent random access to shared memory in a
single 128-byte transaction. However, as there are only
32 banks on the GV100, two threads contending for the
same bank but different 4-byte words will cause a “bank
conflict” and multiple transactions will be generated. In
the worst case, all 32 threads hit different 4-byte words in
the same bank, and 32 transactions are generated. As with

2

global/local memory walls, we can visualize bank conflicts
on the Instruction Roofline Model. Note, there are two key
instruction intensities: 1 and 1/32 warp-level shared loads
per shared transaction.

B. Application Characterization

Mirroring the previous section that characterizes GPU
performance capabilities, in this section, we describe the
methodology we employ to characterize application execu-
tion in terms of the Instruction Roofline Model.

Instruction Intensity and Performance: The instruction
Roofline requires we measure three terms. We use
inst_executed_thread/32 to record the number
of instructions executed by each kernel (scaled to
warp-level), and nvprof -print-gpu-summary
to extract kernel run time. We use the sum of
gld_transactions and gst_transactions to
record the total number of global transactions (for
L1) and the sum of shared_load_transactions
and shared_store_transactions to record the
total number of shared transactions (for L1). Similarly,
we use the sum of l2_read_transactions
and l2_write_transactions to record
the total number of L2 transactions, and the
sum of dram_read_transactions and
dram_write_transactions to record the total number
of HBM transactions. The ratio inst executed thread/32

HBM transactions is
the HBM Instruction Intensity while inst executed thread/32

1e9 ∗ run time
is instruction performance in GIPS.

Figure 2 visualizes the resultant Instruction Roofline
Model for an arbitrary kernel. As with the traditional
Roofline, one may infer cache reuse based on the distance
between points (no reuse) and performance bounds based on
how closes each colored point is to the associated colored
bandwidth ceiling or peak performance.

Tensor Cores: Tensor Cores in GV100 are programmable
matrix-multiply-and-accumulate units that can deliver up to

125 TFLOP/s. Whereas the traditional Roofline is premised
on “operations”, as discussed in the previous section, we
can recast intensity in terms of instructions. We can take
that one step further and use floating-point instructions or
tensor instruction. Such metrics are particularly useful in
understanding why pipeline utilization can be high even if
FLOP/s is low. We use smsp inst executed pipe tensor.sum
in NSight Compute [11] to collect the total number of
warp-based instructions (HMMA) executed on tensor cores.
Similar to how previous work would plot floating-point
performance relative to peak and a “no FMA” peak [2], we
plot sustained HMMA GIPS relative to either peak GIPS or
peak HMMA GIPS.

Thread Predication: Quantifying the performance im-
pact of thread predication relative to bandwidth bottle-
necks can be critical in determining the overall kernel
performance impact. Moreover, thread predication is an
intuitive way to understand resource utilization — the
fraction of threads in one warp that are active during the
execution. Recall that regardless of whether one thread
in a warp is executing an instruction, or 32 threads in a
warp are executing 32 instructions, only one warp-level
instruction is executed. Therefore, the ratio of warp-based
instructions (inst_executed) to thread-based instruc-
tions (inst_thread_executed/32) is the degree of
predication. When the number is close to 1.0, there is little
predication, and the performance impact is small.

Figure 2(a) and (b) highlight two cases of thread predica-
tion. In both figures, the dotted line represents the observed
warp-level instruction performance. A dotted line close to
the theoretical peak indicates instruction issue rates are
bottlenecked by hardware issue rates. Thread-level instruc-
tion performance is constrained to be less than or equal to
this bound (ceiling). Conversely, the dots represent thread
instruction throughput normalized by 32 (warp size) for each
level of memory. By definition, (normalized) thread-level
instruction rates must be less than warp instruction rates.

10-2 10-1 100 101

Instuction Intensity (Warp Instructions per Transaction)

10-1

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S) Thoeretical Peak: 489.6 warp GIPS

HBM 25.9 GTXN/sL2 93.6 GTXN/s
L1 437.5 GTXN/s

L1 (tot_inst)
L2 (tot_inst)
HBM (tot_inst)

No Thread Predicatoin

(a) Instruction Roofline with no thread predication.

10-2 10-1 100 101

Instuction Intensity (Warp Instructions per Transaction)

10-1

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S) Thoeretical Peak: 489.6 warp GIPS

HBM 25.9 GTXN/s
L2 93.6 GTXN/sL1 437.5GTXN/s

L1 (tot_inst)
L2 (tot_inst)
HBM (tot_inst)

Thread Predicatoin

(b) Instruction Roofline with thread predication.

Figure 2: Thread predication in the context of the Instruction Roofline Model. A kernel without predication (left) has
thread instruction throughput (dots) matched to the warp instruction throughput (dotted line) while a kernel with moderate
predication (right) has thread instruction throughput substantially below the warp instruction throughput.

3

10-2 10-1 100 101

Instuction Intensity (Warp Instructions per Transaction)

10-1

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

St
rid

e-
0

St
rid

e-
1

St
rid

e-
8

Thoeretical Peak: 489.6 warp GIPS

L1 = Global 437.5 GTXN/s

L1 (tot_inst)
Global (ldst_inst)

Figure 3: Global memory walls on the Instruction Roofline
plot for the GV100. A generic kernel has been plotted on
the Roofline for pedagogical purposes. The position of the
open dot visualizes the stride of the memory access pattern.

In Figure 2(a), the dots (thread-level instruction throughput)
fall on the dotted line (warp-level instruction throughput)
indicating no thread predication. Conversely, in Figure 2(b),
the dots are well below the dotted line indicating a 2× loss
in performance due to thread predication.

Global Memory Pattern Walls: Figure 3 shows the
Instruction Roofline Model with Global Memory Walls.
The solid red dot’s instruction intensity is based on total
instructions and L1 transactions that include global, local,
and shared memory. Whereas global/local transactions are
32 bytes, shared memory transactions are 128 bytes. Thus,
in order to calculate the number of equivalent 32-byte
transactions and create a common denominator, one must
scale the number of shared memory transactions by four.
The resultant denominator, 1× global transactions+ 4×
shared transactions, allows for direct comparisons to
the L1 ceiling and allows us to determine whether the
combined effect of global, local, and shared transactions
has made the code L1-bound. We may refine it (open
orange dot) to include only warp-level global load/store in-
structions (e.g. inst_executed_global_loads) and
transactions (e.g. gld_transactions). This resultant dot
will have both a different performance (GIPS) and a differ-
ent instruction intensity as there are fewer load and store
instructions than total instructions. The distance between the
open and solid points is the fraction of load/store instructions
constitute the dynamic instruction mix (close points indicate
code that are mostly load/store).

The position of the load/store instruction intensity relative
to the memory walls visualizes the average memory access
pattern. In this generic example, we see that the dot lies on
the unit-stride wall indicating the kernel accesses memory
in a unit-stride manner. If it were to move to the left, one
would conclude strided or gather memory access while if
it were to move to the right, one would conclude multiple
threads access the same word in memory.

Shared Memory Walls: Recasting our previous
discussion from global memory and the L1 cache to

10-2 10-1 100 101 102

Instuction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

N
o

ba
nk

 c
on

fli
ct

32
-w

ay
 b

an
k

co
nf

lic
t

Thoeretical Peak: 489.6 warp GIPS

Shared 109.3 GTXN/s

Shared (ldst_inst)

Figure 4: Shared memory walls on the Instruction Roofline
plot on GV100. A generic kernel has been plotted on the
Roofline for pedagogical purposes. The position of the open
dot visualizes the number and impact of bank conflicts.

shared memory, Figure 4 shows the Instruction Roofline
Model with shared memory bandwidth and shared
Memory Walls. Note, shared memory GTXN/s is less
than global memory (L1 cache) GTXN/s in as the shared
memory transaction size is 128 bytes while the global
memory size is 32 bytes. Here, striding effects have been
juxtaposed with bank conflicts. We measure the number
of warp-level shared load or store instructions a kernel
executes with inst_executed_shared_loads
and inst_executed_shared_stores and
the number of shared load and store transactions
with shared_load_transactions and
shared_store_transactions. We may use these
terms to calculated shared memory instruction intensity.

Consider the exemplar kernel in Figure 4. We may plot
its shared memory instruction intensity and performance
(open dot) relative to the shared memory bandwidth and
walls. We observe that the kernel is efficiently accessing
shared memory as it is close to the “no bank conflict” wall.
Conversely, kernels that generate large numbers of bank
conflicts will move to the left towards the “32-way bank
conflict” wall. Similarly, we can compare the shared open
dot to the shared memory ceiling to tell whether the code is
bound by the shared memory.

IV. RESULTS

In this section, we describe our test machine and profiling
tool, and use the Instruction Roofline Model to evaluate and
analyze several GPU-accelerated applications.

A. Experimental Setup

Results presented in this paper were obtained on the GPU-
accelerated partition on Cori (Cori-GPU) at NERSC and
Summit at OLCF. Cori-GPU is comprised of nodes with two
Intel Skylake CPUs and eight NVIDIA V100 GPUs, while
each compute node on Summit contains two IBM POWER9
processors and six NVIDIA V100 accelerators. Nevertheless,
in all experiments, we use only a single process running
on one GPU and thus mitigate NVLink, PCIe, and host

4

10-2 10-1 100 101

Instuction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

St
rid

e-
0

St
rid

e-
4

(d
ou

bl
e)Global 4

37.5 GTXN/s

Thoeretical Peak: 489.6 warp GIPS

St
rid

e-
1

(d
ou

bl
e)

level 5
level 6
level 7
level 8

L1 (tot_inst)
L2 (tot_inst)
HBM (tot_inst)
Global (ldst_inst)

5

6 7 8

(a) Instruction Roofline for GSRB FP.

10-2 10-1 100 101

Instuction Intensity (Warp Instructions per Transaction)

101

102

103

B
ro

ad
ca

st

U
ni

t S
tri

de
 (d

ou
bl

e)

G
at

he
r

Glob
al 4

37
.5

GTXN/s

Thoeretical Peak: 489.6 warp GIPS

level 5
level 6
level 7
level 8

L1 (tot_inst)
L2 (tot_inst)
HBM (tot_inst)
Global (ldst_inst)

10-2 10-1 100 101
100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

St
rid

e-
0

St
rid

e-
1

(d
ou

bl
e)

St
rid

e-
4

(d
ou

bl
e)L1 =

 Glob
al 4

37
.5

GTXN/s

Thoeretical Peak: 489.6 warp GIPS

level 5
level 6
level 7
level 8

L1 (tot_inst)
L2 (tot_inst)
HBM (tot_inst)
Global (ldst_inst)

7 8
6

5

(b) Instruction Roofline for GSRB BRANCH.

10-2 10-1 100 101

Instuction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

St
rid

e-
0

L1 =
 Glob

al 4
37

.5
GTXN/s

Thoeretical Peak: 489.6 warp GIPS

St
rid

e-
1

(d
ou

bl
e)

St
rid

e-
4

(d
ou

bl
e)

level 5
level 6
level 7
level 8

L1 (tot_inst)
L2 (tot_inst)
HBM (tot_inst)
Global (ldst_inst)

5

6
7 8

(c) Instruction Roofline for GSRB STRIDE2.

Figure 5: Instruction Rooflines on GV100 for the three implementations of HPGMG’s GSRB. Solid dots are the total
number of instructions (tot inst) executed by non-predicated threads, open dots refer to the global memory access patterns,
and dotted lines are warp-level instructions. Note, “level #” refers to the level in the multigrid v-cycle.

processor performance. As a result, Cori-GPU and Summit
benchmark performance will be the same for purposes of this
paper. On Both machines, we use CUDA 10, nvprof [8],
and NSight Compute [11].

We evaluate the Instruction Roofline methodology for
NVIDIA GPUs using five proxy applications: HPGMG [12–
14] from AMRex [15], BatchSW [16] from mer-
Aligner [17], Matrix Transpose benchmarks [18], cudaTen-
sorCoreGemm [19], and cuBLAS [20]. These applications
exhibit a range of computational characteristics including
data types, data locality, and thread predication properties.
Specifically, HPGMG executes roughly 50% integer instruc-
tions and 30% floating-point instructions, matrix transpose
performs almost entirely load/store instructions, BatchSW
performs entirely integer instructions, and both cudaTen-
sorCoreGemm and cuBLAS perform HMMA instructions
but use different implementations. We show that unlike
the classical FLOP-centric Roofline model, the Instruction
Roofline Model and our methodology can effectively analyze
such a wide range of applications.

B. HPGMG

HPGMG is a geometric multigrid benchmark to proxy the
multigrid solves in block structured AMR (Adaptive Mesh
Refinement) applications that use the AMReX framework.
HPGMG solves the 4th order, variable-coefficient Laplacian
on a unit-cube with Dirichlet boundary conditions using
a multigrid F-cycle. The Gauss-Seidel, Red-Black (GSRB)
smoother dominates HPGMG’s run time. GSRB smoothers
perform two stencil kernel invocations per smooth (red and
black). Cells are marked as either red or black in a 3D
checkerboard pattern. Cells matching the sweep color are
updated, while the others are copied to the result array.

HPGMG includes three different implementations of
its GSRB smoother: GSRB FP, GSRB BRANCH, and
GSRB STRIDE2. All three perform the same computation

and touch the same data over the course of a thread blocks
execution, but vary memory access and predication. As
such, they are ideal cases to demonstrate the subtle per-
formance differences using the Instruction Roofline Model.
GSRB BRANCH is conceptually the simplest implemen-
tation. In it, a thread block operates on a 2D slice or a
3D cache block. Within the slice, red-black execution is
affected through a branch. This branch reduces the number
of non-predicated threads without reducing the number of
warps. The branch is eliminated in GSRB FP through
multiplication by a precomputed array of 1’s and 0’s. As
such, predication is eliminated at the cost of doubling
nominal computation whilst maintaining the same number
of warp-level instructions. GSRB STRIDE2 is similar to
GSRB BRANCH with the caveat that the 2D thread block’s
x-dimension is half the 2D tile’s x-dimension. Thus, each
thread is responsible for updating two adjacent points.
Through clever address calculation, FLOPs are reduced,
predication is eliminated, and the number of warp-level
instructions is minimized. Note, none of these implemen-
tations use shared memory. As such, only global memory
stride walls are relevant. We show how the performance
insights gained from the Instruction Roofline correlate with
the performance observations.

Figure 5 shows the Instruction Roofline on GV100 for the
three implementations of GSRB as a function of multigrid
level using eight 1283 boxes on the finest level (largest
arrays). On each of these figures, we overlay both total
instruction intensity/performance as well as global memory
access pattern (global load/store intensity/performance). The
former is comparable to the nominal instruction Roofline,
while the latter is shown relative to the memory stride walls.
GIPS generally increases from level 5 (smallest arrays)
to level 8 (largest arrays) as the overhead:surface:volume
ratio improves. Figure 5a (GSRB FP) makes it immediately
obvious that: (1) memory access is unit-stride (open brown

5

dots are very close to the stride-1 wall), (2) data reuse is
captured by the L1, but not the L2 (red solid are far from
green solid, but green solid are close to blue solid), and (3)
the blue dots are very close to the HBM ceiling indicating
GSRB FP is HBM-bound.

Figure 5b presents the Instruction Roofline Model for
GSRB BRANCH. The thread predication impact from the
branch in GSRB BRANCH is immediately obvious in this
figure as the dots (scaled thread GIPS) are well below the
dashed black lines (warp-based GIPS). Although the thread-
level instruction throughput (dots) of GSRB FP (Figure 5a)
and GSRB BRANCH (Figure 5b) differs by a factor of
two, the Instruction Roofline Model for GPUs makes it
clear that both implementations stress the architecture’s issue
bandwidth to the same degree (equal dotted lines imply equal
warp-based GIPS). In terms of memory access pattern, we
see no difference between GSRB FP and GSRB BRANCH.
This should come as no surprise as the both implementations
generate the same number of warp-level load/store instruc-
tions and access global memory in the same manner (same
number of transactions).

Figure 5c shows the Instruction Roofline for
GSRB STRIDE2. Recall, in this implementation, there is
no predication and redundant computation is minimized.
Thus, the requisite number of thread and warp instructions
per transaction should be further reduced which we see
in reduced instruction intensity compared to Figure 5a.
However, as L1 and L2 data locality crash for levels 7 and
8 (lower L2 and HBM intensity), data movement increases
and the net effect is decreased performance (HBM-bound
with superfluous data movement). This results in a decrease
in GIPS (solid dots) with increasing level. On the converse,
the Instruction Roofline shows GSRB STRIDE2 presents
a different memory access pattern from GSRB BRANCH
or GSRB BRANCH as its load intensity is lower than the
stride-1 wall (open dots).

We use Figure 6 to further demonstrate the capability
of the Instruction Roofline Model. First, we can see the
execution time of level 7 and 8 in GSRB STRIDE2 imple-
mentation is twice that of GSRB FP and GSRB BRANCH.
This fact can be inferred from the Figure 5c and Fig-
ure 5b: GSRB STRIDE2 and GSRB BRANCH have a
very similar number of thread instructions. As such,
GSRB STRIDE2’s lower GIPS is indicative of a longer
execution time. Second, GSRB FP and GSRB BRANCH
implementations have the same execution time but very
different GFLOP/s. GFLOP/s of GSRB FP is double that
of GSRB BRANCH due to the redundant computation. The
performance of levels 7-8 of GSRB STRIDE2 is lower than
GSRB BRANCH. This is because the longer execution time
of level 7-8 in GSRB BRANCH. Resource utilization (the
fraction of threads in one warp that are active during the
execution) of GSRB BRANCH is 50% while the other two
implementations are 100% due to the thread predication in

 5 6 7 8
Level

0

500

1000

G
Fl

op
/s

 5 6 7 8
Level

0%

50%

100%

R
es

ou
rc

e
ut

ili
za

tio
n%

 5 6 7 8
Level

0

500

1000

 5 6 7 8
Level

0%

50%

100%

 5 6 7 8
Level

0

500

1000

 5 6 7 8
Level

0%

50%

100%

 5 6 7 8
Level

0
25

210
215

 5 6 7 8
Level

0
25

210
215

 5 6 7 8
Level

0
25

210
215

Ti
m

e
(u

s)

 5 6 7 8
Level

In
st

ru
ct

io
ns

integer ldst FP64 other

 5 6 7 8
Level

 5 6 7 8
Level

2.9e+9
6.5e+8

1.0e+7
8.1e+7

5.2e+9

5.6e+6
4.5e+7

3.6e+8

5.3e+6
4.2e+7

3.4e+8
2.7e+9

GSRB_FP GSRB_BRANCH GSRB_STRIDE2

Figure 6: Performance insights breakdown on GV100 for
the three different implementations of HPGMG as a function
of multigrid level (note, level 8 represents the largest arrays).
Resource utilization refers to the ratio of thread predication.

GSRB BRANCH. All of these facts can be captured by the
Instruction Roofline in Figure 5. The third observation in
Figure 6 is that the integer instructions take nearly 50%
of the total number of instructions, load/store instructions
take about 20%, and floating-point instructions take about
30%. The integer instructions are performing IMAD, IADD
and ISETP for indexing the preparing the offsets of stencil
computations. This indicates the code performs 1.6 integer
instructions and 0.6 load/store instructions for every floating-
point instruction. “Others” in the figure refers to the instruc-
tions like ctv, etc. which are not counted in any specific
metric in nvprof.

C. Matrix Transpose

Matrix transpose flips a matrix A over its diagonal, that
is, it swaps the row and column indices of the matrix
by producing another matrix AT . We use three different
single-precision implementations (Naive, Coalesced, and
Coalesced NoBankConflict) to illustrate the different perfor-
mance of both global and shared memory access patterns.
In all cases, we use a 1024×1024 matrix and all three
implementations using 32×8 thread blocks operating on
32×32 matrix tiles.

The Naive implementation uses the array index to access
elements in both input arrays and output arrays. Each thread
reads four elements from one column of the input matrix
and writes them to their transposed locations in one row
of the output matrix. As the matrices are column-major,

6

10-2 10-1 100 101 102

Instuction Intensity (Warp Instructions per Transaction)

10-1

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

Global memory

St
rid

e-
0

St
rid

e-
1

(f
lo

at
)

St
rid

e-
8

(f
lo

at
)

Thoeretical Peak: 489.6 warp GIPS

L1 = Global 437.5 GTXN/s

N
ai

ve

L1 (tot_inst)
L2 (tot_inst)
HBM (tot_inst)
Global (ldst_inst)

(a) Matrix Transpose Naive: global memory pattern.

N/A

Shared memory

(b) Matrix Transpose Naive: shared memory pattern.

10-2 10-1 100 101 102

Instuction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

St
rid

e-
0

St
rid

e-
1

(f
lo

at
)

St
rid

e-
8

(f
lo

at
)

Thoeretical Peak: 489.6 warp GIPS

L1 = Global 437.5 GTXN/s

Co
al
es
ce
d

L1 (tot_inst)
L2 (tot_inst)
HBM (tot_inst)
Global (ldst_inst)

(c) Matrix Transpose Coalesced: global memory pattern.

10-2 10-1 100 101 102

Instuction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

N
o

ba
nk

 c
on

fli
ct

32
-w

ay
 b

an
k

co
nf

lic
t

Thoeretical Peak: 489.6 warp GIPS

Shared (ldst_inst)

(d) Matrix Transpose Coalesced: shared memory pattern.

10-2 10-1 100 101 102

Instuction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

St
rid

e-
0

St
rid

e-
1

(f
lo

at
)

St
rid

e-
8

(f
lo

at
)

Thoeretical Peak: 489.6 warp GIPS

L1 = Global 437.5 GTXN/s

Co
al
es
ce
d_
N
oB
an
kC
on
fli
ct

L1 (tot_inst)
L2 (tot_inst)
HBM (tot_inst)
Global (ldst_inst)

(e) Matrix Transpose Coalesced NoBankConflict: global memory pattern.

10-2 10-1 100 101 102

Instuction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

N
o

ba
nk

 c
on

fli
ct

32
-w

ay
 b

an
k

co
nf

lic
t

Thoeretical Peak: 489.6 warp GIPS

Shared 109.3 GTXN/s

Shared (ldst_inst)

(f) Matrix Transpose Coalesced NoBankConflict: shared memory pattern.

Figure 7: Instruction Roofline on GV100 for the three implementations in Matrix Transpose. The solid dots are the total
number of instructions (tot inst) executed by non-predicated threads. The open dots refer to memory access patterns.

the reads from the input matrix are coalesced while the
writes to the output matrix have a stride of 4096 Bytes
(1024 floats) between successive threads. This results in the
worst case of 32 separate memory transactions per warp-
based load/store instruction. Figure 7a plots the instruction
Roofline and memory walls for the Naive implementation.
Clearly, memory access (open symbol) is far from unit-stride
on average. Moreover, we see poor L1 data locality but good
L2 locality (green and red dots are close but red and blue
are widely separated). Note, as the Naive implementation
doesn’t use shared memory, there is no corresponding shared
memory figure in Figure 7a.

The Coalesced implementation reads contiguous data
from matrix A into rows of a shared memory buffer. After re-

calculating the array index, a column of the shared memory
buffer is written to contiguous addresses in the matrix AT .
As such, the global memory access pattern of the Coalesced
implementation is unit-stride; Figure 7c shows exactly this
(open dot). We can also see from Figure 7c that that L1 cache
is better utilized than the Naive implementation as the L2
intensity has moved to the right (green dot). Importantly, the
number of transactions in the red solid dot (L1) is a linear
combination of global and shared memory transactions. The
combined effect of these has made the code nearly L1-bound
(L1 solid red dot is close to the L1 ceiling).

Although the use of shared memory has substantially
improved performance, Figure 7d shows this implementation
produces a large number of shared memory bank conflicts

7

10-4 10-2 100 102 104

Instuction Intensity (Warp Instructions per Transaction)

10-2

10-1

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

St
rid

e-
0

St
rid

e-
1

(in
te

ge
r)

St
rid

e-
8

(in
te

ge
r)

Global 4
37.5 GTXN/s

Thoeretical Peak: 489.6 warp GIPS

N
ai

ve

L1 (tot_inst)
L2 (tot_inst)
HBM (tot_inst)
Global (ldst_inst)

Global memory

(a) BatchSW Naive: global memory pattern.

10-4 10-2 100 102 104

Instuction Intensity (Warp Instructions per Transaction)

10-2

10-1

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

Shared memory

N
o

ba
nk

 c
on

fli
ct

32
-w

ay
 b

an
k

co
nf

lic
t

Share
d 109.3 GTXN/s

Thoeretical Peak: 489.6 warp GIPS

Shared (ldst_inst)

(b) BatchSW Naive: shared memory pattern.

10-4 10-2 100 102 104

Instuction Intensity (Warp Instructions per Transaction)

10-2

10-1

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

St
rid

e-
0

St
rid

e-
1

(in
te

ge
r)

St
rid

e-
8

(in
te

ge
r)

L1 = Global 437.5 GTXN/s

Thoeretical Peak: 489.6 warp GIPS

Co
al
es
ce
d

L1 (tot_inst)
L2 (tot_inst)
HBM (tot_inst)
Global (ldst_inst)

(c) BatchSW Coalesced: global memory pattern.

10-4 10-2 100 102 104

Instuction Intensity (Warp Instructions per Transaction)

10-2

10-1

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

N
o

ba
nk

 c
on

fli
ct

32
-w

ay
 b

an
k

co
nf

lic
t

Share
d 109.3 GTXN/s

Thoeretical Peak: 489.6 warp GIPS

Shared (ldst_inst)

(d) BatchSW Coalesced: shared memory pattern.

Figure 8: Instruction Roofline on GV100 for the two implementations in BatchSW with visualized global memory
pattern. The solid dots are the total number of instructions (tot inst) executed by non-predicated threads. The open dots
refer to the memory access patterns.

— shared load intensity (open dot) is close to the “32-
way bank conflict” wall. This is easily understood as the
Coalesced implementation uses a 32 × 32 shared memory
array of floats but all data in columns k and k + 16 are
mapped to the same bank. As a result, when writing partial
columns from buffer in the shared memory to rows in the
output matrix, there is a 16-way bank conflict as Figure 7d
shows. Concurrently, the shared intensity (open dot) is very
close to the shared memory ceiling indicating that shared
transactions are dominating all L1 transactions and is the
cause of the L1 bottleneck.

Proximity to the shared memory wall and ceiling can
be used to motivate software optimization. The Coa-
lesced NoBankConflict implementation pads the shared
memory array by one column 32× (32 + 1) to avoid bank
conflicts. Figure 7f shows that shared load intensity has
moved to the right and is now near the “no bank conflict”
wall. Note, the Coalesced NoBankConflict version has same
global load intensity (Figure 7e) as the Coalesced version
(Figure 7c) because they have the same implementation for
global memory access.

As a summary for Matrix Transpose, by comparing Fig-
ure 7a, Figure 7c and Figure 7e, we can see how the

global memory access pattern improved from the Naive to
Coalesced and Coalesced NoBankConflict implementations.
By comparing Figure 7d and Figure 7f, we can tell how the
shared memory access pattern improved from the Coalesced
to Coalesced NoBankConflict implementations.

D. BatchSW

BatchSW [16] proxies merAligner’s sequence alignment
phase [17]. merAligner is a parallel sequence aligner that
implements a seed-and-extend algorithm and employs par-
allelism in all of its components. merAligner spends a signif-
icant portion of its run time using the Smith-Waterman (SW)
algorithm [21] which is based on dynamic programming.
Within SW, a M × N matrix A is constructed, where
M and N are the lengths of the two sequences. Matrix
element A(i, j) is calculated as a score for aligning the
ith element in the first sequence with the jth element
in the second sequence. The score of A(i, j) depends on
A(i, j − 1), A(i − 1, j) and A(i − 1, j − 1). Next, the
optimal local alignment is defined as tracing back a path
connecting the starting point (i0, j0) in the matrix to any
point (i, j), i > i0, j > j0, with the highest sum of scores
along this path. In this paper, we set M = 126, N = 1066

8

with a total number of 15,000 pairs of sequences — a typical
case in merAligner.

BatchSW is a GPU version of the Smith-Waterman al-
gorithm. BatchSW has two implementations: Naive and
Coalesced. Both implementations have one kernel of two
phases: scoring and tracing. The scoring phase of the
two implementations is the same. The execution flow the
matrix is diagonal-major: A(0, 0) → (A(1, 0), A(0, 1)) →
(A(2, 0), A(1, 1), A(0, 2)), and successive diagonals can be
done in the same manner. The three most recent diagonals
are stored in three different shared memory arrays. Each
thread in one warp writes the scores to a unique cell of the
shared memory. The tracing phases of the two implementa-
tions are different. The Naive implementation uses a row-
major data layout to store the scores for the whole matrix,
whereas the Coalesced version uses a diagonal-major layout.

Figure 8 shows the Instruction Roofline on GV100 for
the two implementations. When examining total instruction
throughput, it is clear the Naive implementation underper-
forms attaining roughly 25% of the peak instruction Roofline
GIPS. Comparing Figures 8a and 8c, it is immediately
obvious how replacing a poor memory access pattern (every
Nth element) in the row-major data layout with a diagonal-
major data layout improves load intensity (open dots) to the
point where it is bound by the stride-1 wall.

Shared memory is used in the scoring phase in both
implementations. Recall that the scoring phase of the two
implementation is the same but are in the same kernel as
the tracing phase. Each thread in one warp writes the scores
to a unique cell of shared memory with the three most recent
diagonals stored in shared memory. Thus, the 32 threads in
a warp access 32 consecutive elements of shared memory
and thus 32 different banks. Figures 8b and 8d show that
both implementations attain a perfect shared intensity of 1.0
(no bank conflicts). Despite having the same intensity, the
coalesced implementation attains a higher GIPS due to the
shortened kernel execution time. In fact, coalesced shared
load/store GIPS is very close to the shared memory roofline
and thus indicative of the ultimate performance bound.

E. Matrix Multiplication using Tensor Cores

Each tensor core can complete a single 4 × 4 FP16
matrix multiplication and FP32 accumulation per cycle, i.e.
D = A×B+C, where A, B, C are 4×4 matrices [10]. Cur-
rently, the lowest level interface to program Tensor Cores is
CUDA’s Warp Matrix Multiply and Accumulation (WMMA)
API [22]. The WMMA API provide warp-wide operations
for performing the computation of D = A × B + C,
where A (FP16), B (FP16), C (FP32) and D (FP32) can be
tiles of larger matrices. All threads in a warp cooperatively
work together to perform a matrix-multiply and accumulate
operation on these tiles using the WMMA API. Matrix
A(M × N) and C(M × K) are row-major and matrix
B(N ×K) is column-major.

Another popular method to perform matrix multiplications
is to use cuBLAS [23]. The cuBLAS library is an highly-
tuned implementation of BLAS (Basic Linear Algebra Sub-
programs) on top of the NVIDIA CUDA runtime. We use the
cuBLASLt API supported by CUDA 10.1. The cuBLASLt
is a new lightweight library dedicated to GEneral Matrix-
matrix Multiply (GEMM) operations.

Unfortunately, these two methods can have very different
performance when performing the same matrix multiplica-
tions — cuBLAS can attain 104 TFLOP/s while WMMA
can only attain 58.23 TFLOP/s. As such, it is essential to
understand the performance nuances of these two methods in
order to motivate the future code and hardware optimization.
To that end, in this section we use the Instruction Roofline
Model to evaluate both approaches using test matrices of
size M = N = K = 32, 768.

WMMA Roofline: There are three WMMA instructions in
cudaTensorCoreGemm: wmma.load, wmma.store, and
wmma.mma. wmma.load and wmma.store are bro-
ken into a group of normal load and store instructions.
Each wmma.mma instruction is broken into 16 HMMA
instructions for mixed precision. As such, there are 16 ×
M×N×K
16×16×16 HMMA instructions, where 16 × 16 × 16 ma-
trix operations can be performed by one WMMA instruc-
tion. In other words, there are 512 floating-point opera-
tions per HMMA instruction. Thus, we may define tensor
core HMMA peak instruction ceiling by tensor core peak
TFLOP/s by 512: 125×1e3 GFLOP/s

512 = 244 HMMA GIPS.
In cudaTensorCoreGemm, a 128 × 128 tile is computed

each iteration. Within each tile, each warp computes eight
16 × 16 sub-tiles using wmma.mma operations by iterating
through the full A and B matrices and accumulating the
intermediate result in the local thread state. At the beginning
of each iteration, a CUDA block of eight warps copies a
128 × 128 tile of the two input matrices from the global
memory to shared memory with warps 0-3 copying matrix A
and warps 4-7 copying matrix B. Each warp is assigned 64
16×16 sub-matrices and works on one at a time. Threads in
one warp are organized as a 2×16 block, i.e., thread 0 loads
element (0,0) to element (0,7), thread 1 loads element (1,0)
to element (1,7), thread 15 loads element (0,8) to element
(0,15), etc.. Thus, each warp loads the corresponding data
with a stride of eight elements using 16 transactions. As
such, we can see the global memory pattern in Figure 9a is
between the stride-8 and the stride-1 walls.

Before performing the wmma.mma operation, each warp
loads data using the wmma.load. The shared memory
access pattern is not explicitly specified, but each thread
in the warp can read one or multiple matrix elements
from different matrix rows or columns. The worst case is
that each thread accesses a different row mapped into the
same bank (32-way bank conflict). As such, portions of the
A and B matrices are stored in shared memory with an
additional padding to reduce the number of shared memory

9

10-4 10-2 100 102

Instuction Intensity (Warp Instructions per Transaction)

10-2

100

102

104

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S) Thoeretical Peak: 489.6 warp GIPS

Thoeretical TensorCore Peak: 244 HMMA GIPS

St
rid

e-
0

St
rid

e-
1

(f
lo

at
)

St
rid

e-
8

(f
lo

at
)

Global 4
37.5 GTXN/s

Global(ldst_inst)
L1(HMMA)
L2(HMMA)
HBM(HMMA)

(a) Visualized global memory pattern of cudaTensorCoreGemm in
Instruction Roofline on GV100.

10-4 10-3 10-2 10-1 100 101 102

Instuction Intensity (Warp Instructions per Transaction)

10-2

100

102

104

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S) Thoeretical Peak: 489.6 warp GIPS

N
o

ba
nk

 c
on

fli
ct

32
-w

ay

ba
nk

 c
on

fli
ct

Shared 109.3 GTXN/s

Thoeretical TensorCore Peak: 244 HMMA GIPS

Shared(ldst_inst)

(b) Visualized shared memory pattern of cudaTensorCoreGemm in
Instruction Roofline on GV100.

Figure 9: Instruction Roofline on GV100 for the cudaTensorCoreGemm (WMMA interface). The solid dots are HMMA
instructions while the open dots are global/shared loads/stores.

10-4 10-3 10-2 10-1 100 101 102

Instuction Intensity (Warp Instructions per Transaction)

10-2

100

102

104

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S) Thoeretical Peak: 489.6 warp GIPS

Thoeretical TensorCore Peak: 244 HMMA GIPS

St
rid

e-
0

St
rid

e-
1

(f
lo

at
)

St
rid

e-
8

(f
lo

at
)

L1 = Global 437.5 GTXN/s

Global (ldst_inst)
L1 (HMMA)
L2 (HMMA)
HBM (HMMA)

(a) Visualized global memory pattern of in Instruction Roofline on
GV100.

10-4 10-3 10-2 10-1 100 101 102

Instuction Intensity (Warp Instructions per Transaction)

10-2

100

102

104

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

N
o

ba
nk

 c
on

fli
ct

32
-w

ay

ba
nk

 c
on

fli
ct

Thoeretical Peak: 489.6 warp GIPS

Thoeretical TensorCore Peak: 244 HMMA GIPS

Shared 109.3 GTXN/s

Shared (ldst_inst)

(b) Visualized shared memory pattern in Instruction Roofline on GV100.

Figure 10: Instruction Roofline on GV100 for the cuBLAS. The solid dots are just HMMA instructions while the open
dots are global/share load/store.

access bank conflicts. The number of eight FP16 elements
is chosen as the minimum shift in cudaTensorCoreGemm.
This is because wmma.load requires 128-bit alignment. As
a result, Figure 9b shows that bank conflicts are reduced
to only 6-way. As Figure 9b also shows that the WMMA
code is bound by the shared memory bandwidth, further
reductions in bank conflicts can improve performance.

cuBLAS Roofline: Our cuBLAS benchmark simply calls
cublasGemmEx to perform the matrix-to-matrix Multiply.
Figure 10 shows the Instruction Roofline plot for it. Ob-
serve, cuBLAS has the same global and shared mem-
ory access pattern with cudaTensorCoreGemm (open dot).
However, cuBLAS performance (solid dot) has increased
with increased instruction intensity compared to cudaTen-
sorCoreGemm in Figure 9. As the two implementations
perform the same number of HMMA instructions, one can
infer that cuBLAS requires fewer transactions than cudaTen-
sorCoreGemm (better register and L2 locality) and has a
higher performance as it is L1-bound.

V. CONCLUSIONS AND FUTURE WORK

We developed and applied a methodology for analyzing
instruction throughput on a GPU using the Roofline model.
This allows us to analyze both total instruction through-
put (fetch-decode-issue) as well as function unit utilization
(FPU, tensor, integer, etc...) thereby expanding the applica-
bility of roofline to several emerging computational domains.
With the insight that load/store instructions coupled with
transaction categorization allows us to quantify both the
memory access pattern (e.g. unit-stride vs. gather/scatter)
as well as the frequency of shared memory bank conflicts,
we were able to incorporate both aspects into the Roofline
model as walls that denote the efficiency of memory access.
The unified visualization of bandwidth and access efficiency
endows users with far greater insights as to how different
aspects of modern GPU architectures constrain performance.

In the future, we will apply our methodology to other
accelerated architectures and extend the access efficiency
concept to networking, I/O, and lustre file systems.

10

ACKNOWLEDGEMENTS

This material is based upon work supported by the Ad-
vanced Scientific Computing Research Program in the U.S.
Department of Energy, Office of Science, under Award Num-
ber DE-AC02-05CH11231. This research used resources of
the National Energy Research Scientific Computing Center
(NERSC) which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231 and the Oak Ridge Leadership Facility which is
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC05-00OR22725. We
thank NVIDIA Corporation for their willingness to answer
our myriad of questions on nvprof metrics.

REFERENCES

[1] S. Williams, A. Waterman, and D. Patterson, “Roofline:
An Insightful Visual Performance Model for Multicore
Architectures,” Commun. ACM, vol. 52, no. 4, 2009.

[2] C. Yang, T. Kurth, and S. Williams, “Hierarchical
roofline analysis for gpus: Accelerating performance
optimization for the nersc-9 perlmutter system.”

[3] T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Be-
lenov, P. Thierry, Z. Zhao, R. Gayatri, H. Shan,
L. Oliker et al., “A novel multi-level integrated roofline
model approach for performance characterization,” in
International Conference on High Performance Com-
puting. Springer, 2018, pp. 226–245.

[4] S. W. Williams, Auto-tuning performance on multicore
computers. University of California, Berkeley, 2008.

[5] D. Doerfler, J. Deslippe, S. Williams, L. Oliker,
B. Cook, T. Kurth, M. Lobet, T. Malas, J.-L. Vay,
and H. Vincenti, “Applying the roofline performance
model to the intel xeon phi knights landing proces-
sor,” in International Conference on High Performance
Computing. Springer, 2016, pp. 339–353.

[6] A. Ilic, F. Pratas, and L. Sousa, “Cache-aware Roofline
model: Upgrading the loft,” IEEE Computer Architec-
ture Letters, vol. 13, no. 1, pp. 21–24, 2014.

[7] “Integer Roofline Modeling in Intel Advi-
sor.” https://software.intel.com/en-us/articles/
a-brief-overview-of-integer-roofline-modeling-
in-intel-advisor#ref releasenotes.

[8] “Nvidia Profiler User’s Guide.” https://docs.nvidia.
com/cuda/profiler-users-guide/.

[9] “NVIDIA Visual Profiler.” https://developer.nvidia.
com/nvidia-visual-profiler.

[10] “NVIDIA Tesla V100 GPU Architecture.”
http://images.nvidia.com/content/volta-architecture/
pdf/volta-architecture-whitepaper.pdf.

[11] “Nsight Compute Command Line Interface.”
https://docs.nvidia.com/nsight-compute/pdf/
NsightComputeCli.pdf.

[12] “HPGMG CUDA Code.” https://bitbucket.org/
nsakharnykh/hpgmg-cuda.

[13] “HPGMG Website.” https://hpgmg.org/.
[14] “HPGMG-FV Documentation.” http://crd.lbl.gov/

departments/computer-science/PAR/research/hpgmg.
[15] “AMReX Documentation.” https://amrex-codes.github.

io/amrex/.
[16] “BatchSW CUDA Code.” https://bitbucket.org/

mgawan/batch-sw/src/master/.
[17] E. Georganas, A. Buluç, J. Chapman, L. Oliker,

D. Rokhsar, and K. Yelick, “meraligner: A fully paral-
lel sequence aligner,” in 2015 IEEE International Par-
allel and Distributed Processing Symposium. IEEE,
2015, pp. 561–570.

[18] “Matrix Transpose Code.” https://github.com/
NVIDIA-developer-blog/code-samples/.

[19] “CUDA Samples,” http://hpc-simulations.utp.ac.pa/
wp-content/uploads/2018/04/CUDA Samples-min.
pdf.

[20] “Tensor Core Miniapp,” https://github.com/
PointKernel/tensor-core-miniapp.

[21] M. Zhao, W.-P. Lee, E. P. Garrison, and G. T. Marth,
“Ssw library: an simd smith-waterman c/c++ library for
use in genomic applications,” PloS one, vol. 8, no. 12,
p. e82138, 2013.

[22] “CUDA C Programming Guide (CUDA
9.0).” https://docs.nvidia.com/cuda/archive/9.0/
cuda-c-programming-guide/.

[23] “cuBLAS,” https://docs.nvidia.com/cuda/cublas/.

APPENDIX
ARTIFACT DESCRIPTION

A. Abstract

The key contribution of this paper is the methodology
of the Instruction Roofline Model for GPUs. The hardware
and software environment used in this paper are all publicly
available as described below.

B. Description

Machines: Results presented in this paper were obtained
on the GPU-accelerated partition on Cori (Cori-GPU) at
NERSC and Summit at OLCF. Cori-GPU is comprised of
nodes with two Intel Skylake CPUs and eight NVIDIA V100
GPUs, while each compute node on Summit contains two
IBM POWER9 processors and six NVIDIA V100 accel-
erators. On Both machines, we use CUDA 10, nvprof,
and NSight Compute. In all experiments, we use only
a single process running on one GPU and thus mitigate
NVLink, PCIe, and host processor performance. As a result,
a benchmark running on a V100 on Summit performs the
same as it would on a V100 on Cori-GPU.

Metrics for data collection: Table I lists the nvprof
metrics used to measure instructions and data movement on
GV100 CUDA core and NSight Compute metrics for tensor
core HMMA instructions.

11

https://software.intel.com/en-us/articles/a-brief-overview-of-integer-roofline-modeling-
https://software.intel.com/en-us/articles/a-brief-overview-of-integer-roofline-modeling-
https://docs.nvidia.com/cuda/profiler-users-guide/
https://docs.nvidia.com/cuda/profiler-users-guide/
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
http://images.nvidia.com/content/volta- architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta- architecture/pdf/volta-architecture-whitepaper.pdf
https://docs.nvidia.com/nsight-compute/pdf/NsightComputeCli.pdf
https://docs.nvidia.com/nsight-compute/pdf/NsightComputeCli.pdf
https://bitbucket.org/nsakharnykh/hpgmg-cuda
https://bitbucket.org/nsakharnykh/hpgmg-cuda
https://hpgmg.org/
http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg
http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg
https://amrex-codes.github.io/amrex/
https://amrex-codes.github.io/amrex/
https://bitbucket.org/mgawan/batch-sw/src/master/
https://bitbucket.org/mgawan/batch-sw/src/master/
https://github.com/NVIDIA-developer-blog/code-samples/
https://github.com/NVIDIA-developer-blog/code-samples/
http://hpc-simulations.utp.ac.pa/wp-content/uploads/2018/04/CUDA_Samples-min.pdf
http://hpc-simulations.utp.ac.pa/wp-content/uploads/2018/04/CUDA_Samples-min.pdf
http://hpc-simulations.utp.ac.pa/wp-content/uploads/2018/04/CUDA_Samples-min.pdf
https://github.com/PointKernel/tensor-core-miniapp
https://github.com/PointKernel/tensor-core-miniapp
https://docs.nvidia.com/cuda/archive/9.0/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/archive/9.0/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cublas/

Table I: Metrics for Instruction Roofline Model

Metrics Descriptions
thread-based inst thread executed non-predicated

warp-based

inst executed total instructions
inst executed global loads

L1 Cache Instructions

inst executed global stores
inst executed local loads
inst executed local stores
inst executed shared loads
inst executed shared stores
gld transactions

L1 Cache Transactions

gst transactions
local load transactions
local store transactions
shared load transactions
shared store transactions
l2 read transactions L2 Cache
l2 write transactions
dram read transactions HBM Memory
dram write transactions
sysmem read transactions PCIe/NVLINK
sysmem write transactions
smsp inst executed pipe tensor.sum tensor core

kernel-based nvprof –print-gpu-summary execution time

Profiling command lines: We use nvprof
--print-gpu-summary to collect the kernel execution
time. The examples of profiling command line for timing
collection, cuda core metrics and tensor core metrics
described below are for Cori-GPU. One can replace srun
with jsrun on Summit.

For timing collection: srun -n 1 nvprof
--print-gpu-summary ./transpose

For cuda code: srun -n 1 nvprof --kernels
‘‘transposeNaive’’ --csv --metrics
inst_executed ./transpose

For tensor core: srun -n 1 nv-nsight-cu-cli
-k ‘‘compute_gemm’’ --metrics
smsp__inst_executed_pipe_tensor.sum
./cudaTensorCoreGemm

Applications: The five proxy applications we evaluated
in the paper are described below. All application are built
with arch=compute_70.

1) HPGMG from AMRex, the source code can be
found https://bitbucket.org/nsakharnykh/hpgmg-cuda.
We run HPGMG with eight 1283 boxes for the three
implementations. This results in multigrid levels 5-8
running on GPU and levels 1-4 on CPU. As this paper
is focused on Roofline on GPUs, we only examine
levels 5-8.

2) BatchSW from merAligner, the source code can
be found https://bitbucket.org/mgawan/batch-sw/src/
master/. We run BatchSW using two sequences length
of 126 and 1066 with a total number of 15,000 pairs
of sequences which is a typical case in merAligner.

3) Matrix Transpose from cuda sample, the
source code can be found https://github.com/
NVIDIA-developer-blog/code-samples/. The

matrix size we use is 1024×1024, and all three
implementations using 32×8 thread blocks operating
on 32×32 matrix tiles.

4) cudaTensorCoreGemm from cude sample, the
source code can be found https://github.com/
NVIDIA/cuda-samples/tree/master/Samples/
cudaTensorCoreGemm. The matrix size of the
three metrices are all 32,768×32,768.

5) cuBLAS, the source code can be found https://github.
com/PointKernel/tensor-core-miniapp. The matrix size
of the three metrices are all 32,768×32,768.

12

https://bitbucket.org/nsakharnykh/hpgmg-cuda
https://bitbucket.org/mgawan/batch-sw/src/master/
https://bitbucket.org/mgawan/batch-sw/src/master/
https://github.com/NVIDIA-developer-blog/code-samples/
https://github.com/NVIDIA-developer-blog/code-samples/
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/cudaTensorCoreGemm
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/cudaTensorCoreGemm
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/cudaTensorCoreGemm
https://github.com/PointKernel/tensor-core-miniapp
https://github.com/PointKernel/tensor-core-miniapp

	Introduction
	The Classic Roofline Model
	Instruction Roofline Model for GPUs
	Architectural Characterization
	Application Characterization

	Results
	Experimental Setup
	HPGMG
	Matrix Transpose
	BatchSW
	Matrix Multiplication using Tensor Cores

	Conclusions and Future Work
	Appendix: Artifact Description
	Abstract
	Description

