Skip to navigation Skip to content
Careers | Phone Book | A - Z Index
Quantum Information Science & Technology

Ravi Naik

rnaik headshot
Ravi K. Naik
Quantum Hardware Scientist
Quantum Information Science & Technology (QuIST)
Advanced Quantum Testbed

Ravi is a Research Scientist in the Quantum Information Science & Technology division, and measurement lead at the Advanced Quantum Testbed. His current research efforts include the implementation, characterization, and optimization of two-qubit gates in multi-qubit processors, as well as studying the effects of noise and error on the compilation and execution of quantum algorithms and simulation. He received his Ph.D. at the University of Chicago for his research with Professor David Schuster on multimode circuit quantum electrodynamics.

Journal Articles

Akel Hashim, Ravi K. Naik, Alexis Morvan, Jean-Loup Ville, Bradley Mitchell, John Mark Kreikebaum, Marc Davis, Ethan Smith, Costin Iancu, Kevin P. O Brien, Ian Hincks, Joel J. Wallman, Joseph Emerson, Irfan Siddiqi, "Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting Quantum Processor", Physical Review X, 2021, 11:041039, doi: 10.1103/PhysRevX.11.041039

Bradley K. Mitchell, Ravi K. Naik, Alexis Morvan, Akel Hashim, John Mark Kreikebaum, Brian Marinelli, Wim Lavrijsen, Kasra Nowrouzi, David I. Santiago, Irfan Siddiqi, "Hardware-Efficient Microwave-Activated Tunable Coupling between Superconducting Qubits", Physical Review Letters, 2021, 127:200502, doi: 10.1103/PhysRevLett.127.200502

Yilun Xu, Gang Huang, Jan Balewski, Ravi Naik, Alexis Morvan, Bradley Mitchell, Kasra Nowrouzi, David I. Santiago, Irfan Siddiqi, "QubiC: An Open-Source FPGA-Based Control and Measurement System for Superconducting Quantum Information Processors", IEEE Transactions on Quantum Engineering, 2021, 2:1-11, doi: 10.1109/TQE.2021.3116540

Srivatsan Chakram, Andrew E. Oriani, Ravi K. Naik, Akash V. Dixit, Kevin He, Ankur Agrawal, Hyeokshin Kwon, David I. Schuster, "Seamless High-Q Microwave Cavities for Multimode Circuit Quantum Electrodynamics", Physical Review Letters, 2021, 127:107701, doi: 10.1103/PhysRevLett.127.107701

G Koolstra, N Stevenson, S Barzili, L Burns, K Siva, S Greenfield, W Livingston, A Hashim, RK Naik, JM Kreikebaum, KP O'Brien, DI Santiago, J Dressel, I Siddiqi, "Monitoring fast superconducting qubit dynamics using a neural network", Preprint, August 2021,

Alexis Morvan, VV Ramasesh, MS Blok, JM Kreikebaum, K O’Brien, L Chen, BK Mitchell, RK Naik, DI Santiago, I Siddiqi, "Qutrit randomized benchmarking", Physical Review Letters, 2021, 126:210504, doi: 10.1103/PhysRevLett.126.210504

Akash V Dixit, Srivatsan Chakram, Kevin He, Ankur Agrawal, Ravi K Naik, David I Schuster, Aaron Chou, "Searching for dark matter with a superconducting qubit", Physical Review Letters, 2021, 126:141302, doi: 10.1103/PhysRevLett.126.141302

Aziza Suleymanzade, Alexander Anferov, Mark Stone, Ravi K Naik, Andrew Oriani, Jonathan Simon, David Schuster, "A tunable high-Q millimeter wave cavity for hybrid circuit and cavity QED experiments", Applied Physics Letters, 2020, 116:104001, doi: 10.1063/1.5137900

N Leung, Y Lu, S Chakram, RK Naik, N Earnest, R Ma, K Jacobs, AN Cleland, DI Schuster, "Deterministic bidirectional communication and remote entanglement generation between superconducting qubits", npj Quantum Information, 2019, 5:1--5, doi: 10.1038/s41534-019-0128-0

Nathan Earnest, Srivatsan Chakram, Yao Lu, Nicholas Irons, Ravi K Naik, Nelson Leung, Leo Ocola, David A Czaplewski, Brian Baker, Jay Lawrence, others, "Realization of a $\Lambda$ system with metastable states of a capacitively shunted fluxonium", Physical Review Letters, 2018, 120:150504, doi: 10.1103/PhysRevLett.120.150504

Yao Lu, Srivatsan Chakram, Ngainam Leung, Nathan Earnest, Ravi K Naik, Ziwen Huang, Peter Groszkowski, Eliot Kapit, Jens Koch, David I Schuster, "Universal stabilization of a parametrically coupled qubit", Physical Review Letters, 2017, 119:150502, doi: 10.1103/PhysRevLett.119.150502

RK Naik, N Leung, S Chakram, Peter Groszkowski, Y Lu, N Earnest, DC McKay, Jens Koch, DI Schuster, "Random access quantum information processors using multimode circuit quantum electrodynamics", Nature Communications, 2017, 8:1--7, doi: 10.1038/s41467-017-02046-6

David C McKay, Ravi Naik, Philip Reinhold, Lev S Bishop, David I Schuster, "High-contrast qubit interactions using multimode cavity QED", Physical Review Letters, 2015, 114:080501, doi: 10.1103/PhysRevLett.114.080501

N Antler, EM Levenson-Falk, R Naik, Y-D Sun, A Narla, R Vijay, I Siddiqi, "In-plane magnetic field tolerance of a dispersive aluminum nanobridge SQUID magnetometer", Applied Physics Letters, 2013, 102:232602, doi: 10.1063/1.4809782

R Vijay, Chris Macklin, DH Slichter, SJ Weber, KW Murch, Ravi Naik, Alexander N Korotkov, Irfan Siddiqi, "Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback", Nature, 2012, 490:77--80, doi: 10.1038/nature11505

Thesis/Dissertations

Multimode Circuit Quantum Electrodynamics, Ravi Kaushik Naik, PhD, 2018, doi: 10.6082/uchicago.1391

Others

Akel Hashim, Ravi Naik, Alexis Morvan, Jean-Loup Ville, Brad Mitchell, John Mark Kreikebaum, Marc Davis, Ethan Smith, Costin Iancu, Kevin O Brien, Ian Hincks, Joel Wallman, Joseph V Emerson, David Ivan Santiago, Irfan Siddiqi, Scalable Quantum Computing on a Noisy Superconducting Quantum Processor via Randomized Compiling, Bulletin of the American Physical Society, 2021,

Coherent errors in quantum hardware severely limit the performance of quantum algorithms in an unpredictable manner, and mitigating their impact is necessary for realizing reliable, large-scale quantum computations. Randomized compiling achieves this goal by converting coherent errors into stochastic noise, dramatically reducing unpredictable errors in quantum algorithms and enabling accurate predictions of aggregate performance via cycle benchmarking estimates. In this work, we demonstrate significant performance gains under randomized compiling for both the four-qubit quantum Fourier transform algorithm and for random circuits of variable depth on a superconducting quantum processor. We also validate solution accuracy using experimentally-measured error rates. Our results demonstrate that randomized compiling can be utilized to maximally-leverage and predict the capabilities of modern-day noisy quantum processors, paving the way forward for scalable quantum computing.