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Abstract—We introduce a topology-aware performance op-
timization and modeling workflow for AMR simulation that
includes two new modeling tools, ProgrAMR and Mota Mapper,
which interface with the BoxLib AMR framework and the SST-
macro network simulator. ProgrAMR allows us to generate and
model the execution of task dependency graphs from high-level
specifications of AMR-based applications, which we demonstrate
by analyzing two example AMR-based multigrid solvers with
varying degrees of asynchrony. Mota Mapper generates multi-
objective, network topology-aware box mappings, which we
apply to optimize the data layout for the example multigrid
solvers. While the sensitivity of these solvers to layout and
execution strategy appears to be modest for balanced scenarios,
the impact of better mapping algorithms can be significant
when performance is highly constrained by network hop latency.
Furthermore, we show that network latency in the multigrid
bottom solve is the main contributing factor preventing good
scaling on exascale-class machines.

I. INTRODUCTION

The solution of partial differential equations (PDE’s) using

adaptive mesh refinement (AMR) has proven to be a com-

putationally efficient approach for simulating a broad range

of physical phenomena in which feature sizes vary widely in

scale, such as those occurring in astrophysics, combustion, and

geophysical modeling [1], [2]. Significant effort has gone into

tuning AMR-based applications for current high performance

computers.

However, the push towards exascale computing is forcing

changes in the way these high performance systems are

designed. In order to keep aggregate system power in check

while continuing to push the performance envelope, future

systems will need to be composed of simpler, more power

efficient compute elements [3]. The composition of leadership

class machines is expected to transition quickly over the next

few generations with nodes becoming much more powerful,

data locality becoming increasingly important, and the balance

between compute and communication performance shifting.
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Fig. 1: Our AMR performance modeling workflow

This evolution in hardware design will compel scientists to

reexamine several core aspects of AMR in order to achieve

high performance on future architectures, including a) greater

attention to data locality and b) hiding communication la-
tency through increased asynchrony. Fundamental to block-

structured AMR is the spatial decomposition of the domain

into multiple grids at multiple levels of resolution. The specific

application determines how the domain is decomposed, but

performance considerations dictate the placement of grids (or

boxes) onto processors. The placement of data affects both

the computational load balance and the cost of communication

over the network. As parallelism and aggregate compute per-

formance increase within compute nodes, the relative cost of

data movement and messaging will increase, with the possible

outcome that optimizing the locality of the grids at the expense

of load balance may improve performance at larger scales.

Additionally, asynchronous task-based programming models

may provide more flexible execution strategies on exascale

architectures to help overlap communication latencies with

independent computation. [4], [5], [6], [7], [8]. Since porting

existing large, complex scientific applications to task-based

programming models may be challenging, it is important to

understand the potential benefits on future hardware before

investing significant engineering effort.

Figure 1 illustrates our AMR modeling workflow. First, we

use applications from the BoxLib [1], [9] AMR framework

to generate multilevel grid hierarchies for analysis. The first

modeling tool, ProgrAMR, produces skeletonized task-graph

representations from high-level expressions of algorithms. The

second, Mota Mapper, is a multi-objective topology-aware

data mapping library that we use to map block-structured

AMR boxes to network nodes in a way that simultaneously

reduces communication costs while balancing compute loads
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and memory constraints. Finally, the algorithm task graph and

mappers are fed into the SST-macro network simulator [10]

to illustrate various trade-offs in system performance.

We utilize this methodology to examine the implications of

changes in system architecture and execution models on the

performance and scalability of multigrid linear solvers, whose

execution typically contributes a significant fraction to the total

simulation time of AMR applications that utilize them. Some

of the authors have previously collaborated on a tool-chain

that allows AMR applications to be represented as a task

dependency graph that can be simulated at system scale [11].

This paper follows a similar approach, but introduces new tools

that allow more flexible algorithm, data layout, and execution

model exploration than the previous work. Specifically, Pro-

grAMR allows higher-level algorithm specification, enabling

much more complex algorithmic variants (such as multigrid)

to be evaluated. It also tags tasks with metadata to allow vary-

ing the degree of asynchrony during execution. Furthermore,

Mota Mapper enables us to evaluate new topology-aware box

mapping strategies.

The rest of the paper is structured as follows. Section III

gives an overview of the BoxLib AMR framework. Section IV

introduces the ProgrAMR semantics that provides a concise

way to generate AMR task dependency graphs, and describes

the set of AMR-based multigrid algorithms we modeled. Sec-

tion V introduces the Mota Mapper library of multi-objective,

topology-aware mapping algorithms for assigning AMR boxes

to ranks on a network. Section VI gives an overview of

the SST-macro network interconnect simulation framework.

Section VII discusses four different models of synchronization

that we explore using the task-graph representation of the

solvers. Finally, Section VIII presents experimental results

gathered using our tools in conjunction with the SST-macro

network simulator to show:

1) a baseline analysis of scaling behavior of the AMR multigrid
algorithms,

2) the impact of new mapping algorithms on performance with
varying network configurations,

3) the sensitivity of multigrid variants to mapping optimizations,
4) a comparison between execution models with different degrees

of asynchrony, and

5) the impact of box consolidation to fewer ranks during multigrid

coarsening.

II. RELATED WORK

A common way distributed scientific programs are struc-

tured is using the single-program, multiple data (SPMD) model

with explicit message passing using a communications library

such as MPI, leaving the burden of managing data dependence

and communications to the programmer. Some more advanced

programming systems allow the developer to specify task data

dependencies, while implicitly managing the communications

required between tasks, such as the Legion programming lan-

guage [12]. Other previous work has also addressed high-level

programmability of distributed-memory parallel applications

using ideas from functional programming, such as FooPar [13].

Our ProgrAMR tool provides a high-level interface that hides

the complexity of generating AMR task dependency graphs

by automating much of the dependency analysis and allowing

input-dependent, dynamic graph generation through the use of

a monadic, functionally-pure programming semantics.

Also, there has been much previous work investigating the

impact of topology-aware mapping algorithms using a wide

variety of techniques. Some of these papers provide gener-

alized methods for mapping application graphs to network

graphs [14], [15], while others analyze graphs with specific

properties, such as networks that are 2D or 3D mesh ge-

ometries [16], or applications with particular communications

patterns such as molecular dynamics [17]. Other related work

has focused on topology-aware collectives optimizations [18],

[19], [20]. To the best of our knowledge, the algorithms

presented in this paper are the first to address AMR-specific

issues in the topology mapping problem, accounting for multi-

objective, per-level load and memory balance in addition to re-

ducing the data movement cost over the network interconnect.

III. BOXLIB: A BLOCK-STRUCTURED AMR SIMULATION

FRAMEWORK

BoxLib is a mature software framework for building

massively parallel block-structured adaptive mesh refinement

(AMR) applications [1], [9]. It is one of a number of current

publicly available AMR frameworks; see e.g., [21], for an

overview. Many application codes spanning a large range of

scientific domains are built on these frameworks – BoxLib-

based codes, for example, include those for astrophysical,

combustion, atmospheric, and subsurface flow simulations.

BoxLib supports explicit and implicit grid-based opera-

tions as well as particle and particle-mesh operations on

adaptive hierarchical meshes. Multiple time-subcyling modes

are supported for adaptive mesh simulations, and mul-

tilevel multigrid solvers are included for cell-based and

node-based data. BoxLib application codes have demon-

strated good scaling behavior on up to 100,000 cores on

current multi-core architectures [22], [23]. BoxLib itself

and several BoxLib-based codes are publicly available at

https://github.com/BoxLib-Codes.

IV. PROGRAMR: DESCRIBING AMR

PURE-FUNCTIONALLY

A. Description

At its core, ProgrAMR is a semantics for describing a broad

set of AMR-related algorithms at a high level. By design, it

avoids execution details, giving rise to the two salient features:

1) conciseness of algorithm expression, and 2) decoupling of

algorithm specification from execution to aid the exploration

of execution strategies as a separate concern. It leverages pure-

functional semantics so that parallelism is exposed via data-

driven behavior. ProgrAMR currently meets the needs of task

graph driven system simulation; however, we may extend it

in the future to provide a full task-based AMR runtime. The

AMR-specific aspects of the API currently allow description

of skeletonized algorithms, meaning that they generate the

computation and communication event traces necessary to

drive the network simulator, without doing any actual floating-

point computation. The time spent in on-node compute kernels
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is represented by performance model profiles generated by the

ExaSAT performance modeling framework [24].

We have implemented ProgrAMR as a C++ library in the

spirit of an embedded DSL. The operations exposed by the

library are mostly constructors for the various AST nodes

pertaining to our custom AMR semantics. For the user, C++

is used as a scripting language for generating the AST. The

embedded AST semantics is pure-functional, meaning that

the whole program is one large expression tree of function

applications, absent of any mutable state. The application

variables are big in the sense that they are implicitly distributed

over the entire machine’s partitioned memory, and application

functions then operate on these whole distributed variables.

This leads to a very SIMD-like programming experience where

the scope of the instruction’s parallelism is machine-wide,

and the tedious details about when to communicate data and

schedule computation are abstracted away.

Among the catalog of built-in data structures and operations,

the first to note is the Ex<T> type: an AST expression node

that at runtime will produce a value of type T. For AMR

simulations, state variables are Ex<Slab<T>>s, which are ex-

pressions representing collections of boxes all at the same level

of refinement (called the slab’s domain), where each cell of

a box holds a single value of type T. Since ProgrAMR is

pure-functional, slabs are immutable and may not be altered;

instead, new slabs are generated by applying one of the built-in

operations to existing slabs. For instance, the slab operation

Ex<Slab<T>> slab_halo(Ex<Slab<T>> x, int width)

takes an expression for computing a slab x, and returns a new

expression for a new slab that has the same interior values

as x, but with halo (or ghost) zones added to the sides (thus

implying communication). This is commonly followed by

Ex<Slab<T>> slab_stencil(Ex<Slab<T>> x, ...)

which takes an expression for a slab containing halo regions,

applies a stencil to the cell values, and produces an expression

for a new slab with updated interior cells but devoid of the

consumed halo regions. We have similar operations for prolon-

gation and restriction between parent/child slabs, and a halo fill

that accepts two parent slabs to be interpolated between. This

makes for a very intuitive coding style where slabs expressions

are simply passed in and out of slab operations. Also, common

patterns of slab operations can be factored into vanilla C++

user functions.

The ProgrAMR slab operations used to build an application

are typically data-independent, i.e. the amount of computa-

tional work they represent is independent of their inputs’

numerical values. However, in order to include the costs

of convergence detection for iterative methods and handle

adaptive time-stepping, we added support for allreduce
collectives. We believe we handle the program dynamics of

data-dependent control flow in a pure functional setting with a

degree of novelty from the perspective of the HPC community.

The technique we employ is a mainstay for any pure-functional

programmer: the monad [25]. To understand the problem the

monad solves, consider that data-independent expression trees

are all static and finite. However, most iterative algorithms

dynamically decide what sequence of operations to perform

based on their intermediate results, hence they cannot know

their fully expanded expression tree up front. In order to

represent a whole dynamic, data-dependent program as an

expression tree (and retain pure-functional semantics), we

need a representation that allows expressions to dynamically

unfurl. By adding just one additional AST node type, the

monadic bind operation, we are able to wield an expression

unfurling mechanism that is Turing-complete, making it pow-

erful enough to encode any algorithm based on the primitives

already discussed.

Expressing reduction-dependent program control flow re-

quires two operations:

Ex<T> slab_reduce(Ex<Slab<T>> x, T modeled_result)

folds a slab worth of values down to a single scalar. Since

ProgrAMR uses skeletonization to avoid doing numerical com-

putation, the user simply provides the result of the modeled

reduction.

Ex<T> mbind(Ex<U> x, std::function<Ex<T>(U)> f)

produces a data-dependent expression. The two arguments are

the expression x on which we have a dynamic dependence, and

the C++ function f that will produce the dependent expression

given x’s runtime value. The returned expression is a proxy

for the dependent expression so that it can nest into further

(perhaps data-dependent) expressions.

Once the user program is specified, ProgrAMR can then

generate the machine-wide task graph to drive the network

simulator. We first run the user program to generate the

AST, then visit the slab operations embedded in the tree’s

nodes in topologically sorted order. For each box in every

operation’s output, we generate a compute task that represents

the computation of the box’s data and generate communication

messages for the task’s true data dependencies on individual

boxes from the operation’s inputs. The set of tasks produced

is the Cartesian-product of the set of operation nodes and the

boxes in the mesh. The tasks and messages are then saved

to an XML file to be read by the SST-macro simulation

framework. This process is depicted in Figure 2. The following

section describes the AMR-based multigrid algorithms we

implemented and modeled with ProgrAMR.

B. AMR-Based Multigrid Algorithm Skeletons Using Pro-
grAMR

Many algorithms for multiphysics PDE-based applications

require the iterative solution of large linear systems arising

from either discretization of elliptic equations or implicit

treatment of parabolic equations. Multigrid algorithms are

often the method of choice for solving these systems. AMR

simulations with subcycling in time typically require linear

solves across the grids at a single AMR level only; algorithms

without subcycling typically require solves across all the levels

in the hierarchy. For the rest of this paper we focus on

the performance of multigrid on multiple levels of an AMR

hierarchy, using either V-cycles or F-cycles (see, e.g., [26],

for more detail). For each of the two cases we implemented a

skeletonized version of the algorithm in ProgrAMR. While the
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t y p e d e f Ex<Slab<double>> ExSlabD ;
/ / b u i l d s a s e r i a l e x p r e s s i o n t r e e :
/ / x −> y −> z
ExSlabD smooth ( ExSlabD x ) {

ExSlabD y = s l a b h a l o ( x , 2 ) ;
ExSlabD z = s l a b s t e n c i l ( y , 2 , . . . ) ;
re turn z ;

}

(a) User code snippet. (b) Slab x’s domain with two boxes
(deduced for y and z). Halo of 2
cells outlined, and regions commu-
nicated shaded.

x.1 x.2

y.1 y.2

z.1 z.2

(c) Generated task
graph.

Fig. 2: An example of how ProgrAMR generates the task graph given an expression tree and initial mesh configuration.

a) b) 

Fig. 3: a) A comparison between AMR simulation with and without
subcycling; b) A comparison between multigrid V-cycles and F-cycles

variants are not directly comparable since they have different

convergence characteristics, it is still informative to compare

how the performance of each variant responds to other changes

in the system, such as modifications to the box layout or

network interconnect, relative to the other variant.

Figure 3 illustrates the differences between the variations

of an integration strategy that requires linear solves. In the

subcycled version, temporal resolution is coupled to spatial

resolution, resulting in multiple fine grid time steps per coarse

grid time step. Each time step at each level requires a single-

level multigrid solve, potentially followed by a multi-level

multigrid synchronization step. An advantage of this time

integration strategy is that fewer time steps are taken on the

coarser levels than if all the levels were advanced with the

same small time step.

In contrast, the time integration algorithm without subcy-

cling in time advances the data on all levels with the same

time step, typically dictated by the data at the finest level. In

this case the multigrid solver includes all AMR levels within

each solve, requiring much more inter-level communication.

Although this approach requires all levels to update at the

finest time resolution, it can often be more efficient because

the coarsest AMR level covering the entire domain can often

be coarsened much more deeply than the union of a grids

at a finer level. Deeper multigrid cycles can result in faster

convergence and enable additional optimizations such as box

consolidation or agglomeration.

V-cycles and F-cycles differ in the order in which the

multigrid levels are traversed and in how many times each

level is visited within the cycle. Relative to V-cycles, F-

cycles spend more of their time at the coarser multigrid levels,

thus we expect their performance to be more sensitive to

the performance of the bottom solver and other coarse grid

optimizations. Results comparing the relative performance of

these algorithms will be explored in Section VIII-B.

V. MOTA MAPPER: THE MULTI-OBJECTIVE

TOPOLOGY-AWARE MAPPING LIBRARY

The AMR box layout problem is to determine an assignment

(mapping) of boxes to ranks to simultaneously minimize the

computational load imbalance and communication costs of

the application. There is an obvious trade-off between the

two objectives: mappings that favor good load balance tend

to increase communication costs, and those that minimize

communication costs tend to have poor load balance. Finding

a communications-optimized load balanced mapping is an NP-

complete multi-objective optimization problem [14], thus we

are forced to resort to algorithms that provide an approximate
solution.

These algorithms fall into two categories: those that do

not take into account the network topology and those that

do. As computer hardware evolves, data movement and

communication will increasingly impact the runtime of our

applications [3], and thus we expect reducing the cost of

moving data across the network will become more important.

This section introduces three new network-topology-aware

approaches that produce approximate solutions to this multi-

objective problem. In addition, we summarize and examine

three current algorithms utilized in BoxLib for comparison

with the new algorithms. Experimental evaluations of these

mapping algorithms will be given in Section VIII.

A. Non-topology-aware algorithms

Two of the current algorithms (knapsack and space-filling

curve) are non-topology-aware, taking into account the size

and/or geometry of the boxes but not network topology.

1) Knapsack (KS): This box mapping algorithm focuses on

balancing the number of grid cells across ranks, resulting in

a good balance of the memory footprint across ranks as well

as computational load. The number of cells in a box is used

as the weight of the box, and the mapping algorithm tries to

evenly partition the total weight of the boxes in each level
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across available ranks in the network. It does not attempt to

use any information about how the boxes communicate, only

their computational and memory footprints.

2) Space-Filling Curve (SFCS): The space-filling curve

mapping algorithm, like many of the algorithms considered

in this paper, constructs a linear sequence of the boxes in

a way that attempts to keep boxes that communicate close

together in sequence order. It does so by identifying a point

with each box (e.g. a corner or the center), and using a Z-

Morton coordinate transformation [27] to order them. Each

AMR level is mapped in turn, and a separate sequence of boxes

is generated for each level independently. For each level, the

boxes are distributed (in Z-Morton order) to a sequence of

N buckets (where N is the number of ranks) in a way that

maintains load balance across buckets. Using a new set of

buckets for each level ensures that the per-level load balance

is addressed while grouping boxes that probably communicate

(based on their proximity) together. The buckets and ranks

are then sorted and mapped bijectively such that buckets with

larger load are mapped to ranks with smaller load (taking into

account the load of the boxes from previously mapped AMR

levels), and this process is repeated for each AMR level.

B. Topology-aware algorithms

We examine one current topology-aware mapping algorithm

(PFCM) from BoxLib and introduce three new ones (GR,

RCM, and RB).

1) Proximity-Filling Curve (PFCM): This BoxLib algo-

rithm utilizes a similar technique to SFCS, but considers

boxes across all levels simultaneously to construct the Z-

Morton ordered sequence. Sequencing the boxes in all levels

simultaneously places communicating boxes from different

AMR levels closer to each other, potentially increasing the

performance of restriction and prolongation operations. Ad-

ditionally, the ranks are ordered in such a way to increase

the topological locality between nearby ranks (the specific

ordering mechanism depends on the type of network). Both

the ordering of the boxes and the ordering of the ranks is

used during box distribution, resulting in lower inter-node

messaging costs for neighboring boxes mapped to different

ranks.

One trade-off of sequencing all levels at once is that the

load balance of each AMR level on its own is not taken into

account during box distribution, only the memory footprint of

the boxes per rank. Thus per-level load balance may not be as

good as the other algorithms, and performance may suffer for

certain AMR solvers since there may be several computational

stages that operate on levels individually, during which no

work is available for boxes on other levels.

2) New Topology-Aware Algorithms: The new box mapping

algorithms are based upon three topology mapping algorithms

described in [14] and implemented in the LibTopoMap library

[28]. In order to apply some of the ideas from that paper

to the AMR box mapping problem, we made some signifi-

cant enhancements to the algorithms. The topology mapping

problem in that paper was formulated as mapping a set of

equivalent processes to a set of compute nodes, each with a

capacity for a number of processes (e.g. 1 process per core).

The computational load and memory footprint of each process

was not taken into account, so each process was effectively

treated as if it took an equal amount of resources on the

node. Furthermore, for some mappings there are constraints

on the number of processes per node and restrictions on the

cardinality of the application and network graphs.

We modified these algorithms to make them applicable to

the AMR box mapping problem, which maps boxes to ranks,

and must take into account the different computational costs

and memory footprint of the boxes assigned. Our extended

methods can handle multiple computational load balancing

constraints and a memory constraint, and supports mapping

an arbitrary number of boxes to an arbitrary number of ranks.

We believe the methods we developed are generic enough to

be applied to other application domains that require multi-

objective topology mapping.

3) Network Topology Models: In order to map boxes in

a topologically-aware fashion for proposed exascale inter-

connect configurations, we utilize a parameterized network

interconnect model that allows us to represent the connectivity

graph and routing behavior for various network topologies.

We implemented four classes of interconnect topologies: a

generic N-dimensional torus, a generic dragonfly, and specific

models for the Edison and Cori supercomputers at NERSC.

Our models are based on [29], [30], the SST-macro simulation

framework [10], and information communicated from NERSC

staff. The parameterized generic models allow us to generate

mappings for future interconnects, while the specific models

allow us to map boxes for runs on current machines.

These models allow us to customize both the connectivity

and the routing algorithms so that we can examine not just the

topology, but also edge/link utilization metrics that are needed

in some mapping algorithms. For example, in the greedy

algorithm boxes are placed to avoid utilizing network links that

are already servicing heavy traffic between previously placed

boxes, requiring a model of the interconnect routing behavior.

4) Greedy (GR): The greedy algorithm maps boxes to ranks

one at a time, sequentially choosing the next box to map based

on how heavily connected it is to the already mapped boxes.

Ranks are filled up until they have no more capacity, then

the next rank is chosen based on a single-source shortest path

algorithm through the interconnect until one is found with

sufficient capacity. For a more detailed description of non-

AMR version of the greedy algorithm, see [14].

In the previous work, each rank has a capacity of pro-

cesses, assumed to have equivalent cost. To suit the AMR

box mapping problem, each rank k is instead given a tuple

ck = (ck,1, ..., ck,n) of grid cell capacities where the number

of components n equals the number of AMR levels plus one,

representing all level-specific compute loads plus the overall

memory balance constraint.

Each box j with gj grid cells in AMR level l is assigned a

tuple to represent its weight wj = (wj,1, ..., wj,n), where:

wj,i =

{
gj if i ∈ {l, n}, and

0 otherwise.
(1)
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The capacity constraint can then be defined as:∑
j∈M(k)

wj,i ≤ ck,i, ∀k, i, (2)

where M(k) is the set of boxes mapped to rank k.
One problem we had to solve was what capacities to use

for the ranks. The capacity model of [14] does not face this

problem since they simply assume the total process capacity

(number of cores) of the system is fixed by the hardware and

equals or exceeds the number of processes to be mapped. They

also do not attempt to minimize the average or maximum

process load across nodes, since it is assumed each additional

process assigned to a node will receive an independent core.
In the AMR box mapping problem, there is no fixed

compute load capacity, and furthermore, mappings that satisfy

smaller maximum load capacities may perform faster than

others. Our rank load capacities should thus be chosen to

be as tight as possible while still allowing a solution that

satisfies the capacity constraint (2). Such a solution will result

in a mapping with an even distribution of compute load and

memory footprint across N ranks.
Our approach to support the multi-objective capacity con-

straint is to use:

ck,i = max

⎛
⎝max

j
wj,i, α

∑
j

wj,i/N

⎞
⎠ ∀k, i, (3)

which equals the larger of the maximum box weight and a

scaled average box weight for each constraint. We set α = 1
as an initial guess; however, with such a strict constraint,

the algorithm often encounters a situation with boxes still

remaining and no rank with sufficient capacity because a

constraint is too tight for some i.
When this condition is detected, we retry the mapping from

scratch with an increased capacity constraint until the mapping

algorithm completes. Starting from scratch allows the boxes

to be more evenly spread across ranks compared to simply

increasing the capacity of the ranks at the point where we

run out of space. Using a larger capacity multiplier between

retries will speed up the time to find a solution, but reduces

the average quality of load balance.
5) Reverse Cuthill-McKee (RCM): As with the SFC al-

gorithm, the basic idea of the RCM mapping algorithm

[31], [32] is to construct linear orderings of the boxes and

ranks so as to reduce the distance between communicating

boxes and connected ranks, respectively. As the name implies,

this algorithm uses the Reverse-Cuthill-McKee sparse matrix

bandwidth reduction algorithm on the adjacency graphs of

the application and network. In the RCM process mapping

algorithm presented in [14], the number of processes per node

is either 0 or 1, and the number of available process slots must

equal the number of processes to be mapped.
Our method allows an arbitrary number of boxes to be

mapped to each rank by leveraging a new distribute algorithm

that takes a linear sequence of boxes and distributes them to a

linear sequence of ranks in a way that attempts to keep nearby

boxes close together while simultaneously satisfying all of the

multi-objective capacity constraints described in V-B4. This

new distribute algorithm is described in the following section.

6) New distribute algorithm: We designed a new box dis-

tribution algorithm to map an arbitrary number of boxes to an

arbitrary number of ranks given a locality preserving ordering

of both the algorithm and network graphs. The distribution

algorithm also takes an arbitrary number of load and memory

balance constraints to determine placement of the boxes.

This algorithm is distinguished from the current BoxLib

distribution algorithm used in the SFCS and PFCM algorithms

in that it handles multiple constraints, providing memory

balance and per-level load balance on all AMR levels, as well

as network topology-aware box placement that is sensitive

to both intra- and inter-level communications. The original

BoxLib distribution algorithm handled a single constraint, so

there were two options: either 1) each AMR level was mapped

individually, providing good load balance on each individual

level but ignoring inter-level communication costs, or 2) all

boxes were mapped together, discarding per-level compute

load information and balancing memory only.

Algorithm 1 Distribute(boxes[M ], ranks[N ], γ)

1: Compute box weights and initialize rank capacities using Eqs. (1)
and (3) with α = 1

2: k ← 1, d ← 1
3: while solution hasn’t been found do
4: for j in (1, ...,M ) do
5: while rank k does not have capacity for box j according

to (2) do
6: if all ranks have been checked for box j then
7: Break out of for loop (line 4)
8: end if
9: if k = N or k = 1 then

10: d ← −d
11: end if
12: k ← k + d
13: end while
14: Assign box j to rank k (insert j into M(k))
15: end for
16: if solution was not found then
17: α ← γ · α
18: Reset box assignments and rank capacities
19: end if
20: end while

The new distribute algorithm is sketched in Algorithm 1.

Like the outer retry loop of the greedy algorithm, it initializes

the rank capacity tuple (2) to be very tight and exponentially

loosens the capacity constraints by increasing α by some

γ > 1 until a solution is found. The algorithm attempts

to place boxes on the ranks in the order they occur in the

sequences. Like the current BoxLib distribution, it will place

multiple boxes on the same rank until the rank’s capacity is

reached; however, due to the presence of multiple constraints,

ranks may not fill up all of their capacities on the first pass.

Thus it becomes necessary to backtrack across the sequence of

ranks to continue finding space for boxes in the hope that the

remaining boxes will fill in the “holes” left on the previous

passes. One might consider other methods for filling holes

while traversing the ranks, such as using a dovetail search

mechanism, but we have not yet explored these alternatives.

7) Recursive Bisection (RB): The recursive bisection ap-

proach given in [14] recursively divides both the application
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and network graphs, mapping the partitions to each other

during each bisection call. This method is not suitable for

AMR box mapping because each bisection of the graph

balances a single constraint and requires that network capacity

equals the application graph size.

In order to support AMR box mapping, we instead use

the METIS recursive bisection algorithm to decompose the

graph into a hierarchical tree structure, where at every node

of the tree, the bisection is chose to minimize the edge cut

cost. We then leverage the fact that the leaves of the tree (i.e.

the returned partitions) are numbered in a depth-first traversal

(ensuring that entire subtrees are enumerated before moving to

the next subtree), thus providing a naturally locality-preserving

linear ordering. We apply this algorithm to produce orderings

of both the application and network graphs, then map boxes to

ranks using the multi-constraint distribute algorithm described

in Section V-B6.

VI. COARSE-GRAINED FULL SYSTEM SIMULATION

The SST-macro element library of the Structural Simulation

Toolkit (SST) has been developed to allow efficient discrete

event simulation of HPC systems at full scale [10], [33], [34].

In order to keep full system simulations tractable, sensible

approximations must be made. Simulating network traffic as

flows holds an intuitive attractiveness in that messages can

flow through the system with a very small number of events

unless congestion is present. However, in the presence of

congestion, flow updates must be propogated across switches

in the system, and simulation costs rise unacceptably for

large simulations with significant congestion. An alternative

for speeding up simulation is to packetize messages, elim-

inating the need for system-wide updates, but keep these

packets ”coarse-grained” so that there are fewer of them to

simulate. However, these large packets block resources for

larger amounts of time than would happen on real hardware,

so packets competing for the same resource will encounter

delays which introduce significant errors. The hybrid packet-

flow model within SST-macro provides a practical tradeoff

between accuracy and simulation cost. Once bandwidth for a

packet is assigned, later packets can utilize unused bandwidth

but cannot acquire bandwidth previously assigned to earlier

packets. In this way, more realistic congestion delays can

be produced while keeping the model tractable. In this work

the packet-flow model is used in coarse-grained full system

simulation.

VII. AMR SIMULATION FRAMEWORK

A. Modes of Synchronization

As the degree of parallelism and relative cost of communica-

tion increases with evolving system architecture design, bulk-

synchronous parallel execution approaches may not perform

well when scaled to exascale system sizes. We investigate

here the impact of applying varying degrees of asynchrony

to the AMR application skeletons described in Section IV by

simulating the execution under four different synchronization

mechanisms. In all models except for fully asynchronous,

there are conditions where ranks unnecessarily idle even if

there are local tasks whose individual data dependencies have

been fulfilled. The trade-off for these models is that more

synchronous models tend to be easier to program and verify

for correctness.

All of the synchronization methods we analyzed are sim-

ulated from the same task-graph XML description files. The

only differences are additional synchronizations added during

simulation itself to emulate the false dependencies that are

required by more synchronous execution models. We enabled

this flexibility by utilizing epochs, which we define in this

context to be sets of tasks (sequences of computations or

communications) that may proceed concurrently with no de-

pendencies.

An example of an epoch would be a single explicit time

step update that may execute after a boundary fill or halo

exchange has completed. Since the computational step is

typically executed across multiple AMR boxes, this epoch

consists of multiple events spread across multiple ranks, each

corresponding to an update of an individual box. This method

is implemented in our task-graph XML by tagging each

event (computation or communication) with an epoch number,

grouping together events that are part of the same epoch.

The execution models and their differences are described

below.

1) Fully Synchronous: In the fully synchronous execution

model, each computational epoch in the algorithm proceeds in

lock-step across all ranks. In our example, every rank waits

for the preceding epoch’s halo exchange messages to complete

across all ranks before proceeding with the time step compu-

tation. No event of a given epoch may proceed until events on

all ranks in a previous epoch have completed. This method is

often implemented using global barriers (e.g. MPI_Barrier)

to separate consecutive computational stages.

2) Rank Synchronous: In the rank synchronous execution

model, ranks are decoupled so that no global synchronization

is required. However, there is a local restriction on the order

in which tasks are processed within each rank. Specifically,

events cannot begin until all events on the same rank with a

previous epoch number have completed. In the explicit time

stepping example, each rank would wait until all boundary fill

messages for all boxes owned by the rank have been received

before proceeding to any time step computation. Thus, even

if the boundary has been completely filled for an individual

box, it cannot proceed with its update until the boundaries

for the other boxes owned by the same rank have also been

filled. This execution model mostly closely corresponds to

the current BoxLib implementation and is often implemented

using local synchronization of posted non-blocking receives

(e.g. MPI_Waitall).

3) Phase Asynchronous: In the phase asynchronous ex-

ecution model, ranks are allowed to more freely overlap

communication and computation between epochs. Specifically,

computation events may overlap arbitrarily with communica-

tion events, but computes in different epochs cannot execute

simultaneously on the same rank. This behavior corresponds

to data-parallel asynchrony where the concurrency exposed

by the programming model includes the events of a single

computational step spread across multiple data.
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This execution model corresponds to entering a fork-join

concurrency mode during each computational step, where a set

of concurrent tasks and their data dependencies are registered

with the runtime. All communications are assumed to occur

asynchronously, and any computational task within an epoch

can execute as soon as its individual data dependencies have

been satisfied. In the explicit time-stepping example, a box

may do its time step update as soon as its boundary has been

filled without waiting for the boundaries of other boxes on the

same rank to be filled. This execution model corresponds to

using a light-weight runtime to manage registration of tasks

and processing them immediately when their data dependen-

cies have been satisfied (see [35] for a similar, although more

powerful, example of this type of data-parallel asynchrony).

Note that this model requires the runtime to be more attentive

to individual incoming receives (e.g. MPI_Waitany) rather

than blocking until all posted receives complete.

Compared to the fully asynchronous execution model, this

model will not progress to the next epoch until all tasks of the

current epoch have completed, but communications are issued

asynchronously to maximize the opportunity for overlap. This

type of parallelism is one model being considered for the AMR

exascale applications area since it is easier for the application

programmer to specify at a high level compared to a full task

dependency graph.

4) Fully Asynchronous: In the fully asynchronous execu-

tion model, there are no false dependencies between tasks,

providing the most flexibility to overlap communication and

computation. Computation and communication tasks in dif-

ferent epochs may execute in arbitrary order on each rank,

so long as their data dependencies have been satisfied. This

behavior corresponds to true task-parallel asynchrony, where

the programming model must expose a full task-graph to the

runtime. The runtime must either have the entire application

task graph registered at initialization or have some way of

dynamically unfurling the task graph so that tasks are created

and executed as their dependencies are satisfied. In the exam-

ple, boxes across the AMR grid can be progressing forward

in time completely independently of one another. Another

possibility enabled by task-parallel asynchrony is to have tasks

from independent subroutines executing in any order, allowing

the possibility of interleaving light-weight tasks that have

relatively high dependent communication latencies (such as

the bottom solve of a multigrid solver). This execution model

corresponds to using a full task-graph based asynchronous

runtime such as Charm, HPX, Legion, OCR, etc.

VIII. RESULTS

Since there are many parameter combinations we could

explore, we chose a baseline configuration and deviated from

it as needed to show specific parameter sensitivities. The

baseline algorithm configuration is a multi-level AMR multi-

grid with no subcycling, using a V-cycle with 10 BiCGStab

bottom solve iterations. The default execution model is fully-

asynchronous. We analyze two classes of network topologies:

the 3D torus and the dragonfly, both modeled by extending the

configuration of current interconnects (modifying the topology

(a) 3D Torus (absolute) (b) 3D Torus (normalized)

(c) Dragonfly (absolute) (d) Dragonfly (normalized)

Fig. 4: A comparison of box layout algorithms in the larger, balanced
case for different network latency configurations. Both absolute time
and normalized time vs. random are shown.

and performance parameters) to represent a range of configura-

tions from current to potential exascale designs. Broadly, the

baseline exascale network consists of 64 port switches with

injection bandwidth (per port) and latency of 100GB/s and

0.25us, respectively, and network bandwidth and latency of

120 GB/s and 25ns, respectively.

The on-node performance of the multigrid kernels (e.g.

smooth, restrict, etc.) are modeled using the ExaSAT per-

formance modeling framework [24], which predicts that the

performance of the multigrid kernels will be determined by

the hardware’s on-node memory bandwidth and cache sizes.

By tuning these parameters to represent an exascale class node

architecture, we can estimate the compute time for each kernel

during simulation.

In our simulations, we observed that the impact of box

layout and asynchrony in execution is actually quite small

for typical problem and hardware configurations. These op-

timizations appear to matter more for extreme configurations

where the performance is bound by network hop latency. This

situation happens when the injection latency is low relative

to the switch hop latency or when compute resources are

abundant, in both cases resulting in very communications-

bound performance. Admittedly, these situations may not be

typical, but we hope it is instructive to illustrate how sensitive

the performance can be in such extreme cases. To this end, we

chose two problem scenarios to illustrate: one balanced case

with 10,449 boxes in the AMR hierarchy mapped to 3,072

ranks, and one extreme case, representing compute resource

abundance, with 967 boxes freely mapped to any subset of

1,536 ranks.

A. Box Layout Optimization and Network Latency Sensitivity

Using the Mota Mapper library, we examine the impact

of optimizing box placement using the various algorithms

described in Section V. We also include random mapping

of boxes to ranks as a standard reference. Random mapping
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(a) 3D Torus (absolute) (b) 3D Torus (normalized)

(c) Dragonfly (absolute) (d) Dragonfly (normalized)

Fig. 5: A comparison of box layout algorithms in the smaller,
compute-abundant extreme case for different network latency con-
figurations. Both absolute time and normalized time vs. random are
shown.

(rdm) performs better than one might expect because boxes

are distributed relatively evenly across ranks providing good

load balance and avoiding congestion hotspots on the network,

though the average number of hops messages traverse through

the network is high. Furthermore, we experiment with mod-

ifying the network latency parameters to see how reducing

the injection latency from 250 ns to 25 ns, increasing the hop

latency from 25 ns to 250 ns, or both modifications combined,

affects performance.

Figures 4 and 5 show the absolute and normalized per-

formance for the large, balanced and small, extreme test

configurations, respectively, on the 3D torus and Dragonfly

networks. In the balanced case, the improvement from using

topology-aware mapping algorithms is small, with the greedy

or recursive bisection algorithms only improving the latency-

modified performance by 6 to 10 percent relative to the best

non-topology-aware mapping algorithm (usually the space-

filling curve or knapsack algorithm). However, in the extreme

case, the topology aware layouts improve the latency-modified

performance by 37 to 54 percent. These large speedups are

due to the algorithms placing boxes that communicate closer

to one another, resulting in a packing of boxes into nearby

ranks, rather than spreading them across the machine as with

the knapsack algorithm.

B. Multigrid Algorithm Sensitivity

Figure 6 shows the relative performance of box layout

algorithms for the V-cycle vs. F-cycle multigrid algorithms

with modified network latency parameters. Since the solver

algorithms are not directly comparable due to different con-

vergence properties, the normalized execution time (relative to

random placement) is shown to illustrate the relative sensitivity

of each algorithm to the layout strategy. Again, the network

topology-aware algorithms provide a greater improvement for

the extreme case versus the balanced case.

(a) 3D Torus (balanced) (b) 3D Torus (extreme)

(c) Dragonfly (balanced) (d) Dragonfly (extreme)

Fig. 6: A comparison of relative performance of box layout algo-
rithms for different solver algorithms. Results are shown for the
latency-modified configuration with reduced injection and increased
hop latency.

(a) 3D Torus (baseline) (b) 3D Torus (modified)

(c) Dragonfly (baseline) (d) Dragonfly (modified)

Fig. 7: A comparison of asynchronous execution models in the larger,
balanced case for different box layout algorithms. Both baseline and
latency-modified configurations are shown.

In the balanced case, the V-cycle benefits marginally more

than the F-cycle from box layout changes, while in the extreme

case, the F-cycle is notably more sensitive. The increased

sensitivity of the F-cycle in the extreme scenario could be due

to the latency bound bottom solve that dominates performance

in that configuration. Since the F-cycle spends relatively more

time updating the coarse AMR levels (especially during the

iterative bottom solves), using a layout that emphasizes good

locality for that level is particularly important.

C. Impact of Asynchronous Execution

Figure 7 compares the performance of the V-cycle in the

larger, balanced case under different degrees of asynchrony.

There is a very large performance penalty when using the

fully-synchronous execution model due the global barriers

required between each computational epoch. Interestingly, the

rank-synchronous model, where ranks can make progress inde-

pendently of one another, produces almost all of the benefits
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Fig. 8: Strong scaling speedups for the simulated V-cycle using net-
work models both including and ignoring traffic congestion. Results
are shown for memory bandwidths ranging from current-generation
(100 GB/s) to optimistic exascale (10 TB/s).

of a fully asynchronous execution, even though it lacks the

flexibility to either re-order tasks between compute epochs or

begin tasks as soon as their dependent data arrives. While there

is a 49 to 73 percent improvement from removing the global

barriers, there is only another 3 to 4 percent improvement

observed between rank synchronous and fully asynchronous.

We suspect the algorithms explored here may not contain

sufficient computation to hide the large network latency costs,

explaining the lack of significant improvement – we will

investigate this further in future work.

D. Scaling

Figure 8 presents strong scaling plots relative to 384 nodes

for simulations containing 100,000 boxes. The 100 GB/s

memory bandwidth curve shows reasonable scaling out to

12,288 nodes, but 1 TB/s and 10 TB/s curves, which are

representative of the range of memory bandwidths that might

be sustainable on exascale node architectures, show poor

scaling. A possible explanation could be that the faster nodes

inject traffic into the network at a faster rate, causing greater

congestion in the network and slowing down progress in the

computation. In SST-macro, bandwidth limits in the switches

of the simulator can be turned off, eliminating congestion from

the simulation. In the right-hand plot of Figure 8 congestion

has been turned off and the strong scaling curves change very

little, demonstrating that congestion is not a significant factor

in the observed poor scaling.

E. Compute Efficiency and Idle Time

Another factor which might impact the scaling is the bal-

ancing of compute activity between compute nodes. Figure

9 shows the percent of time each rank spends computing vs

waiting idly for network messages during simulations using

three memory bandwidths. It is clear that, though the per-

centage of time devoted to computation decreases drastically

as memory bandwidth increases, the distribution of compute

work amongst the nodes is quite even, indicating that load

imbalance is not the cause of the poor scaling behavior.

Figure 10 shows how the overall aggregate activity of the

full system changes over time for exascale simulations varying

the memory bandwidth. The significant compute sections at

the beginning and end of the simulation correspond to the

smooth segment of the multigrid while the largely idle section

in the middle corresponds to the multigrid bottom solve,

a communication heavy activity. As the memory bandwidth
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Fig. 9: Percentage of time each rank spends computing versus waiting
for communication to complete for three memory bandwidth values.
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Fig. 10: Percentage of time the V-cycle spends computing versus
waiting for communication to complete over time for three memory
bandwidth values.

increases, the time spent computing decreases correspondingly,

but larger and larger portions of the runtime are spent in the

mostly idle bottom solve phase of the computation. These plots

indicate that the explanation for the poor scaling lies in the

behavior of the bottom solve.

For the very inefficient 12,288 node exascale simulation

using 10 TB/s memory bandwidth, the sensitivity of the

simulation to network and injection latencies and bandwidths

was examined. These results are reported in Figre 11(a) where

each axis shows the simulated time for the baseline parameters

(dotted black line) compared to the simulated runtime when

the indicated latency/bandwidth parameter is halved/doubled.

The doubling of either injection or network bandwidth yields

essentially no improvement in simulated run time; the V-

cycle is not bandwidth bound for this system architecture. The

latencies, conversely show improvement in simulated runtime

when they are halved, with a particularly strong reduction for

injection latency. Thus, we expect for the proposed exascale

architecture parameters, the scaling performance is dominated

by the communication-intensive bottom solve which is almost

entirely latency bound.

F. Impact of Box Consolidation

Given that a large percentage of execution time is spent

on the latency-bound bottom solve of the multigrid, we also

briefly explore a variant of the box agglomeration technique

[36] that consolidates boxes to fewer ranks as we coarsen the
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(a) (b)

Fig. 11: a) The sensivity of the multigrid V-cycle to network/in-
jection bandwidth/latency. The dotted line represents the simulated
computation time for the baseline where all parameters are fixed
to representative exascale values for the network and a memory
bandwidth of 10 TB/s. The intersection of the red line with each axis
indicates the simulated runtime when the specified latency/bandwidth
is halved/doubled keeping all other parameters fixed. b) Strong
scaling speedups for the simulated V-cycle using algorithms both
with and without consolidation.

AMR level (but without merging them). Specifically, as we

progress down the multigrid cycle, and each box is coarsened

by a factor of eight (two per dimension), we migrate the boxes

to one-eighth the number of ranks. This preserves the average

number of grid elements each active rank is responsible for,

while potentially reducing the cost of the team collectives

needed for convergence detection during the bottom solve.

The trade-off is the cost to migrate the coarsened boxes to the

subset of ranks chosen to continue with the coarsened set of

boxes. Figure 11(b) shows the impact of the box consolidation

technique. For a current generation memory bandwidth of 100

GB/s the bottom solve is not a significant enough portion of the

runtime to yield scaling improvements due to consolidation,

while modest improvements are seen for the higher memory

bandwidths expected in the exascale time frame. We will

further examine the potential benefits of this optimization in

greater detail in future work.

IX. CONCLUSION

We have introduced a topology-aware performance opti-

mization and modeling workflow for AMR simulation that in-

cludes two new modeling tools, ProgrAMR and Mota Mapper.

ProgrAMR allows us to generate task dependency graphs from

a high-level specifications of AMR-based applications, which

we demonstrate by analyzing two example multi-level AMR

multigrid solvers. Mota Mapper is a network topology-aware

data layout library that includes several layout algorithms,

including three new multi-objective load balancing algorithms

suitable for AMR box placement. We utilized our tools in

conjunction with SST-macro to evaluate the new data layout

strategies and the impact of varying the asynchrony of task

execution for our two example AMR multigrid solvers. While

the sensitivity of both parameters appears to be modest for

balanced problem and machine scenarios, the impact of better

mapping algorithms can be significant when performance is

constrained by network hop latency or there is an abundance

of compute resources. We also examined the node efficiency

and compute idle times to analyze the scaling behavior up to

exascale class machines. In the cases we simulated, we show

that network latency in the bottom solve is the main factor

preventing good scaling on exascale-class machines; however,

box agglomeration or consolidation techniques appear to have

potential to significantly ameliorate this effect.
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