John Bachan
Biographical Sketch
John Bachan is Computer Systems Engineer in the Computer Architecture Group. His focus spans the software stack of modern HPC platforms, from low-level networking runtimes and concurrency primitives to high-level programming models for domain scientists. His musings of passion are projects which aim to make scientific programming easier and more productive without forfeiting the computational capability of the underlying machine.
Current Projects
- UPC++: PGAS programming for C++
- Mobiliti: Scalable Transportation Simulation Using High-Performance Computing
- PARADISE++: Large Scale Optimistic Synchronization based simulation of Post Moore Systems (ARO Project)
- ProgrAMR: Enabling Task-Based Performance Models for AMR
- OpenSoC Fabric: An Open-Source Network-On-Chip Generator
Journal Articles
Maximilian Bremer, John Bachan, Cy Chan, Clint Dawson, "Adaptive total variation stable local timestepping for conservation laws", Journal of Computational Physics, April 21, 2022,
Conference Papers
John Bachan, Jianlan Ye, Xuan Jiang, Tan Nguyen, Mahesh Natarajan, Maximilian Bremer, Cy Chan, "Devastator: A Scalable Parallel Discrete Event Simulation Framework for Modern C++", In 38th ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM PADS ’24), June 24, 2024,
Maximilian Bremer, John Bachan, Cy Chan, and Clint Dawson, "Speculative Parallel Execution for Local Timestepping", 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, May 21, 2021,
John Bachan, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Dan Bonachea, Paul H. Hargrove, Hadia Ahmed, "UPC++: A High-Performance Communication Framework for Asynchronous Computation", 33rd IEEE International Parallel & Distributed Processing Symposium (IPDPS'19), Rio de Janeiro, Brazil, IEEE, May 2019, doi: 10.25344/S4V88H
Maximilian H Bremer, John D Bachan, Cy P Chan, "Semi-Static and Dynamic Load Balancing for Asynchronous Hurricane Storm Surge Simulations", 2018 Parallel Applications Workshop, Alternatives To MPI (PAW-ATM), November 16, 2018,
Cy P Chan, Bin Wang, John D Bachan, Jane Macfarlane, "Mobiliti: Scalable Transportation Simulation Using High-Performance Parallel Computing", 2018 IEEE International Conference on Intelligent Transportation Systems (ITSC), November 6, 2018,
- Download File: ITSC18-0935-MS-Final.pdf (pdf: 1.4 MB)
Bin Wang, John D Bachan, Cy P Chan, "ExaGridPF: A parallel power flow solver for transmission and unbalanced distribution systems", 2018 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), February 22, 2018,
John Bachan, Dan Bonachea, Paul H Hargrove, Steve Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, Scott B Baden, "The UPC++ PGAS library for Exascale Computing", Proceedings of the Second Annual PGAS Applications Workshop (PAW17), November 13, 2017, doi: 10.1145/3144779.3169108
We describe UPC++ V1.0, a C++11 library that supports APGAS programming. UPC++ targets distributed data structures where communication is irregular or fine-grained. The key abstractions are global pointers, asynchronous programming via RPC, and futures. Global pointers incorporate ownership information useful in optimizing for locality. Futures capture data readiness state, are useful for scheduling and also enable the programmer to chain operations to execute asynchronously as high-latency dependencies become satisfied, via continuations. The interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and closely resemble those used in modern C++. Communication in UPC++ runs at close to hardware speeds by utilizing the low-overhead GASNet-EX communication library.
Cy Chan, John Bachan, Joseph Kenny, Jeremiah Wilke, Vincent Beckner, Ann Almgren, John Bell, "Topology-Aware Performance Optimization and Modeling of Adaptive Mesh Refinement Codes for Exascale", (BEST PAPER AWARD) COMHPC 2016 - SC16 Workshop on Communication Optimization in High Performance Computing, Salt Lake City, UT, November 18, 2016,
- Download File: Chan-COMHPC16.pdf (pdf: 2.1 MB)
Best Paper Award
Presentation/Talks
Amir Kamil, John Bachan, Scott B. Baden, Dan Bonachea, Rob Egan, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Kathy Yelick, UPC++: An Asynchronous RMA/RPC Library for Distributed C++ Applications (ALCF'20), Argonne Leadership Computing Facility (ALCF) Webinar Series, May 27, 2020,
UPC++ is a C++ library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. The UPC++ API offers low-overhead one-sided RMA communication and Remote Procedure Calls (RPC), along with futures and promises. These constructs enable the programmer to express dependencies between asynchronous computations and data movement. UPC++ supports the implementation of simple, regular data structures as well as more elaborate distributed data structures where communication is fine-grained, irregular, or both. The library’s support for asynchrony enables the application to aggressively overlap and schedule communication and computation to reduce wait times.
UPC++ is highly portable and runs on platforms from laptops to supercomputers, with native implementations for HPC interconnects. As a C++ library, it interoperates smoothly with existing numerical libraries and on-node programming models (e.g., OpenMP, CUDA).
In this webinar, hosted by DOE’s Exascale Computing Project and the ALCF, we will introduce basic concepts and advanced optimization techniques of UPC++. We will discuss the UPC++ memory and execution models and walk through basic algorithm implementations. We will also look at irregular applications and show how they can take advantage of UPC++ features to optimize their performance.
Amir Kamil, John Bachan, Scott B. Baden, Dan Bonachea, Rob Egan, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Kathy Yelick, UPC++: A PGAS/RPC Library for Asynchronous Exascale Communication in C++ (ECP'20), Tutorial at Exascale Computing Project (ECP) Annual Meeting 2020, February 6, 2020,
UPC++ is a C++ library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. The UPC++ API offers low-overhead one-sided RMA communication and Remote Procedure Calls (RPC), along with futures and promises. These constructs enable the programmer to express dependencies between asynchronous computations and data movement. UPC++ supports the implementation of simple, regular data structures as well as more elaborate distributed data structures where communication is fine-grained, irregular, or both. The library’s support for asynchrony enables the application to aggressively overlap and schedule communication and computation to reduce wait times.
UPC++ is highly portable and runs on platforms from laptops to supercomputers, with native implementations for HPC interconnects. As a C++ library, it interoperates smoothly with existing numerical libraries and on-node programming models (e.g., OpenMP, CUDA).
In this tutorial we will introduce basic concepts and advanced optimization techniques of UPC++. We will discuss the UPC++ memory and execution models and walk through basic algorithm implementations. We will also look at irregular applications and show how they can take advantage of UPC++ features to optimize their performance.
Amir Kamil, John Bachan, Scott B. Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Kathy Yelick, UPC++ Tutorial (NERSC Dec 2019), National Energy Research Scientific Computing Center (NERSC), December 16, 2019,
This event was a repeat of the tutorial delivered on November 1, but with the restoration of the hands-on component which was omitted due to uncertainty surrounding the power outage at NERSC.
UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. UPC++ provides mechanisms for low-overhead one-sided communication, moving computation to data through remote-procedure calls, and expressing dependencies between asynchronous computations and data movement. It is particularly well-suited for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces are designed to be composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds.
In this tutorial we introduced basic concepts and advanced optimization techniques of UPC++. We discussed the UPC++ memory and execution models and walked through implementing basic algorithms in UPC++. We also discussed irregular applications and how to take advantage of UPC++ features to optimize their performance. The tutorial included hands-on exercises with basic UPC++ constructs. Registrants were given access to run their UPC++ exercises on NERSC’s Cori (currently the #14 fastest computer in the world).
Amir Kamil, John Bachan, Scott B. Baden, Dan Bonachea, Rob Egan, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Kathy Yelick, UPC++ Tutorial (NERSC Nov 2019), National Energy Research Scientific Computing Center (NERSC), November 1, 2019,
UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. UPC++ provides mechanisms for low-overhead one-sided communication, moving computation to data through remote-procedure calls, and expressing dependencies between asynchronous computations and data movement. It is particularly well-suited for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces are designed to be composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds.
In this tutorial we will introduce basic concepts and advanced optimization techniques of UPC++. We will discuss the UPC++ memory and execution models and walk through implementing basic algorithms in UPC++. We will also look at irregular applications and how to take advantage of UPC++ features to optimize their performance.
Reports
John Bachan, Scott B. Baden, Dan Bonachea, Johnny Corbino, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, Daniel Waters, "UPC++ v1.0 Programmer’s Guide, Revision 2023.9.0", Lawrence Berkeley National Laboratory Tech Report LBNL-2001560, December 2023, doi: 10.25344/S4P01J
UPC++ is a C++ library that supports Partitioned Global Address Space (PGAS) programming. It is designed for writing efficient, scalable parallel programs on distributed-memory parallel computers. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). The UPC++ control model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. The PGAS memory model additionally provides one-sided RMA communication to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ also features Remote Procedure Call (RPC) communication, making it easy to move computation to operate on data that resides on remote processes. UPC++ was designed to support exascale high-performance computing, and the library interfaces and implementation are focused on maximizing scalability. In UPC++, all communication operations are syntactically explicit, which encourages programmers to consider the costs associated with communication and data movement. Moreover, all communication operations are asynchronous by default, encouraging programmers to seek opportunities for overlapping communication latencies with other useful work. UPC++ provides expressive and composable abstractions designed for efficiently managing aggressive use of asynchrony in programs. Together, these design principles are intended to enable programmers to write applications using UPC++ that perform well even on hundreds of thousands of cores.
John Bachan, Scott B. Baden, Dan Bonachea, Johnny Corbino, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, Daniel Waters, "UPC++ v1.0 Programmer’s Guide, Revision 2023.3.0", Lawrence Berkeley National Laboratory Tech Report, March 30, 2023, LBNL 2001517, doi: 10.25344/S43591
UPC++ is a C++ library that supports Partitioned Global Address Space (PGAS) programming. It is designed for writing efficient, scalable parallel programs on distributed-memory parallel computers. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). The UPC++ control model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. The PGAS memory model additionally provides one-sided RMA communication to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ also features Remote Procedure Call (RPC) communication, making it easy to move computation to operate on data that resides on remote processes.
UPC++ was designed to support exascale high-performance computing, and the library interfaces and implementation are focused on maximizing scalability. In UPC++, all communication operations are syntactically explicit, which encourages programmers to consider the costs associated with communication and data movement. Moreover, all communication operations are asynchronous by default, encouraging programmers to seek opportunities for overlapping communication latencies with other useful work. UPC++ provides expressive and composable abstractions designed for efficiently managing aggressive use of asynchrony in programs. Together, these design principles are intended to enable programmers to write applications using UPC++ that perform well even on hundreds of thousands of cores.
John Bachan, Scott B. Baden, Dan Bonachea, Johnny Corbino, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, Daniel Waters, "UPC++ v1.0 Programmer’s Guide, Revision 2022.9.0", Lawrence Berkeley National Laboratory Tech Report, September 30, 2022, LBNL 2001479, doi: 10.25344/S4QW26
UPC++ is a C++ library that supports Partitioned Global Address Space (PGAS) programming. It is designed for writing efficient, scalable parallel programs on distributed-memory parallel computers. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). The UPC++ control model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. The PGAS memory model additionally provides one-sided RMA communication to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ also features Remote Procedure Call (RPC) communication, making it easy to move computation to operate on data that resides on remote processes.
UPC++ was designed to support exascale high-performance computing, and the library interfaces and implementation are focused on maximizing scalability. In UPC++, all communication operations are syntactically explicit, which encourages programmers to consider the costs associated with communication and data movement. Moreover, all communication operations are asynchronous by default, encouraging programmers to seek opportunities for overlapping communication latencies with other useful work. UPC++ provides expressive and composable abstractions designed for efficiently managing aggressive use of asynchrony in programs. Together, these design principles are intended to enable programmers to write applications using UPC++ that perform well even on hundreds of thousands of cores.
John Bachan, Scott B. Baden, Dan Bonachea, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, Daniel Waters, "UPC++ v1.0 Programmer’s Guide, Revision 2022.3.0", Lawrence Berkeley National Laboratory Tech Report, March 2022, LBNL 2001453, doi: 10.25344/S41C7Q
UPC++ is a C++ library that supports Partitioned Global Address Space (PGAS) programming. It is designed for writing efficient, scalable parallel programs on distributed-memory parallel computers. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). The UPC++ control model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. The PGAS memory model additionally provides one-sided RMA communication to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ also features Remote Procedure Call (RPC) communication, making it easy to move computation to operate on data that resides on remote processes.
UPC++ was designed to support exascale high-performance computing, and the library interfaces and implementation are focused on maximizing scalability. In UPC++, all communication operations are syntactically explicit, which encourages programmers to consider the costs associated with communication and data movement. Moreover, all communication operations are asynchronous by default, encouraging programmers to seek opportunities for overlapping communication latencies with other useful work. UPC++ provides expressive and composable abstractions designed for efficiently managing aggressive use of asynchrony in programs. Together, these design principles are intended to enable programmers to write applications using UPC++ that perform well even on hundreds of thousands of cores.
John Bachan, Scott B. Baden, Dan Bonachea, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, Daniel Waters, "UPC++ v1.0 Programmer’s Guide, Revision 2021.9.0", Lawrence Berkeley National Laboratory Tech Report, September 2021, LBNL 2001424, doi: 10.25344/S4SW2T
UPC++ is a C++ library that supports Partitioned Global Address Space (PGAS) programming. It is designed for writing efficient, scalable parallel programs on distributed-memory parallel computers. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). The UPC++ control model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. The PGAS memory model additionally provides one-sided RMA communication to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ also features Remote Procedure Call (RPC) communication, making it easy to move computation to operate on data that resides on remote processes.
UPC++ was designed to support exascale high-performance computing, and the library interfaces and implementation are focused on maximizing scalability. In UPC++, all communication operations are syntactically explicit, which encourages programmers to consider the costs associated with communication and data movement. Moreover, all communication operations are asynchronous by default, encouraging programmers to seek opportunities for overlapping communication latencies with other useful work. UPC++ provides expressive and composable abstractions designed for efficiently managing aggressive use of asynchrony in programs. Together, these design principles are intended to enable programmers to write applications using UPC++ that perform well even on hundreds of thousands of cores.
John Bachan, Scott B. Baden, Dan Bonachea, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ v1.0 Programmer’s Guide, Revision 2020.10.0", Lawrence Berkeley National Laboratory Tech Report, October 2020, LBNL 2001368, doi: 10.25344/S4HG6Q
UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.
John Bachan, Scott B. Baden, Dan Bonachea, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ v1.0 Programmer’s Guide, Revision 2020.3.0", Lawrence Berkeley National Laboratory Tech Report, March 2020, LBNL 2001269, doi: 10.25344/S4P88Z
UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.
John Bachan, Dan Bonachea, Amir Kamil, "UPC++ v1.0 Specification, Revision 2020.3.0", Lawrence Berkeley National Laboratory Tech Report, March 12, 2020, LBNL 2001268, doi: 10.25344/S4T01S
UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). All communication operations are syntactically explicit and default to non-blocking; asynchrony is managed through the use of futures, promises and continuation callbacks, enabling the programmer to construct a graph of operations to execute asynchronously as high-latency dependencies are satisfied. A global pointer abstraction provides system-wide addressability of shared memory, including host and accelerator memories. The parallelism model is primarily process-based, but the interface is thread-safe and designed to allow efficient and expressive use in multi-threaded applications. The interface is designed for extreme scalability throughout, and deliberately avoids design features that could inhibit scalability.
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ v1.0 Programmer’s Guide, Revision 2019.9.0", Lawrence Berkeley National Laboratory Tech Report, September 2019, LBNL 2001236, doi: 10.25344/S4V30R
UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ v1.0 Specification, Revision 2019.9.0", Lawrence Berkeley National Laboratory Tech Report, September 14, 2019, LBNL 2001237, doi: 10.25344/S4ZW2C
UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. We are revising the library under the auspices of the DOE’s Exascale Computing Project, to meet the needs of applications requiring PGAS support. UPC++ is intended for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds. The key facilities in UPC++ are global pointers, that enable the programmer to express ownership information for improving locality, one-sided communication, both put/get and RPC, futures and continuations. Futures capture data readiness state, which is useful in making scheduling decisions, and continuations provide for completion handling via callbacks. Together, these enable the programmer to chain together a DAG of operations to execute asynchronously as high-latency dependencies become satisfied.
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ Programmer's Guide, v1.0-2019.3.0", Lawrence Berkeley National Laboratory Tech Report, March 2019, LBNL 2001191, doi: 10.25344/S4F301
UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ Specification v1.0, Draft 10", Lawrence Berkeley National Laboratory Tech Report, March 15, 2019, LBNL 2001192, doi: 10.25344/S4JS30
UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. We are revising the library under the auspices of the DOE’s Exascale Computing Project, to meet the needs of applications requiring PGAS support. UPC++ is intended for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds. The key facilities in UPC++ are global pointers, that enable the programmer to express ownership information for improving locality, one-sided communication, both put/get and RPC, futures and continuations. Futures capture data readiness state, which is useful in making scheduling decisions, and continuations provide for completion handling via callbacks. Together, these enable the programmer to chain together a DAG of operations to execute asynchronously as high-latency dependencies become satisfied.
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ Programmer's Guide, v1.0-2018.9.0", Lawrence Berkeley National Laboratory Tech Report, September 2018, LBNL 2001180, doi: 10.25344/S49G6V
UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ Specification v1.0, Draft 8", Lawrence Berkeley National Laboratory Tech Report, September 26, 2018, LBNL 2001179, doi: 10.25344/S45P4X
UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. We are revising the library under the auspices of the DOE’s Exascale Computing Project, to meet the needs of applications requiring PGAS support. UPC++ is intended for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds. The key facilities in UPC++ are global pointers, that enable the programmer to express ownership information for improving locality, one-sided communication, both put/get and RPC, futures and continuations. Futures capture data readiness state, which is useful in making scheduling decisions, and continuations provide for completion handling via callbacks. Together, these enable the programmer to chain together a DAG of operations to execute asynchronously as high-latency dependencies become satisfied.
John Bachan, Scott Baden, Dan Bonachea, Paul H. Hargrove, Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil, Bryce Lelbach, Brian Van Straalen, "UPC++ Specification v1.0, Draft 6", Lawrence Berkeley National Laboratory Tech Report, March 26, 2018, LBNL 2001135, doi: 10.2172/1430689
UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. We are revising the library under the auspices of the DOE’s Exascale Computing Project, to meet the needs of applications requiring PGAS support. UPC++ is intended for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds. The key facilities in UPC++ are global pointers, that enable the programmer to express ownership information for improving locality, one-sided communication, both put/get and RPC, futures and continuations. Futures capture data readiness state, which is useful in making scheduling decisions, and continuations provide for completion handling via callbacks. Together, these enable the programmer to chain together a DAG of operations to execute asynchronously as high-latency dependencies become satisfied.
John Bachan, Scott Baden, Dan Bonachea, Paul H. Hargrove, Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil, Brian Van Straalen, "UPC++ Programmer’s Guide, v1.0-2018.3.0", Lawrence Berkeley National Laboratory Tech Report, March 2018, LBNL 2001136, doi: 10.2172/1430693
UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ Programmer’s Guide, v1.0-2017.9", Lawrence Berkeley National Laboratory Tech Report, September 2017, LBNL 2001065, doi: 10.2172/1398522
UPC++ is a C++11 library that provides Asynchronous Partitioned Global Address Space (APGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The APGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, APGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.
John Bachan, Scott Baden, Dan Bonachea, Paul H. Hargrove, Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil, Bryce Lelbach, Brian Van Straalen, "UPC++ Specification v1.0, Draft 4", Lawrence Berkeley National Laboratory Tech Report, September 27, 2017, LBNL 2001066, doi: 10.2172/1398521
UPC++ is a C++11 library providing classes and functions that support Asynchronous Partitioned Global Address Space (APGAS) programming. We are revising the library under the auspices of the DOE’s Exascale Computing Project, to meet the needs of applications requiring PGAS support. UPC++ is intended for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds. The key facilities in UPC++ are global pointers, that enable the programmer to express ownership information for improving locality, one-sided communication, both put/get and RPC, futures and continuations. Futures capture data readiness state, which is useful in making scheduling decisions, and continuations provide for completion handling via callbacks. Together, these enable the programmer to chain together a DAG of operations to execute asynchronously as high-latency dependencies become satisfied.
George Michelogiannakis, John Shalf, David Donofrio, John Bachan,, "Continuing the Scaling of Digital Computing Post Moore’s Law", LBNL report, April 2016, LBNL 1005126,
The approaching end of traditional CMOS technology scaling that up until now followed Moore's law is coming to an end in the next decade. However, the DOE has come to depend on the rapid, predictable, and cheap scaling of computing performance to meet mission needs for scientific theory, large scale experiments, and national security. Moving forward, performance scaling of digital computing will need to originate from energy and cost reductions that are a result of novel architectures, devices, manufacturing technologies, and programming models. The deeper issue presented by these changes is the threat to DOE’s mission and to the future economic growth of the U.S. computing industry and to society as a whole. With the impending end of Moore’s law, it is imperative for the Office of Advanced Scientific Computing Research (ASCR) to develop a balanced research agenda to assess the viability of novel semiconductor technologies and navigate the ensuing challenges. This report identifies four areas and research directions for ASCR and how each can be used to preserve performance scaling of digital computing beyond exascale and after Moore's law ends.
Posters
Amir Kamil, John Bachan, Dan Bonachea, Paul H. Hargrove, Erich Strohmaier and Daniel Waters, "UPC++: Asynchronous RMA and RPC Communication for Exascale Applications (ECP'20)", Poster at Exascale Computing Project (ECP) Annual Meeting 2020, February 2020,
Scott B. Baden, Paul H. Hargrove, Hadia Ahmed, John Bachan, Dan Bonachea, Steve Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "Pagoda: Lightweight Communications and Global Address Space Support for Exascale Applications - UPC++ (ECP'19)", Poster at Exascale Computing Project (ECP) Annual Meeting 2019, January 2019,
Scott B. Baden, Paul H. Hargrove, Hadia Ahmed, John Bachan, Dan Bonachea, Steve Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ and GASNet-EX: PGAS Support for Exascale Applications and Runtimes", The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC'18) Research Poster, November 2018,
Lawrence Berkeley National Lab is developing a programming system to support HPC application development using the Partitioned Global Address Space (PGAS) model. This work is driven by the emerging need for adaptive, lightweight communication in irregular applications at exascale. We present an overview of UPC++ and GASNet-EX, including examples and performance results.
GASNet-EX is a portable, high-performance communication library, leveraging hardware support to efficiently implement Active Messages and Remote Memory Access (RMA). UPC++ provides higher-level abstractions appropriate for PGAS programming such as: one-sided communication (RMA), remote procedure call, locality-aware APIs for user-defined distributed objects, and robust support for asynchronous execution to hide latency. Both libraries have been redesigned relative to their predecessors to meet the needs of exascale computing. While both libraries continue to evolve, the system already demonstrates improvements in microbenchmarks and application proxies.