
Mobiliti: Scalable Transportation Simulation Using
High-Performance Parallel Computing

Cy Chan, Bin Wang, John Bachan, and Jane Macfarlane
{cychan,wangbin,jdbachan}@lbl.gov, janemacfarlane@berkeley.edu

Lawrence Berkeley National Laboratory, Berkeley, CA, USA
University of California, Berkeley, CA, USA

Abstract— Transportation systems are becoming increasingly
complex with the evolution of emerging technologies, including
deeper connectivity and automation, which will require more
advanced control mechanisms for efficient operation (in terms
of energy, mobility, and productivity). Stakeholders, including
government agencies, industry, and local populations, all have
an interest in efficient outcomes, yet there are few tools
for developing a holistic understanding of urban dynamics.
Simulating large-scale, high-fidelity transportation systems can
help, but remains a challenging task, due to the computational
demand of processing massive numbers of events and the non-
linear interactions between system components and traveling
agents. In this paper, we introduce Mobiliti, a proof-of-concept,
scalable transportation system simulator that implements par-
allel discrete event simulation on high-performance computers.
We instantiated millions of nodes, links, and agents to simulate
the movement of the population through the San Francisco Bay
Area road network and provide estimates of the associated con-
gestion, energy usage, and productivity loss. Our preliminary
results show excellent scalability on multiple compute nodes for
statically-routed agents, simulating 9.5 million trip legs over
a road network with 1.1 million nodes and 2.2 million links,
processing 2.4 billion events in less than 30 seconds using 1,024
cores on NERSC’s Cori computer.

Index Terms— large-scale transportation simulation, agent-
based modeling, high-performance computing, parallel discrete
event simulation

I. INTRODUCTION

Transportation is a highly complex system of systems that
is a core contributer to our national economy. It consumes
enormous resources in terms of both energy usage and
productivity loss due to increasing urban congestion. The in-
troduction of new technologies associated with autonomous
vehicles, for-hire and ride-share networks, and multi-modal
systems are adding new choices but their future impacts
are difficult to estimate. With a desire to understand the
system more thoroughly and build energy and mobility
efficient controls, researchers in government and industry
are interested in developing new methods to model very
large scale transportation networks. While many current
transportation system modeling tools can handle pieces of

This report and the work described were sponsored by the U.S. Depart-
ment of Energy (DOE) Vehicle Technologies Office (VTO) under the Big
Data Solutions for Mobility Program, an initiative of the Energy Efficient
Mobility Systems (EEMS) Program. The following DOE Office of Energy
Efficiency and Renewable Energy (EERE) managers played important roles
in establishing the project concept, advancing implementation, and providing
ongoing guidance: David Anderson.

the urban environment, applying these tools to a holistic,
large-scale urban system, such as entire metropolitan area
requires more computational power than traditional com-
puting solutions can provide. This leaves city planners and
transportation engineers with only a partial understanding
of the metropolitan area as a whole. Parallelization efforts to
further increase the speed and size of simulations can provide
new capabilities that will be necessary for understanding
optimization opportunities.

Most existing parallel transportation simulators have the
following two properties: shared memory parallelism and
a global synchronization mechanism. First, shared memory
parallelism refers to a configuration where threads executing
in parallel share the same memory address space and can
directly read data another thread has written in memory.
The advantage of shared memory is that all simulation
components reside in the same address space, so they all
have immediate access to each other’s data. They can either
simply read each other’s data or they can establish a shared
queue where messages can be pushed by the producer and
read by the consumer. The disadvantage of using only shared
memory (without distributed memory support) is that the
simulation is limited to running on a single compute node,
typically up to 2 to 4 processors and their associated memory
on a motherboard.

Second, global synchronization is commonly used to en-
sure parallel components do not get too far out of sync from
one another. In a parallel discrete event simulation (PDES),
worker threads can process events in parallel up to an agreed
upon simulation time, after which they tell a master thread
they are done and wait. When the master thread has received
notification from all workers, it signals them to start the next
time step. This global synchronization ensures messages sent
during a time step will be visible to other workers in the next
time step. However, it introduces a serialization point on the
master, which can become a bottleneck as simulators scale
to large parallel systems, and it requires that workers wait
for all other workers to complete a time step before they can
make further progress.

We have developed Mobiliti, a proof-of-concept simulator
that avoids both of these restrictions by enabling distributed
memory parallelism with an asynchronous execution strategy.
Mobiliti is built on top of the Devastator parallel discrete
event simulation runtime. Moving to distributed memory

parallelism enables the use of multiple nodes in a high-
performance computer or cluster, thereby increasing both the
total computational power (more processors) and the total
memory available (more memory slots). When threads on
the same node need to communicate, we can still use the
light-weight communication of shared memory parallelism,
but when threads on different nodes communicate, they must
send messages over the network interconnect (e.g. Ethernet,
Infiniband, Cray Aries, etc.). The disadvantage of supporting
distributed memory parallelism is an increase in complexity
and overhead for handling these inter-node communications.

The asynchronous execution strategy allows us to remove
the potential serial bottleneck of all threads synchronizing
with a single global coordinator thread. Instead, worker
threads coordinate directly with one another in a distributed
fashion when events are transmitted between agents owned
by different threads. This asynchronous execution allows
more progress to be made in parallel even if some threads
are slow on a particular time step since not all threads have
to wait for the slowest one. The disadvantage is that an
additional control mechanism is needed to preserve causality
in the simulation. Either null messages can be used (as in
the Chandy-Misra-Bryant protocol[1], [2]), or speculative
execution and roll back [3], which can be expensive if too
many events are speculatively executed. We will describe
how we mitigate the costs of distributed parallelism and
asynchronous execution in this paper.

The rest of the paper is organized as follows: Section II
discusses related work, Section III gives an overview of
parallel discrete event simulation, Section IV describes the
Devastator PDES runtime, Section V introduces our agent-
based transportation system model, Section VI presents some
proof-of-concept experimental results, and Section VII de-
scribes the simulator’s performance.

II. RELATED WORK

Foundational work in parallel discrete event simulation
(PDES) include the development of conservative [1], [2],
[4], [5], [6] and optimistic [3] simulation protocols. Since
then, a large number of simulators have been developed to
apply these techniques to various domains. For example,
in the area of computer hardware design, the Structural
Simulation Toolkit [7], [8] and the ns-3 simulator [9] use
conservative parallel simulation to model computer and net-
work architectures. ZSim [10] and Graphite [11] utilize a
version of the conservative protocol where events are allowed
to be reordered within a time interval, trading off accuracy
for speed of simulation. On the optimistic side, the ROSS
simulator implements Jefferson’s Time Warp algorithm to
provide a common interface for various models. They have
demonstrated scalability of the optimistic approach by scal-
ing their simulator to run on nearly 2 million cores simulta-
neously [12], [13]. A comparison between conservative and
optimistic approaches is given in [14].

There are many existing serial and parallel transportation
system simulators that model various components of the
system. These include software such as MATSim [15],

BEAM [16], and POLARIS [17]. Current parallel simulators
typically use conservative parallelization to divide the simu-
lation time into intervals and split events in each time interval
across multiple worker threads. The threads then synchronize
with each other at the end of each interval to ensure all events
in the previous interval are completed before processing any
event in the next interval. Using a sufficiently short time
interval, this method can actually guarantee that no events are
processed out of order (i.e. identical to a serial simulation);
however, this restriction is often relaxed to allow faster
execution, trading accuracy for simulation speed. There has
also been some previous work on using optimistic parallel
discrete event simulation for transportation systems. Notably,
the SCATTER-OPT project has studied vehicle evacuation
scenarios using micro-scale simulation [18], [19]. Our study
differs from this previous work in that the scale of simulation
we are targeting is larger (i.e. millions of nodes and links in
an urban-scale road network), and we are currently using a
meso-scale simulation view of the system.

III. PARALLEL DISCRETE EVENT SIMULATION

A. Agent-based models and discrete event simulation

The transportation system can be simulated by defining
agents in the system that interact with one another by sending
discrete events, each tagged with a simulation time (or time
stamp) at which the event occurs. For example, an assembly
line may be simulated by defining each station as an agent,
and events correspond to the movement of parts between
stations. If an event signaling the arrival of a part arrives at
time t0, and a station takes ∆t seconds to process it, it may
send an outgoing event at time t0 + ∆t to the downstream
station. If the workstation can only process one part at a
time, the incoming parts may be queued and processed in
order of arrival, so the agent responsible for simulating the
workstation must then manage the queue of incoming parts
to produce output events in the correct order and at the
correct simulation time. If all stations in the assembly line are
defined in such a way, and the simulator processes events in
order of increasing time stamp, then the simulation of parts
moving through the assembly line will be correct. This is
the basic idea used in the Mobiliti simulator, but with road
network links as agents and vehicles as events.

B. Conservative vs. optimistic parallelization

In a typical serial simulation, a single global event priority
queue containing all of the events in the system is utilized
so that events are processed in strictly increasing time stamp
order. However, in a parallel simulation, events are being pro-
cessed across multiple worker threads simultaneously [20],
[21], so the simulator must ensure that events that influence
each other (e.g. through modification of an agent’s state) are
executed in increasing order of simulation time. However,
events that do not influence each other may execute in
parallel without affecting the outcome of the simulation.
There are two main ways this parallelization is achieved:
conservative and optimistic [22].

Typically, the components participating in the simulation
will be distributed across multiple worker threads (threads
of execution that may run on separate processor cores).
In a common method of conservative simulation (window-
based), a global time step ∆T will be chosen such that
at each step i in the simulation, the worker threads can
independently simulate events that occur within a window
of time [Ti, Ti+1), where Ti+1 = Ti + ∆T . At the end of
each time step, all worker threads tell the master thread that
they have completed execution, then the master increments
the global time and broadcasts a message to workers to let
them process events in the next time step [Ti+1, Ti+2). Thus,
since all workers must wait for all others to finish, each time
step is limited by the slowest worker thread. The window
may be set to the minimal time delta between causally linked
events, resulting in a simulation with no out-of-order event
execution. However, several conservative simulators relax
this constraint to allow faster performance at the cost of
processing some events out-of-order (e.g. see [10], [11]).

In the optimistic approach first described by Jefferson [3],
there is no need for global synchronization or null mes-
sages. Instead, each worker thread optimistically executes
events assuming there will be no external causality violation.
However, if an external event is received that should have
been executed earlier in simulation time, the worker thread
rolls back its local mis-speculatively executed events, and
then replays them in the correct order. If any of the rolled
back events sent events of their own, cancellation events
must be sent, potentially causing further roll back. The main
advantage of the optimistic approach is that no time is spent
waiting in global barriers for all workers to reach the end of
the time step, and there is no serial bottleneck in the master
thread to coordinate progress at the end of each time step.
The main disadvantage of this approach is that extra time is
taken rolling back events, so care must be taken to ensure
the number of mis-speculatively executed events does not
overwhelm the advantage of parallelization. This behavior
can be tuned by adjusting the window of time ahead of
global virtual time (see Section IV) events are allowed to be
speculatively executed. We designed Mobiliti to partition the
road network across workers in a way so that the number of
events crossing between partitions is reduced, thus reducing
the number of events that cause roll back. Section VII will
show that the number of rolled back events is relatively stable
as we scale out to higher degrees of parallelism.

IV. DEVASTATOR SIMULATOR DESIGN AND INTERFACE

Devastator is the software runtime that implements the
optimistic parallel discrete event simulator (PDES) on which
Mobiliti functions. It is a general discrete event platform that
provides an API dealing in events abstractly, independent
of the scientific domain simulated (e.g. transportation). The
runtime design was motivated by the following two goals:
first, we believe our approach can achieve a very high level of
performance on HPC systems; and second, we feel that our
approach has the potential to both increase functionality and
decrease the programmability burden compared to existing

PDES system APIs. These points will be elaborated in a
future publication; this section only aims to provide a brief
introduction to the API design and implementation.

Devastator is written in C++14. Our programming tech-
niques heavily leverage function closures (lambdas) and
eschew traditional class hierarchies typical in object oriented
programming. This fits well with our parallel communication
strategy built upon fire-and-forget remote procedure calls
since it promotes lambdas to be the main currency of
parallel communication. The CPUs in Devastator are busily
engaged in queuing lambdas to the mailboxes of others while
executing the lambdas as they arrive in their own.

As with most PDES systems, our algorithms are built
over message passing between CPUs. While MPI is the
de-facto standard for distributed message passing in HPC,
we find it to be deficient in expressing our algorithms with
respect to both performance and productivity. Notably, we
find it lacking in the ability to efficiently implement Active
Messages (e.g. fire-and-forget remote procedure calls) which
comprise the single mechanism by which all of Devastator
communicates. For this reason we have chosen GASNet [23]
as the communication layer for passing messages between
distributed processes, since it exposes active messages as a
first-order primitive that is highly tuned for the networking
stacks predominant in HPC.

Additionally, for passing messages between CPUs in the
same process, we have implemented a custom thread-to-
thread active message layer that we believe to be state-of-
the-art due to the absence of both locks and atomic read-
modify-write instructions, yielding a strong performance
boost for x86 processors. Composing the process-to-process
messaging of GASNet along with our intra-process thread-
to-thread messaging allows us to expose a global model of
parallelism where the threads may send active messages to
each other seamlessly across thread and process boundaries.

On top of the global thread-to-thread messaging paradigm
we built a fairly standard optimistic PDES engine. Each CPU
core manages a set of owned logical processes (LPs) (also
known as actors or agents). Each LP manages a time-sorted
queue of events which are merely state-change functions
which execute against the LP to achieve three outcomes:

1) Change the LP’s application state.
2) Generate future events for this or other LPs.
3) Return a function closure to unexecute the state change

performed by this event. This is called if the system
detects it executed the event out of proper time order.

Our method for computing global virtual time (GVT) is
completely asynchronous and concurrent with the processing
of events. At all times in the simulation, there is a GVT
reduction in-flight that continuously lower-bounds the mini-
mum time stamp seen across all LPs and in-flight messages
in the system. GVT is necessary for knowing how far back
the system may have to rollback, thus it is the only means
for reclaiming the memory dedicated internally to event
unexecute functions. Once an executed event’s timestamp is
surpassed by GVT, the event is committed (cannot be rolled
back) since it would be impossible for an unseen event to

Fig. 1: Mobiliti System Model: OSM map (left) converted to
road graph (nodes and links, center) converted to edge graph
(right), where edges (green boxes) are the agents that send
vehicle events (dashed arrows) to each other.

precede it, thus memory associated with the event and its
rollback is reclaimed.

In summary, any application utilizing Devastator defines
the behavior of its system agents by defining how events
modify the agent’s state and what (if any) future events are
generated (via the execute function). Any modifications to the
agent state must support being rolled back via the unexecute
function, and the event supports being committed via the
commit function.

V. TRANSPORTATION SYSTEM MODEL

A. Overall system design

In order to leverage the Devastator parallel discrete event
simulator, we mapped the transportation system onto a set
of agents and events. Our current implementation focuses
on modeling the traffic flow and congestion dynamics on
the road network. Figure 1 shows how a road network
consisting of nodes and links is mapped to agents in the
simulation. Each link is an agent in the simulation, and
vehicles are events that are passed between the links. The
link agent is responsible for determining how long it takes
for each vehicle to pass through it, using information such
as vehicle flow rate (currently implemented), downstream
link blockage, and traffic signal timing (to be implemented).
Using this information, the link agent can calculate the
time each vehicle departs and send an event to the agent
responsible for the next link on the vehicle’s route with the
correct arrival time stamp.

B. Link flow rate and congestion

Each link in the network has a freeflow speed and capacity
associated with it. The freeflow speed is the speed at which
a vehicle traverses the link given zero congestion on the link.
The traversal time (under freeflow conditions) ta is the link
length divided by freeflow speed. The capacity ca of the
link is the number of vehicles per unit time the link has
been designed to handle without significant congestion. In
order to calculate the time Sa(va) that a vehicle requires to
traverse a link in congested conditions, we currently use the
BPR formula [24]:

Sa(va) = ta

(
1 + 0.15

(
va
ca

)4
)
, (1)

where va is the current vehicle flow rate. While the BPR for-
mula enables very efficient estimation of congestion, it does

L
Lb

old

head
old

tail

old

head
tail

(t-W,t]

(GVT-W,t-W]

t

(a) Link Agent State

L

Lb

new

head
new

tail

{ {
(t'-W,t']

(GVT-W,t'-W]
new

head
tail

t't

(b) Vehicle Event Execution

Fig. 2: Link agent state transition. Each link agent state
consists of two linked lists of vehicle arrival times. When a
vehicle arrival event is executed (at time t′), it is inserted onto
the head of L and events older than t′ −W are migrated to
Lb. The lists maintain the invariant that events are within the
time ranges specified such that |L| is the number of vehicles
that arrived within time window W , and no event older than
GV T −W is kept in Lb.

not take into account spillback effects due to downstream
link blockage. We are investigating the addition of a link
storage capacity model to capture these spillback effects.

In order to estimate the current vehicle flow rate va, the
link agent keeps track of its most recent utilization. Our link
implementation keeps track of the number of vehicles that
have traversed the link in the last W seconds, where W is
the link flow rate estimation window parameter. Given the
number of vehicle arrivals in this window, we can estimate
the current flow rate. To track this number, the link agent
keeps track of a sorted linked list L of vehicles that have
arrived within the window (see Figure 2). When a new
vehicle arrives at simulation time t, it is pushed to the head
of the linked list and all vehicles that arrived earlier than
time t−W are popped off the tail of the list. Thus, at any
point in time, L contains exactly those vehicles that arrived
within W seconds of the most recently arrived vehicle. The
flow rate can then be estimated as the length of the linked
list divided by the window size:

va =
|L|
W
, (2)

C. Handling rollback

At some point in the simulation, a vehicle arrival event
may need to be rolled back if another event subsequently
arrives with an earlier simulation time stamp. The state of
the link agent must then be reverted to before the vehicle
arrival event was processed. Since the only state in the link
agent is the linked list used to estimate vehicle flow rate, we
only need to restore the state of the linked list L. There are
many ways to do this, and in our current implementation we

chose to use a sorted “backup” list Lb that contains events
that may need to be restored to L in the case of a roll back.

To support roll back, the original event execution is
modified such that when a new vehicle arrives at time t,
vehicles that arrived earlier than t−W are moved from the
tail of L to the head of Lb instead of dropped. The vehicle is
also added to the head of L as before. If a vehicle arrival is
rolled back, the vehicle is removed from the head of L, and
vehicles are moved back from the head of Lb to the tail of L
until L again contains all vehicle arrivals within W seconds
of the (previous) head of L.

D. Handling commit

As described in Section IV, events can be committed
when global virtual time (GV T) passes their timestamp. This
means the event will never need to be rolled back, which
implies that events on the backup list Lb with timestamps
earlier than GV T − W can be dropped from the backup
list completely to return memory for other use. Since Lb is
kept in sorted order, it suffices to pop elements off the tail
of Lb until the tail event has a time after GV T −W . Since
linked list insertions and deletions are cheap, event execution,
rollback, and commit can all be processed very efficiently,
as evidenced by our performance results.

VI. EXAMPLE SIMULATION RESULTS

As our simulator is still in proof-of-concept phase, the
results we show in this section are only meant to illustrate
the capabilities of the simulator and give a rough sense for
the performance of our approach. In a future publication, we
will conduct further validation of the input and simulator and
give more rigorous experimental results.

A. Example experimental setup

We are using a model of the San Francisco Bay Area
exported from OpenStreetMap (OSM) [25]. It consists of
1,110,335 nodes and 2,185,984 links spanning from San
Rafael, Concord, and Antioch to the north to San Jose
to the south and Oakland, Hayward, and Fremont to the
east (see Figure 3). For system demand, we used 463,938
agent plans generated using a modified Metropolitan Trans-
portation Commission (MTC) Travel Model One [26]. Note
that the term “agent” in this context refers to a simulated
person utilizing the transportation network as opposed to
the usage in “agent-based simulation”. Each agent’s plan
consisted of multiple trip legs (origin/destination pairs),
forming a total data set of 1,197,000 trip legs connecting
1,660,938 activities. Some trip legs in the data set were
discarded since their origin and destination were the same
(no movement). In order for the congestion model to generate
more realistic congestion, we randomly synthesized more trip
legs to increase the overall demand on the system.

Since the original trip leg data set containing 1,197,000
trip legs does not reflect the full volume of traffic in the Bay
Area, we used it to synthesize random trip legs that represent
more agents in the system. For each original trip leg, we can
generate synthetic legs that are similar to it by randomly

(a) Flow Rate - Top 100K Links

(b) Delay Ratio - Top 100K Links

Fig. 3: Maps showing San Francisco Bay Area links with
highest flow rates (a) and delay ratios (b)

moving the origin and destination points and adding a
random amount to the departure time (normal distribution,
zero mean, one hour standard deviation). The origin and
destination points are chosen by doing a random walk along
the road graph for 400 steps. In the future, we may use
information such as urban use data to generate more realistic
origin and destination points instead of using a random walk.
We tested running the simulator with eight times the number
of original trips to see the impact of increased levels of
congestion. The 8x replicated case corresponds to 3,711,504
agents and 9,548,128 trip legs.

B. Traffic flow rate and congestion delay

The simulator is capable of measuring various aspects
of the transportation system throughout the simulation day.
For each link in the network, we captured different metrics
over every 15 minute time interval, including maximum flow
rate observed and maximum delay ratio observed. Figure 3
illustrates a map of the San Francisco Bay Area with the
links with the highest flow rate and delay ratios highlighted
(deeper color means a higher value). Figure 4 shows the
behavior of the top 1,000 links over the course of the
simulation day, where the peak traffic flows during morning
and afternoon rush hours can be clearly seen.

For each trip leg, we recorded the trip length and uncon-
gested and congested durations. The uncongested durations
were simply the sum of the free-speed traversal times over

Fig. 4: Behavior over the course of the simulation delay for
the top 1,000 links with the highest flow rates

the links in the path the vehicle takes. This allows us to
compare the leg durations to compute the time the agent was
delayed during that trip leg due to congestion. Figure 5 shows
histograms of the uncongested versus congested delays along
with a histogram of the delays experienced by all vehicles in
the simulation (note the logarithmic Y-axis in these figures).

From the histograms in Figure 5, we observe that most
trips in our example simulation are short and have minimal
delay, but some legs are delayed a significant amount. In
fact, while over 96 percent of trip legs are delayed by less
than 10 minutes, almost 51,000 trip legs were delayed by
over one hour, and almost 5,000 trip legs were delayed by
over two hours due to congestion. The delayed legs are likely
traversing the highly delayed links highlighted in Figure 3,
which suggests an intervention through dynamic re-routing
or dynamic signal timing could help alleviate the degree of
congestion in this example scenario.

C. Fuel consumption model

Another example metric we collected is the amount of fuel
consumed. Each vehicle can be assigned a specific power-
train model, leading to variable fuel consumption across
vehicles. Instead of explicitly modeling the vehicle’s aero-
dynamic drag, rolling resistance, and transmission efficiency,
we model the vehicle’s total resistance force as a function
of velocity, based on the coast down testing approach [27].
Furthermore, the resistance force for each vehicle Fr(v) can
be approximated as a second-order function of velocity v:

Fr(v) = A+Bv + Cv2. (3)

For almost all current vehicles in the US market, the
target coefficients can be found on the EPA website [28].
By conducting force analysis on a moving vehicle, the total
traction force Ft(v) can be expressed as:

Ft(v) = Fr(v) +mg sinα+ma (4)

where m is the mass of the vehicle, g is the gravitational
constant, α is the road inclination angle, and a is the
instantaneous acceleration. For simplicity, we do not consider

the instantaneous vehicle acceleration and the road incli-
nation angle. To estimate each vehicle’s fuel consumption
rate, we developed data-driven vehicle energy models based
on the dynamometer test datasets from Argonne National
Laboratory [29], where the fuel consumption c(v) can be
modeled as a function of traction force and velocity:

c(v) = f(Ft(v), v) (5)

We constructed fuel consumption maps to approximate this
function for three typical vehicles: Ford Focus, Nissan Al-
tima, and Ford F-150. Figure 6 shows the mapping con-
structed for the Ford Focus. Therefore, given the vehicle
velocity, we are able to compute the traction force and fuel
consumption rate using Equations 3 through 5.

Running our simulation with a 10% penetration of Ford
Focuses, 10% Nissan Altimas, and 5% Ford F-150s, we
collected the total daily fuel consumption with and without
congestion, shown in the Fig. 7. We observe that the amount
of extra fuel consumed due to congestion for the modeled
vehicles (25% of the population) is 420,000 liters.

D. Productivity loss model due to congestion

Following previous work conducted by the US Depart-
ment of Transportation [30], we integrated productivity loss
models due to congestion into Mobiliti. Specifically, the
augmented trips in the simulation consist of five categories
with assumed penetrations as shown in Figure 8. Based on
the trip purpose, the calculation of the productivity loss is
shown, where Ph is the local average hourly salary, Ploaded

is the additional cost for business trips, Pstck is the stocking
cost for trucks, ηcomm is the cost ratio of commute trips,
ηpersonal is the cost ratio of personal trips, Pdriver, is the
hourly cost for bus drivers, Npasg is the estimated number
of passengers in a bus.

The top 1,000 links with the highest productivity loss are
shown in Figure 9. The simulation results indicate that the
productivity loss on the top congested links reaches $2,000
per 15 minute interval, and the total daily productivity loss is
more than $6 million. Specifically, the cost is $2.17 million
for business trips in passenger vehicles, $0.67 million for
business trips with medium and heavy trucks, $1.69 million
for daily commute trips, $0.47 million for personal trips, and
$1.26 million for bus trips.

VII. SIMULATOR PERFORMANCE

A. Routing and simulation

For these experiments, we pre-computed the routes for all
of the trip legs using a modified A* search algorithm over
the road network graph, where the A* heuristic is chosen to
produce approximate paths rather than optimal for the sake
of speed of evaluation. In future work, we will utilize a con-
sistent, admissible heuristic so the paths returned are optimal.
In either case, the routing is “embarassingly parallel”, in the
sense that each route can be computed independently of one
another, making parallelization straightforward. Each route
has 232 link traversals on average, and the longest trip legs
have over 5,000 link traversals.

(a) Trip Leg Duration - Uncongested (b) Trip Leg Duration - Congested (c) Trip Leg Delay

Fig. 5: Histograms showing uncongested (a) versus congested (b) trip duration and the delay (c) experienced by each leg
due to congestion. Note the logarithmic Y-axis scale.

Fig. 6: Representative fuel rate map of 2012 Ford Focus

Fig. 7: Total daily fuel consumption with and without con-
gestion

Fig. 8: Productivity loss computation for each agent type

Fig. 9: Productivity loss for top 1,000 links

B. Simulation scalability

The simulation itself involves running the optimistic par-
allel discrete event simulation described in Section IV. To
collect performance results, we ran on up to 1,024 cores
on the Cori supercomputer at NERSC [31] using the base
simulator configuration, which simulates the traversal of
all vehicles through the system using the link congestion
model (without energy and productivity loss calculation).
The simulation runs with 8x trip leg replication (9,548,128
trip legs total) producing 2,382,465,156 committed events
(vehicle-link traversals) system-wide. There are also some
events that are mis-speculatively executed and rolled back,
so the total number of events executed (committed or rolled
back) is actually higher than 2.4 billion. Figure 10 shows
the total number of events executed as the number of cores
used is varied from 64 to 1,024. The total fluctuates from
run to run due to the non-deterministic nature of the parallel
algorithm, but we observed roll back to remain under 50
percent of the total, even at higher levels of parallelism.

As a result of the relatively flat aggregate event execution
count as the number of cores is increased, the performance
of the simulator scales very well. Figure 11 shows the time
required to execute the simulation as the number of compute
cores is varied from 64 to 1,024 (this corresponds to 1 to
16 compute nodes). We estimate this simulation would take
about six hours to run serially on a single core, while our
simulator can complete the simulation in well under a minute
using 1,024 compute cores distributed across 16 nodes.

It is important to remark that the addition of more features
or complexity to the model will likely impact performance

Fig. 10: Number of events committed and rolled back as
number of cores is varied. The number of committed events
is constant and the number of total events executed is
relatively flat.

Fig. 11: Simulation execution time as number of cores is
varied. Note this does not include route calculation time.
Scalability is very good and achieves near linear speed-up.

– this is true of any computational model. Furthermore,
changing the dynamics of how the components interact will
impact how much rollback will occur in the simulator. For
example, we are currently investigating the addition of a
link storage capacity model to capture spillback effects [32],
which will necessitate the addition of events propagating
upstream as congestion occurs. In a future publication, we
will discuss how this feature increases the accuracy of the
model and analyze the impact on computational efficiency.

VIII. CONCLUSION

This paper describes our approach to large scale simula-
tion of transportation systems using parallel discrete event
simulation on high performance computing platforms. We
have introduced the Mobiliti simulator to show proof-of-
concept simulations of 9.5 million trip legs over a detailed
San Francisco Bay Area road network. Our example analysis
shows how the simulator may be used to estimate congestion,
energy use, and productivity loss. In a future publication,
we will present a more detailed analysis of our simulator
including model validation and performance results. The
capability to run simulations that process billions of events
within minutes or seconds will enable mobility researchers

in government and industry to better understand and predict
future behavior of large-scale transportation systems.

REFERENCES

[1] K. M. Chandy and J. Misra, “Distributed simulation: A case study in
design and verification of distributed programs,” IEEE Trans. Softw.
Eng., vol. 5, no. 5, pp. 440–452, Sep. 1979.

[2] R. E. Bryant, “Simulation of packet communication architecture
computer systems,” Cambridge, MA, USA, Tech. Rep., 1977.

[3] D. R. Jefferson, “Virtual time,” ACM Trans. Program. Lang. Syst.,
vol. 7, no. 3, pp. 404–425, Jul. 1985.

[4] B. Lubachevsky, A. Schwartz, and A. Weiss, “An analysis of rollback-
based simulation,” ACM Trans. Model. Comput. Simul., 1991.

[5] P. M. Dickens et al., “Analysis of bounded time warp and comparison
with yawns,” ACM Trans. Model. Comput. Simul., 1996.

[6] D. M. Nicol and J. Liu, “Composite synchronization in parallel
discrete-event simulation,” IEEE Trans. Parallel Distrib. Syst., 2002.

[7] A. Rodrigues et al., “The structural simulation toolkit,” SIGMETRICS
Perform. Eval. Rev., vol. 38, no. 4, pp. 37–42, March 2011.

[8] C. L. Janssen et al., “A simulator for large-scale parallel architectures,”
International Journal of Parallel and Distributed Systems, 2010.

[9] J. Pelkey and G. Riley, “Distributed simulation with mpi in ns-3,” in
Conference on Simulation Tools and Techniques, 2011, pp. 410–414.

[10] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microar-
chitectural simulation of thousand-core systems,” in International
Symposium on Computer Architecture, 2013.

[11] J. E. Miller et al., “Graphite: A distributed parallel simulator for
multicores,” in 16th International Conference on High-Performance
Computer Architecture, 2010, pp. 1–12.

[12] D. W. Bauer Jr., C. D. Carothers, and A. Holder, “Scalable time warp
on blue gene supercomputers,” in Workshop on Principles of Advanced
and Distributed Simulation, 2009, pp. 35–44.

[13] P. D. Barnes, Jr., C. D. Carothers, D. R. Jefferson, and J. M. LaPre,
“Warp speed: Executing time warp on 1,966,080 cores,” in Conference
on Principles of Advanced Discrete Simulation, 2013, pp. 327–336.

[14] C. D. Carothers and K. S. Perumalla, “On deciding between conser-
vative and optimistic approaches on massively parallel platforms,” in
Winter Simulation Conference, 2010, pp. 678–687.

[15] “MATSim.org.” [Online]. Available: https://www.matsim.org/
[16] C. Sheppard et al., “Modeling plug-in electric vehicle charging

demand with beam, the framework for behavior energy autonomy
mobility,” Tech. Rep., 05/2017 2017.

[17] “Polaris.” [Online]. Available: https://polaris.es.anl.gov/
[18] K. Perumalla, “A systems approach to scalable transportation network

modeling,” in Winter Simulation Conference, 2006.
[19] S. B. Yoginath and K. S. Perumalla, “Reversible discrete event for-

mulation and optimistic parallel execution of vehicular traffic models,”
International Journal of Simulation and Process Modelling, 2009.

[20] L. F. Pollacia, “A survey of discrete event simulation and state-of-the-
art discrete event languages,” SIGSIM Simul. Dig., Sep. 1989.

[21] F. J. Kaudel, “A literature survey on distributed discrete event simu-
lation,” SIGSIM Simul. Dig., vol. 18, no. 2, pp. 11–21, Jun. 1987.

[22] R. M. Fujimoto, “Parallel discrete event simulation,” Commun. ACM,
vol. 33, no. 10, pp. 30–53, Oct. 1990.

[23] “Gasnet.” [Online]. Available: http://gasnet.lbl.gov
[24] Bureau of Public Roads: Transportation Research Board, “Special

report 209: Highway capacity manual,” Washington, DC, 1985.
[25] OpenStreetMap contributors, “Planet dump retrieved from

https://planet.osm.org ,” https://www.openstreetmap.org , 2017.
[26] G. Erhardt et al., “MTCs travel model one: Applications of an activity-

based model in its first year,” in 5th Transportation Research Board
Innovations in Travel Modeling Conference, January 2012.

[27] I. Preda, D. Covaciu, and G. Ciolan, “Coast down test theoretical and
experimental approach,” Oct. 2010.

[28] US EPA, OAR, “Data on cars used for testing fuel economy,” 2016.
[29] Argonne National Laboratory, “Downloadable dynamome-

ter database.” [Online]. Available: https://www.anl.gov/energy-
systems/group/downloadable-dynamometer-database

[30] “Assessing the Full Costs of Congestion on Surface Transportation
Systems and Reducing them through Pricing,” Feb. 2009.

[31] NERSC, “Cori Configuration,” http://www.nersc.gov/users/computational-
systems/cori/configuration/, 2018, [Online; accessed 27-Apr-2018].

[32] V. Knoop et al., “The influence of spillback modelling when assessing
consequences of blockings in a road network,” 2008.

