Dan Bonachea
Biographical Sketch:
Dan has been working at Berkeley Lab since 2005, starting in the Future Technologies Group as a graduate student researcher while studying at U.C. Berkeley (advisor: Katherine Yelick). He is now a full-time staff member with the CLaSS Group, working as the Lead System Architect and software development engineer for the Pagoda project. Dan is the original designer of the GASNet communication system, and has made significant design and implementation contributions to the UPC, UPC++ and Titanium programming languages/models. Current research interests include Partitioned Global Address Space (PGAS) programming models, and networking protocols for High-Performance Computing (HPC).
Current + Recent Projects:
Publication Lists:
Journal Articles
Dan Bonachea, Paul H. Hargrove, "GASNet-EX: A High-Performance, Portable Communication Library for Exascale", LNCS 11882: Proceedings of Languages and Compilers for Parallel Computing (LCPC'18), edited by Hall M., Sundar H., November 2019, 11882:138-158, doi: 10.1007/978-3-030-34627-0_11
- Download File: gasnet-ex-lcpc18-8c39995-final.pdf (pdf: 520 KB)
Partitioned Global Address Space (PGAS) models, typified by such languages as Unified Parallel C (UPC) and Co-Array Fortran, expose one-sided communication as a key building block for High Performance Computing (HPC) applications. Architectural trends in supercomputing make such programming models increasingly attractive, and newer, more sophisticated models such as UPC++, Legion and Chapel that rely upon similar communication paradigms are gaining popularity.
GASNet-EX is a portable, open-source, high-performance communication library designed to efficiently support the networking requirements of PGAS runtime systems and other alternative models in future exascale machines. The library is an evolution of the popular GASNet communication system, building upon over 15 years of lessons learned. We describe and evaluate several features and enhancements that have been introduced to address the needs of modern client systems. Microbenchmark results demonstrate the RMA performance of GASNet-EX is competitive with several MPI-3 implementations on current HPC systems.
Hung-Hsun Su, Dan Bonachea, Adam Leko, Hans Sherburne, Max Billingsley III, Alan D. George, "GASP! A standardized performance analysis tool interface for global address space programming models", Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4699 LNCS, December 1, 2007, doi: 10.1007/978-3-540-75755-9_54
The global address space (GAS) programming model provides important potential productivity advantages over traditional parallel programming models. Languages using the GAS model currently have insufficient support from existing performance analysis tools, due in part to their implementation complexity. We have designed the Global Address Space Performance (GASP) tool interface that is flexible enough to support instrumentation of any GAS programming model implementation, while simultaneously allowing existing performance analysis tools to leverage their tool's infrastructure and quickly add support for programming languages and libraries using the GAS model. To evaluate the effectiveness of this interface, the tracing and profiling overhead of a preliminary Berkeley UPC GASP implementation is measured and found to be within the acceptable range.
Katherine Yelick, Paul Hilfinger, Susan Graham, Dan Bonachea, Jimmy Su, Amir Kamil, Kaushik Datta, Phillip Colella, Tong Wen, "Parallel Languages and Compilers: Perspective from the Titanium Experience", International Journal of High Performance Computing Applications (IJHPCA), August 1, 2007, 21(3):266--290, doi: 10.1177/1094342007078449
We describe the rationale behind the design of key features of Titanium — an explicitly parallel dialect of JavaTM for high-performance scientific programming — and our experiences in building applications with the language. Specifically, we address Titanium’s Partitioned Global Address Space model, SPMD parallelism support, multi-dimensional arrays and array-index calculus, memory management, immutable classes (class-like types that are value types rather than reference types), operator overloading, and generic programming. We provide an overview of the Titanium compiler implementation, covering various parallel analyses and optimizations, Titanium runtime technology and the GASNet network communication layer. We summarize results and lessons learned from implementing the NAS parallel benchmarks, elliptic and hyperbolic solvers using Adaptive Mesh Refinement, and several applications of the Immersed Boundary method.
Kaushik Datta, Dan Bonachea, Katherine Yelick, "Titanium performance and potential: An NPB experimental study", Lecture Notes in Computer Science - Proceedings of Languages and Compilers for Parallel Computing (LCPC), December 2006, 4339:200--214, doi: 10.1007/978-3-540-69330-7_14
Titanium is an explicitly parallel dialect of Java TM designed for high-performance scientific programming. We present an overview of the language features and demonstrate their use in the context of the NAS Parallel Benchmarks, a standard suite of common scientific kernels. We argue that parallel languages like Titanium provide greater expressive power than conventional approaches, enabling much more concise and expressive code that minimizes time to solution. Moreover, we have found that the Titanium implementations of three of the NAS Parallel Benchmarks can match or even exceed the performance of the standard Fortran/MPI implementations at realistic problem sizes and processor scales, while still using far cleaner, shorter and more maintainable code.
Dan Bonachea, Jason Duell, "Problems with using MPI 1.1 and 2.0 as compilation targets for parallel language implementations", International Journal of High Performance Computing and Networking, January 2004, 1(1-3):91-99, doi: 10.1504/IJHPCN.2004.007569
MPI support is nearly ubiquitous on high-performance systems today and is generally highly tuned for performance. It would thus seem to offer a convenient ‘portable network assembly language’ to developers of parallel programming languages who wish to target different network architectures. Unfortunately, neither the traditional MPI 1.1 API nor the newer MPI 2.0 extensions for one-sided communication provide an adequate compilation target for global address space languages, and this is likely to be the case for many other parallel languages as well. Simulating one-sided communication under the MPI 1.1 API is too expensive, while the MPI 2.0 one-sided API imposes a number of significant restrictions on memory access patterns that would need to be incorporated at the language level, as a compiler cannot effectively hide them given current conflict and alias detection algorithms.
Dan Bonachea, Phillip Dickens, Rajeev Thakur, "High-performance file I/O in Java: Existing approaches and bulk I/O extensions", Concurrency Computation Practice and Experience 13(8-9), July 27, 2001, 13:713-736, doi: 10.1002/cpe.576
There is a growing interest in using Java as the language for developing high-performance computing applications. To be successful in the high-performance computing domain, however, Java must not only be able to provide high computational performance, but also high-performance I/O. In this paper, we first examine several approaches that attempt to provide high-performance I/O in Java - many of which are not obvious at first glance - and evaluate their performance on two parallel machines, the IBM SP and the SGI Origin2000. We then propose extensions to the Java I/O library that address the deficiencies in the Java I/O API and improve performance dramatically. The extensions add bulk (array) I/O operations to Java, thereby removing much of the overhead currently associated with array I/O in Java. We have implemented the extensions in two ways: in a standard JVM using the Java Native Interface (JNI) and in a high-performance parallel dialect of Java called Titanium. We describe the two implementations and present performance results that demonstrate the benefits of the proposed extensions.
Dan Bonachea, Kathleen Fisher, Anne Rogers, Frederick Smith, "Hancock: A language for processing very large-scale data", ACM SIGPLAN Notices (ACM Special Interest Group on Programming Languages), January 2000, 35:163-176, doi: 10.1145/331963.331981
A signature is an evolving customer profile computed from call records. AT&T uses signatures to detect fraud and to target marketing. Code to compute signatures can be difficult to write and maintain because of the volume of data. We have designed and implemented Hancock, a C-based domain-specific programming language for describing signatures. Hancock provides data abstraction mechanisms to manage the volume of data and control abstractions to facilitate looping over records. This paper describes the design and implementation of Hancock, discusses early experiences with the language, and describes our design process.
Conference Papers
Dan Bonachea, Katherine Rasmussen, Brad Richardson, Damian Rouson, "Parallel Runtime Interface for Fortran (PRIF): A Multi-Image Solution for LLVM Flang", Tenth Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC2024), Atlanta, Georgia, USA, IEEE, November 2024, doi: 10.25344/S4N017
Fortran compilers that provide support for Fortran’s native parallel features often do so with a runtime library that depends on details of both the compiler implementation and the communication library, while others provide limited or no support at all. This paper introduces a new generalized interface that is both compiler- and runtime-library-agnostic, providing flexibility while fully supporting all of Fortran’s parallel features. The Parallel Runtime Interface for Fortran (PRIF) was developed to be portable across shared- and distributed-memory systems, with varying operating systems, toolchains and architectures. It achieves this by defining a set of Fortran procedures corresponding to each of the parallel features defined in the Fortran standard that may be invoked by a Fortran compiler and implemented by a runtime library. PRIF aims to be used as the solution for LLVM Flang to provide parallel Fortran support. This paper also briefly describes our PRIF prototype implementation: Caffeine.
Julian Bellavita, Mathias Jacquelin, Esmond G. Ng, Dan Bonachea, Johnny Corbino, Paul H. Hargrove, "symPACK: A GPU-Capable Fan-Out Sparse Cholesky Solver", 2023 IEEE/ACM Parallel Applications Workshop, Alternatives To MPI+X (PAW-ATM'23), ACM, November 13, 2023, doi: 10.1145/3624062.3624600
Sparse symmetric positive definite systems of equations are ubiquitous in scientific workloads and applications. Parallel sparse Cholesky factorization is the method of choice for solving such linear systems. Therefore, the development of parallel sparse Cholesky codes that can efficiently run on today’s large-scale heterogeneous distributed-memory platforms is of vital importance. Modern supercomputers offer nodes that contain a mix of CPUs and GPUs. To fully utilize the computing power of these nodes, scientific codes must be adapted to offload expensive computations to GPUs.
We present symPACK, a GPU-capable parallel sparse Cholesky solver that uses one-sided communication primitives and remote procedure calls provided by the UPC++ library. We also utilize the UPC++ "memory kinds" feature to enable efficient communication of GPU-resident data. We show that on a number of large problems, symPACK outperforms comparable state-of-the-art GPU-capable Cholesky factorization codes by up to 14x on the NERSC Perlmutter supercomputer.
Paul H. Hargrove, Dan Bonachea, "GASNet-EX RMA Communication Performance on Recent Supercomputing Systems", 5th Annual Parallel Applications Workshop, Alternatives To MPI+X (PAW-ATM'22), November 2022, doi: 10.25344/S40C7D
Partitioned Global Address Space (PGAS) programming models, typified by systems such as Unified Parallel C (UPC) and Fortran coarrays, expose one-sided Remote Memory Access (RMA) communication as a key building block for High Performance Computing (HPC) applications. Architectural trends in supercomputing make such programming models increasingly attractive, and newer, more sophisticated models such as UPC++, Legion and Chapel that rely upon similar communication paradigms are gaining popularity.
GASNet-EX is a portable, open-source, high-performance communication library designed to efficiently support the networking requirements of PGAS runtime systems and other alternative models in emerging exascale machines. The library is an evolution of the popular GASNet communication system, building upon 20 years of lessons learned. We present microbenchmark results which demonstrate the RMA performance of GASNet-EX is competitive with MPI implementations on four recent, high-impact, production HPC systems. These results are an update relative to previously published results on older systems. The networks measured here are representative of hardware currently used in six of the top ten fastest supercomputers in the world, and all of the exascale systems on the U.S. DOE road map.
Damian Rouson, Dan Bonachea, "Caffeine: CoArray Fortran Framework of Efficient Interfaces to Network Environments", Proceedings of the Eighth Annual Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC2022), Dallas, Texas, USA, IEEE, November 2022, doi: 10.25344/S4459B
This paper provides an introduction to the CoArray Fortran Framework of Efficient Interfaces to Network Environments (Caffeine), a parallel runtime library built atop the GASNet-EX exascale networking library. Caffeine leverages several non-parallel Fortran features to write type- and rank-agnostic interfaces and corresponding procedure definitions that support parallel Fortran 2018 features, including communication, collective operations, and related services. One major goal is to develop a runtime library that can eventually be considered for adoption by LLVM Flang, enabling that compiler to support the parallel features of Fortran. The paper describes the motivations behind Caffeine's design and implementation decisions, details the current state of Caffeine's development, and previews future work. We explain how the design and implementation offer benefits related to software sustainability by lowering the barrier to user contributions, reducing complexity through the use of Fortran 2018 C-interoperability features, and high performance through the use of a lightweight communication substrate.
Daniel Waters, Colin A. MacLean, Dan Bonachea, Paul H. Hargrove, "Demonstrating UPC++/Kokkos Interoperability in a Heat Conduction Simulation (Extended Abstract)", Parallel Applications Workshop, Alternatives To MPI+X (PAW-ATM), November 2021, doi: 10.25344/S4630V
We describe the replacement of MPI with UPC++ in an existing Kokkos code that simulates heat conduction within a rectangular 3D object, as well as an analysis of the new code’s performance on CUDA accelerators. The key challenges were packing the halos in Kokkos data structures in a way that allowed for UPC++ remote memory access, and streamlining synchronization costs. Additional UPC++ abstractions used included global pointers, distributed objects, remote procedure calls, and futures. We also make use of the device allocator concept to facilitate data management in memory with unique properties, such as GPUs. Our results demonstrate that despite the algorithm’s good semantic match to message passing abstractions, straightforward modifications to use UPC++ communication deliver vastly improved performance and scalability in the common case. We find the one-sided UPC++ version written in a natural way exhibits good performance, whereas the message-passing version written in a straightforward way exhibits performance anomalies. We argue this represents a productivity benefit for one-sided communication models.
Amir Kamil, Dan Bonachea, "Optimization of Asynchronous Communication Operations through Eager Notifications", Parallel Applications Workshop, Alternatives To MPI+X (PAW-ATM), November 2021, doi: 10.25344/S42C71
UPC++ is a C++ library implementing the Asynchronous Partitioned Global Address Space (APGAS) model. We propose an enhancement to the completion mechanisms of UPC++ used to synchronize communication operations that is designed to reduce overhead for on-node operations. Our enhancement permits eager delivery of completion notification in cases where the data transfer semantics of an operation happen to complete synchronously, for example due to the use of shared-memory bypass. This semantic relaxation allows removing significant overhead from the critical path of the implementation in such cases. We evaluate our results on three different representative systems using a combination of microbenchmarks and five variations of the the HPCChallenge RandomAccess benchmark implemented in UPC++ and run on a single node to accentuate the impact of locality. We find that in RMA versions of the benchmark written in a straightforward manner (without manually optimizing for locality), the new eager notification mode can provide up to a 25% speedup when synchronizing with promises and up to a 13.5x speedup when synchronizing with conjoined futures. We also evaluate our results using a graph matching application written with UPC++ RMA communication, where we measure overall speedups of as much as 11% in single-node runs of the unmodified application code, due to our transparent enhancements.
Paul H. Hargrove, Dan Bonachea, "Efficient Active Message RMA in GASNet Using a Target-Side Reassembly Protocol (Extended Abstract)", IEEE/ACM Parallel Applications Workshop, Alternatives To MPI+X (PAW-ATM), Lawrence Berkeley National Laboratory Technical Report, November 17, 2019, LBNL 2001238, doi: 10.25344/S4PC7M
John Bachan, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Dan Bonachea, Paul H. Hargrove, Hadia Ahmed, "UPC++: A High-Performance Communication Framework for Asynchronous Computation", 33rd IEEE International Parallel & Distributed Processing Symposium (IPDPS'19), Rio de Janeiro, Brazil, IEEE, May 2019, doi: 10.25344/S4V88H
Paul H. Hargrove, Dan Bonachea, "GASNet-EX Performance Improvements Due to Specialization for the Cray Aries Network", Parallel Applications Workshop, Alternatives To MPI (PAW-ATM), Dallas, Texas, USA, IEEE, November 16, 2018, 23-33, doi: 10.25344/S44S38
GASNet-EX is a portable, open-source, high-performance communication library designed to efficiently support the networking requirements of PGAS runtime systems and other alternative models on future exascale machines. This paper reports on the improvements in performance observed on Cray XC-series systems due to enhancements made to the GASNet-EX software. These enhancements, known as "specializations", primarily consist of replacing network-independent implementations of several recently added features with implementations tailored to the Cray Aries network. Performance gains from specialization include (1) Negotiated-Payload Active Messages improve bandwidth of a ping-pong test by up to 14%, (2) Immediate Operations reduce running time of a synthetic benchmark by up to 93%, (3) non-bulk RMA Put bandwidth is increased by up to 32%, (4) Remote Atomic performance is 70% faster than the reference on a point-to-point test and allows a hot-spot test to scale robustly, and (5) non-contiguous RMA interfaces see up to 8.6x speedups for an intra-node benchmark and 26% for inter-node. These improvements are all available in GASNet-EX version 2018.3.0 and later.
Dan Bonachea, Paul H. Hargrove, "GASNet-EX: A High-Performance, Portable Communication Library for Exascale", Languages and Compilers for Parallel Computing (LCPC'18), Salt Lake City, Utah, USA, October 11, 2018, LBNL 2001174, doi: 10.25344/S4QP4W
Partitioned Global Address Space (PGAS) models, typified by such languages as Unified Parallel C (UPC) and Co-Array Fortran, expose one-sided communication as a key building block for High Performance Computing (HPC) applications. Architectural trends in supercomputing make such programming models increasingly attractive, and newer, more sophisticated models such as UPC++, Legion and Chapel that rely upon similar communication paradigms are gaining popularity.
GASNet-EX is a portable, open-source, high-performance communication library designed to efficiently support the networking requirements of PGAS runtime systems and other alternative models in future exascale machines. The library is an evolution of the popular GASNet communication system, building upon over 15 years of lessons learned. We describe and evaluate several features and enhancements that have been introduced to address the needs of modern client systems. Microbenchmark results demonstrate the RMA performance of GASNet-EX is competitive with several MPI-3 implementations on current HPC systems.
John Bachan, Dan Bonachea, Paul H Hargrove, Steve Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, Scott B Baden, "The UPC++ PGAS library for Exascale Computing", Proceedings of the Second Annual PGAS Applications Workshop (PAW17), November 13, 2017, doi: 10.1145/3144779.3169108
We describe UPC++ V1.0, a C++11 library that supports APGAS programming. UPC++ targets distributed data structures where communication is irregular or fine-grained. The key abstractions are global pointers, asynchronous programming via RPC, and futures. Global pointers incorporate ownership information useful in optimizing for locality. Futures capture data readiness state, are useful for scheduling and also enable the programmer to chain operations to execute asynchronously as high-latency dependencies become satisfied, via continuations. The interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and closely resemble those used in modern C++. Communication in UPC++ runs at close to hardware speeds by utilizing the low-overhead GASNet-EX communication library.
Dan Bonachea, Paul Hargrove, Mike Welcome, Katherine Yelick, "Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the Cray XT", Cray Users Group (CUG), May 2009, doi: 10.25344/S4RP46
Partitioned Global Address Space (PGAS) Languages are an emerging alternative to MPI for HPC applications development. The GASNet library from Lawrence Berkeley National Lab and the University of California at Berkeley provides the network runtime for multiple implementations of four PGAS Languages: Unified Parallel C (UPC), Co-Array Fortran (CAF), Titanium and Chapel. GASNet provides a low overhead one-sided communication layer has enabled portability and high performance of PGAS languages. This paper describes our experiences porting GASNet to the Portals network API on the Cray XT series.
Rajesh Nishtala, Paul Hargrove, Dan Bonachea, Katherine Yelick, "Scaling Communication-Intensive Applications on BlueGene/P Using One-Sided Communication and Overlap", 23rd International Parallel & Distributed Processing Symposium (IPDPS), May 2009, doi: 10.1109/IPDPS.2009.5161076
In earlier work, we showed that the one-sided communication model found in PGAS languages (such as UPC) offers significant advantages in communication efficiency by decoupling data transfer from processor synchronization. We explore the use of the PGAS model on IBM Blue-Gene/P, an architecture that combines low-power, quad-core processors with extreme scalability. We demonstrate that the PGAS model, using a new port of the Berkeley UPC compiler and GASNet one-sided communication layer, outperforms two-sided (MPI) communication in both microbenchmarks and a case study of the communication-limited benchmark, NAS FT. We scale the benchmark up to 16,384 cores of the BlueGene/P and demonstrate that UPC consistently outperforms MPI by as much as 66% for some processor configurations and an average of 32%. In addition, the results demonstrate the scalability of the PGAS model and the Berkeley implementation of UPC, the viability of using it on machines with multicore nodes, and the effectiveness of the BG/P communication layer for supporting one-sided communication and PGAS languages.
Shivali Agarwal, Rajkishore Barik, Dan Bonachea, Vivek Sarkar, Rudrapatna Shyamasundar, Katherine Yelick,, "Deadlock-free scheduling of X10 computations with bounded resources", Annual ACM Symposium on Parallelism in Algorithms and Architectures, October 18, 2007, 229--240, doi: 10.1145/1248377.1248416
In this paper, we address the problem of guaranteeing the absence of physical deadlock in the execution of a parallel program using the async, finish, atomic, and place constructs from the X10 language. First, we extend previous work-stealing memory bound results for fully strict multi-threaded computations to terminally strict multithreaded computations in which one activity may wait for completion of a descendant activity (as in X10's async and finish constructs), not just an immediate child (as in Cilk's spawn and sync constructs). This result establishes physical dead-lock freedom for SMP deployments. Second, we introduce a new class of X10 deployments for clusters, which builds on an underlying Active Message network and the new concept of Doppelgänger mode execution of X10 activities. Third, we use this new class of deployments to establish physical deadlock freedom for deployments on clusters of uniprocessors. Together these results give the user the ability to execute a rich set of programs written with async finish atomic and place constructs without worrying about the possibility of physical deadlock due to computation, memory and communication resources. A major open topic for future work is to extend these results to deployments on clusters of SMPs.
Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik Datta, Jason Duell, Susan L. Graham, Paul Hargrove, Paul Hilfinger, Parry Husbands, Costin Iancu, Amir Kamil, Rajesh Nishtala, Jimmy Su, Michael Welcome, Tong Wen, "Productivity and Performance Using Partitioned Global Address Space Languages", Proceedings of the 2007 International Workshop on Parallel Symbolic Computation (PASCO), July 2007, 24--32, doi: 10.1145/1278177.1278183
Partitioned Global Address Space (PGAS) languages combine the programming convenience of shared memory with the locality and performance control of message passing. One such language, Unified Parallel C (UPC) is an extension of ISO C defined by a consortium that boasts multiple proprietary and open source compilers. Another PGAS language, Titanium, is a dialect of Java T M designed for high performance scientific computation. In this paper we describe some of the highlights of two related projects, the Titanium project centered at U.C. Berkeley and the UPC project centered at Lawrence Berkeley National Laboratory. Both compilers use a source-to-source strategy that translates the parallel languages to C with calls to a communication layer called GASNet. The result is portable high-performance compilers that run on a large variety of shared and distributed memory multiprocessors. Both projects combine compiler, runtime, and application efforts to demonstrate some of the performance and productivity advantages to these languages.
Wei-Yu Chen, Dan Bonachea, Costin Iancu, Katherine A. Yelick, "Automatic nonblocking communication for partitioned global address space programs", Proceedings of the International Conference on Supercomputing (ICS), June 17, 2007, 158--167, doi: 10.1145/1274971.1274995
Overlapping communication with computation is an important optimization on current cluster architectures; its importance is likely to increase as the doubling of processing power far outpaces any improvements in communication latency. PGAS languages offer unique opportunities for communication overlap, because their one-sided communication model enables low overhead data transfer. Recent results have shown the value of hiding latency by manually applying language-level nonblocking data transfer routines, but this process can be both tedious and error-prone. In this paper, we present a runtime framework that automatically schedules the data transfers to achieve overlap. The optimization framework is entirely transparent to the user, and aggressively reorders and aggregates both remote puts and gets. We preserve correctness via runtime conflict checks and temporary buffers, using several techniques to lower the overhead. Experimental results on application benchmarks suggest that our framework can be very effective at hiding communication latency on clusters, improving performance over the blocking code by an average of 16% for some of the NAS Parallel Benchmarks, 48% for GUPS, and over 25% for a multi-block fluid dynamics solver. While the system is not yet as effective as aggressive manual optimization, it increases programmers' productivity by freeing them from the details of communication management.
Hung-Hsun Su, Dan Bonachea, Adam Leko, Hans Sherburne, Max Billingsley III, Alan D. George, "GASP! A standardized performance analysis tool interface for global address space programming models", PARA: International Workshop on Applied Parallel Computing, Umeå, Sweden, June 18, 2006, doi: 10.1007/978-3-540-75755-9
The global address space (GAS) programming model provides important potential productivity advantages over traditional parallel programming models. Languages using the GAS model currently have insufficient support from existing performance analysis tools, due in part to their implementation complexity. We have designed the Global Address Space Performance (GASP) tool interface that is flexible enough to support instrumentation of any GAS programming model implementation, while simultaneously allowing existing performance analysis tools to leverage their tool's infrastructure and quickly add support for programming languages and libraries using the GAS model. To evaluate the effectiveness of this interface, the tracing and profiling overhead of a preliminary Berkeley UPC GASP implementation is measured and found to be within the acceptable range.
Christian Bell, Dan Bonachea, Rajesh Nishtala, Katherine Yelick, "Optimizing bandwidth limited problems using one-sided communication and overlap", 20th International Parallel and Distributed Processing Symposium (IPDPS), April 25, 2006, doi: 10.1109/IPDPS.2006.1639320
Partitioned Global Address Space languages like Unified Parallel C (UPC) are typically valued for their expressiveness, especially for computations with fine-grained random accesses. In this paper we show that the one-sided communication model used in these languages also has a significant performance advantage for bandwidth-limited applications. We demonstrate this benefit through communication microbenchmarks and a case-study that compares UPC and MPI implementations of the NAS Fourier Transform (FT) benchmark. Our optimizations rely on aggressively overlapping communication with computation but spreading communication events throughout the course of the local computation. This alleviates the potential communication bottleneck that occurs when the communication is packed into a single phase (e.g., the large all-to-all in a multidimensional FFT). Even though the new algorithms require more messages for the same total volume of data, the resulting overlap leads to speedups of over 1.75x and 1.9x for the two-sided and one-sided implementations, respectively, when compared to the default NAS Fortran/MPI release. Our best one-sided implementations show an average improvement of 15 percent over our best two-sided implementations. We attribute this difference to the lower software overhead of one-sided communication, which is partly fundamental to the semantic difference between one-sided and two-sided communication. Our UPC results use the Berkeley UPC compiler with the GASNet communication system, and demonstrate the portability and scalability of that language and implementation, with performance approaching 0.5 TFlop/s on the FT benchmark running on 512 processors.
Christian Bell, Dan Bonachea, Wei-Yu Chen, Katherine Yelick, "Evaluating Support for Global Address Space Languages on the Cray X1", Proceedings of the International Conference on Supercomputing (ICS), November 22, 2004, 184--195, doi: 10.1145/1006209.1006236
The Cray X1 was recently introduced as the first in a new line of parallel systems to combine high-bandwidth vector processing with an MPP system architecture. Alongside capabilities such as automatic fine-grained data parallelism through the use of vector instructions, the X1 offers hardware support for a transparent global-address space (GAS), which makes it an interesting target for GAS languages. In this paper, we describe our experience with developing a portable, open-source and. high performance compiler for Unified Parallel C (UPC), a SPMD global-address space language extension of ISO C. As part of our implementation effort, we evaluate the X1's hardware support for GAS languages and provide empirical performance characterizations in the context of leveraging features such as vectorization and global pointers for the Berkeley UPC compiler. We discuss several difficulties encountered in the Cray C compiler which are likely to present challenges for many users, especially implementors of libraries and source-to-source translators. Finally, we analyze the performance of our compiler on some benchmark programs and show that, while there are some limitations of the current compilation approach, the Berkeley UPC compiler uses the X1 network more effectively than MPI or SHMEM, and generates serial code whose vectorizability is comparable to the original C code.
Dan Bonachea, Jason Duell, "Problems with using MPI 1.1 and 2.0 as compilation targets for parallel language implementations (conference version)", 2nd Workshop on Hardware/Software Support for High Performance Scientific and Engineering Computing, SHPSEC-PACT03, September 27, 2003, doi: 10.25344/S4JP4B
MPI support is nearly ubiquitous on high performance systems today, and is generally highly tuned for performance. It would thus seem to offer a convenient “portable network assembly language” to developers of parallel programming languages who wish to target different network architectures. Unfortunately, neither the traditional MPI 1.1 API, nor the newer MPI 2.0 extensions for one-sided communication provide an adequate compilation target for global address space languages, and this is likely to be the case for many other parallel languages as well. Simulating one-sided communication under the MPI 1.1 API is too expensive, while the MPI 2.0 one-sided API imposes a number of significant restrictions on memory access patterns that that would need to be incorporated at the language level, as a compiler can not effectively hide them given current conflict and alias detection algorithms.
Wei Chen, Dan Bonachea, Jason Duell, Parry Husbands, Costin Iancu, Katherine Yelick,, "A Performance Analysis of the Berkeley UPC Compiler", Proceedings of the International Conference on Supercomputing (ICS), ACM, June 23, 2003, 63--73, doi: 10.1145/782814.782825
Unified Parallel C (UPC) is a parallel language that uses a Single Program Multiple Data (SPMD) model of parallelism within a global address space. The global address space is used to simplify programming, especially on applications with irregular data structures that lead to fine-grained sharing between threads. Recent results have shown that the performance of UPC using a commercial compiler is comparable to that of MPI [7]. In this paper we describe a portable open source compiler for UPC. Our goal is to achieve a similar performance while enabling easy porting of the compiler and runtime, and also provide a framework that allows for extensive optimizations. We identify some of the challenges in compiling UPC and use a combination of micro-benchmarks and application kernels to show that our compiler has low overhead for basic operations on shared data and is competitive, and sometimes faster than, the commercial HP compiler. We also investigate several communication optimizations, and show significant benefits by hand-optimizing the generated code.
Christian Bell, Dan Bonachea, Yannick Cote, Jason Duell, Paul Hargrove, Parry Husbands, Costin Iancu, Michael L. Welcome, Katherine A. Yelick, "An Evaluation of Current High-Performance Networks", Proceedings of the International Parallel & Distributed Processing Symposium (IPDPS), April 22, 2003, doi: 10.1109/IPDPS.2003.1213106
High-end supercomputers are increasingly built out of commodity components, and lack tight integration between the processor and network. This often results in inefficiencies in the communication subsystem, such as high software overheads and/or message latencies. In this paper we use a set of microbenchmarks to quantify the cost of this commoditization, measuring software overhead, latency, and bandwidth on five contemporary supercomputing networks. We compare the performance of the ubiquitous MPI layer to that of lower-level communication layers, and quantify the advantages of the latter for small message performance. We also provide data on the potential for various communication-related optimizations, such as overlapping communication with computation or other communication. Finally, we determine the minimum size needed for a message to be considered 'large' (i.e., bandwidth-bound) on these platforms, and provide historical data on the software overheads of a number of supercomputers over the past decade.
Christian Bell, Dan Bonachea, "A new DMA registration strategy for pinning-based high performance networks", International Parallel and Distributed Processing Symposium (IPDPS), April 2003, doi: 10.1109/IPDPS.2003.1213363
This paper proposes a new memory registration strategy for supporting Remote DMA (RDMA) operations over pinning-based networks, as existing approaches are insufficient for efficiently implementing Global Address Space (GAS) languages. Although existing approaches often maximize bandwidth, they require levels of synchronization that discourage one-sided communication, and can have significant latency costs for small messages. The proposed Firehose algorithm attempts to expose one-sided, zero-copy communication as a common case, while minimizing the number of host-level synchronizations required to support remote memory operations. The basic idea is to reap the performance benefits of a pin-everything approach in the common case (without the drawbacks) and revert to a rendezvous-based approach to handle the uncommon case. In all cases, the algorithm attempts to amortize the cost of synchronization and pinning over multiple remote memory operations, improving performance over rendezvous by avoiding many handshaking messages and the cost of re-pinning recently used pages. Performance results are presented which demonstrate that the cost of two-sided handshaking and memory registration is negligible when the set of remotely referenced memory pages on a given node is smaller than the physical memory (where the entire working set can remain pinned), and for applications with larger working sets the performance degrades gracefully and consistently outperforms conventional approaches.
Dan Bonachea, "Bulk file I/O extensions to Java", ACM 2000 Java Grande Conference, December 2000, doi: 10.1145/337449.337459
The file I/O classes present in Java have proven too inefficient to meet the demands of high-performance applications that perform large amounts of I/O. The inefficiencies stem primarily from the library interface which requires programs to read arrays a single element at a time. We present two extensions to the Java I/O libraries which alleviate this problem. The first adds bulk (array) I/O operations to the existing libraries, removing much of the overhead currently associated with array I/O. The second is a new library that adds direct support for asynchronous I/O to enable masking I/O latency with overlapped computation. The extensions were implemented in Titanium, a high-performance, parallel dialect of Java. We present experimental results that compare the performance of the extensions with the existing I/O libraries on a simple, external merge sort application. The results demonstrate that our extensions deliver vastly superior I/O performance for this array-based application.
Dan Bonachea, Eugene Ingerman, Joshua Levy, Scott McPeak, "An Improved Adaptive Multi-Start Approach to Finding Near-Optimal Solutions to the Euclidean TSP", The Genetic and Evolutionary Computation Conference (GECCO) 2000, July 2000, doi: 10.25344/S4WC7G
We present an “adaptive multi-start” genetic algorithm for the Euclidean traveling salesman problem that uses a population of tours locally optimized by the Lin-Kernighan algorithm. An all-parent cross-breeding technique, chosen to exploit the structure of the search space, generates better locally optimized tours. Our work generalizes and improves upon the approach of Boese et al. [2]. Experiments show the algorithm is a vast improvement over simple “multi-start,” i.e., repeatedly applying Lin-Kernighan to many random initial tours. Both for random and several standard tsplib [5] instances, it is able to find nearly optimal (or optimal) tours for problems of several thousand cities in a few minutes on a Pentium Pro workstation. We find these results are competitive both in time and tour length with one of the most successful TSP algorithms, Iterated Lin-Kernighan.
Dan Bonachea, Kathleen Fisher, Anne Rogers, Frederick Smith, "Hancock: A language for processing very large-scale data (conference version)", Proceedings of the 2nd Conference on Domain-Specific Languages (DSL '99), October 1999, doi: 10.1145/331960.331981
A signature is an evolving customer profile computed from call records. AT&T uses signatures to detect fraud and to target marketing. Code to compute signatures can be difficult to write and maintain because of the volume of data. We have designed and implemented Hancock, a C-based domain-specific programming language for describing signatures. Hancock provides data abstraction mechanisms to manage the volume of data and control abstractions to facilitate looping over records. This paper describes the design and implementation of Hancock, discusses early experiences with the language, and describes our design process.
Book Chapters
Katherine Yelick, Susan Graham, Paul Hilfinger, Dan Bonachea, Jimmy Su, Amir Kamil, Kaushik Datta, Phillip Colella, Tong Wen, "Titanium", Encyclopedia of Parallel Computing, edited by David Padua, (Springer US: 2011) Pages: 2049--2055 doi: 10.1007/978-0-387-09766-4_516
Titanium is a parallel programming language designed for high-performance scientific computing. It is based on Java and uses a Single Program Multiple Data (SPMD) parallelism model with a Partitioned Global Address Space (PGAS).
Presentation/Talks
Dan Bonachea, Katherine Rasmussen, Brad Richardson, Damian Rouson, Parallel Runtime Interface for Fortran (PRIF): A Compiler/Runtime-Library Agnostic Interface to Support the Parallel Features of Fortran 2023, Platform for Advanced Scientific Computing (PASC) Modern Fortran Minisymposium, June 5, 2024,
- Download File: PRIF-PASC24.pdf (pdf: 1.6 MB)
Fortran 2023 natively supports single-program, multiple-data parallel programming with a partitioned global address space and collective subroutines, synchronization, atomics, locks, and more. Each of the four actively developed compilers that support Fortran’s parallel features uses its own parallel runtime library. The Parallel Runtime Interface for Fortran (PRIF) proposes to liberate compiler development from reliance on a single runtime and empower runtime developers to support more than one compiler. PRIF also aims to broaden the community of runtime developers to include the Fortran compiler’s users: Fortran programmers. PRIF does so by specifying the interface in Fortran, which makes it attractive to write the parallel runtime library in Fortran. Additionally, PRIF has been designed to be portable across both shared and distributed memory, varying architectures, as well as different operating systems. In this talk, I will describe the motivation behind the development of PRIF, describe the design of the interface itself and the benefits of adopting it. I will also provide a brief status report on the first PRIF implementation: Caffeine.
Michelle Mills Strout, Damian Rouson, Amir Kamil, Dan Bonachea, Jeremiah Corrado, Paul H. Hargrove, Introduction to High-Performance Parallel Distributed Computing using Chapel, UPC++ and Coarray Fortran, Tutorial at the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC23), November 12, 2023,
A majority of HPC system users utilize scripting languages such as Python to prototype their computations, coordinate their large executions, and analyze the data resulting from their computations. Python is great for these many uses, but it frequently falls short when significantly scaling up the amount of data and computation, as required to fully leverage HPC system resources. In this tutorial, we show how example computations such as heat diffusion, k-mer counting, file processing, and distributed maps can be written to efficiently leverage distributed computing resources in the Chapel, UPC++, and Fortran parallel programming models.
The tutorial is targeted for users with little-to-no parallel programming experience, but everyone is welcome. A partial differential equation example will be demonstrated in all three programming models. That example and others will be provided to attendees in a virtual environment. Attendees will be shown how to compile and run these programming examples, and the virtual environment will remain available to attendees throughout the conference, along with Slack-based interactive tech support.
Come join us to learn about some productive and performant parallel programming models!
Michelle Mills Strout, Damian Rouson, Amir Kamil, Dan Bonachea, Jeremiah Corrado, Paul H. Hargrove, Introduction to High-Performance Parallel Distributed Computing using Chapel, UPC++ and Coarray Fortran (CUF23), ECP/NERSC/OLCF Tutorial, July 2023,
A majority of HPC system users utilize scripting languages such as Python to prototype their computations, coordinate their large executions, and analyze the data resulting from their computations. Python is great for these many uses, but it frequently falls short when significantly scaling up the amount of data and computation, as required to fully leverage HPC system resources. In this tutorial, we show how example computations such as heat diffusion, k-mer counting, file processing, and distributed maps can be written to efficiently leverage distributed computing resources in the Chapel, UPC++, and Fortran parallel programming models. This tutorial should be accessible to users with little-to-no parallel programming experience, and everyone is welcome. A partial differential equation example will be demonstrated in all three programming models along with performance and scaling results on big machines. That example and others will be provided in a cloud instance and Docker container. Attendees will be shown how to compile and run these programming examples, and provided opportunities to experiment with different parameters and code alternatives while being able to ask questions and share their own observations. Come join us to learn about some productive and performant parallel programming models!
Secondary tutorial sites by event sponsors:
Dan Bonachea, Paul H. Hargrove, An Introduction to GASNet-EX for Chapel Users, 9th Annual Chapel Implementers and Users Workshop (CHIUW 2022), June 10, 2022,
Have you ever typed "export CHPL_COMM=gasnet"? If you’ve used Chapel with multi-locale support on a system without "Cray" in the model name, then you’ve probably used GASNet. Did you ever wonder what GASNet is? What GASNet should mean to you? This talk aims to answer those questions and more. Chapel has system-specific implementations of multi-locale communication for Cray-branded systems including the Cray XC and HPE Cray EX lines. On other systems, Chapel communication uses the GASNet communication library embedded in third-party/gasnet. In this talk, that third-party will introduce itself to you in the first person.
Katherine A. Yelick, Amir Kamil, Damian Rouson, Dan Bonachea, Paul H. Hargrove, UPC++: An Asynchronous RMA/RPC Library for Distributed C++ Applications (SC21), Tutorial at the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC21), November 15, 2021,
UPC++ is a C++ library supporting Partitioned Global Address Space (PGAS) programming. UPC++ offers low-overhead one-sided Remote Memory Access (RMA) and Remote Procedure Calls (RPC), along with future/promise-based asynchrony to express dependencies between computation and asynchronous data movement. UPC++ supports simple/regular data structures as well as more elaborate distributed applications where communication is fine-grained and/or irregular. UPC++ provides a uniform abstraction for one-sided RMA between host and GPU/accelerator memories anywhere in the system. UPC++'s support for aggressive asynchrony enables applications to effectively overlap communication and reduce latency stalls, while the underlying GASNet-EX communication library delivers efficient low-overhead RMA/RPC on HPC networks.
This tutorial introduces UPC++, covering the memory and execution models and basic algorithm implementations. Participants gain hands-on experience incorporating UPC++ features into application proxy examples. We examine a few UPC++ applications with irregular communication (metagenomic assembler and COVID-19 simulation) and describe how they utilize UPC++ to optimize communication performance.
Dan Bonachea, GASNet-EX: A High-Performance, Portable Communication Library for Exascale, Berkeley Lab – CS Seminar, March 10, 2021,
- Download File: GASNet-2021-LBL-seminar-slides.pdf (pdf: 9.1 MB)
Partitioned Global Address Space (PGAS) models, pioneered by languages such as Unified Parallel C (UPC) and Co-Array Fortran, expose one-sided communication as a key building block for High Performance Computing (HPC) applications. Architectural trends in supercomputing make such programming models increasingly attractive, and newer, more sophisticated models such as UPC++, Legion and Chapel that rely upon similar communication paradigms are gaining popularity.
GASNet-EX is a portable, open-source, high-performance communication library designed to efficiently support the networking requirements of PGAS runtime systems and other alternative models in future exascale machines. The library is an evolution of the popular GASNet communication system, building on 20 years of lessons learned. We describe several features and enhancements that have been introduced to address the needs of modern runtimes and exploit the hardware capabilities of emerging systems. Microbenchmark results demonstrate the RMA performance of GASNet-EX is competitive with several MPI implementations on current systems. GASNet-EX provides communication services that help to deliver speedups in HPC applications written using the UPC++ library, enabling new science on pre-exascale systems.
Katherine A. Yelick, Amir Kamil, Dan Bonachea, Paul H Hargrove, UPC++: An Asynchronous RMA/RPC Library for Distributed C++ Applications (SC20), Tutorial at the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC20), November 10, 2020,
This tutorial introduces basic concepts and advanced optimization techniques of UPC++. We discuss the UPC++ memory and execution models and examine basic algorithm implementations. Participants gain hands-on experience incorporating UPC++ features into several application examples. We also examine two irregular applications (metagenomic assembler and multifrontal sparse solver) and describe how they leverage UPC++ features to optimize communication performance.
Amir Kamil, John Bachan, Scott B. Baden, Dan Bonachea, Rob Egan, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Kathy Yelick, UPC++: An Asynchronous RMA/RPC Library for Distributed C++ Applications (ALCF'20), Argonne Leadership Computing Facility (ALCF) Webinar Series, May 27, 2020,
UPC++ is a C++ library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. The UPC++ API offers low-overhead one-sided RMA communication and Remote Procedure Calls (RPC), along with futures and promises. These constructs enable the programmer to express dependencies between asynchronous computations and data movement. UPC++ supports the implementation of simple, regular data structures as well as more elaborate distributed data structures where communication is fine-grained, irregular, or both. The library’s support for asynchrony enables the application to aggressively overlap and schedule communication and computation to reduce wait times.
UPC++ is highly portable and runs on platforms from laptops to supercomputers, with native implementations for HPC interconnects. As a C++ library, it interoperates smoothly with existing numerical libraries and on-node programming models (e.g., OpenMP, CUDA).
In this webinar, hosted by DOE’s Exascale Computing Project and the ALCF, we will introduce basic concepts and advanced optimization techniques of UPC++. We will discuss the UPC++ memory and execution models and walk through basic algorithm implementations. We will also look at irregular applications and show how they can take advantage of UPC++ features to optimize their performance.
Amir Kamil, John Bachan, Scott B. Baden, Dan Bonachea, Rob Egan, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Kathy Yelick, UPC++: A PGAS/RPC Library for Asynchronous Exascale Communication in C++ (ECP'20), Tutorial at Exascale Computing Project (ECP) Annual Meeting 2020, February 6, 2020,
UPC++ is a C++ library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. The UPC++ API offers low-overhead one-sided RMA communication and Remote Procedure Calls (RPC), along with futures and promises. These constructs enable the programmer to express dependencies between asynchronous computations and data movement. UPC++ supports the implementation of simple, regular data structures as well as more elaborate distributed data structures where communication is fine-grained, irregular, or both. The library’s support for asynchrony enables the application to aggressively overlap and schedule communication and computation to reduce wait times.
UPC++ is highly portable and runs on platforms from laptops to supercomputers, with native implementations for HPC interconnects. As a C++ library, it interoperates smoothly with existing numerical libraries and on-node programming models (e.g., OpenMP, CUDA).
In this tutorial we will introduce basic concepts and advanced optimization techniques of UPC++. We will discuss the UPC++ memory and execution models and walk through basic algorithm implementations. We will also look at irregular applications and show how they can take advantage of UPC++ features to optimize their performance.
Amir Kamil, John Bachan, Scott B. Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Kathy Yelick, UPC++ Tutorial (NERSC Dec 2019), National Energy Research Scientific Computing Center (NERSC), December 16, 2019,
This event was a repeat of the tutorial delivered on November 1, but with the restoration of the hands-on component which was omitted due to uncertainty surrounding the power outage at NERSC.
UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. UPC++ provides mechanisms for low-overhead one-sided communication, moving computation to data through remote-procedure calls, and expressing dependencies between asynchronous computations and data movement. It is particularly well-suited for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces are designed to be composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds.
In this tutorial we introduced basic concepts and advanced optimization techniques of UPC++. We discussed the UPC++ memory and execution models and walked through implementing basic algorithms in UPC++. We also discussed irregular applications and how to take advantage of UPC++ features to optimize their performance. The tutorial included hands-on exercises with basic UPC++ constructs. Registrants were given access to run their UPC++ exercises on NERSC’s Cori (currently the #14 fastest computer in the world).
Amir Kamil, John Bachan, Scott B. Baden, Dan Bonachea, Rob Egan, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Kathy Yelick, UPC++ Tutorial (NERSC Nov 2019), National Energy Research Scientific Computing Center (NERSC), November 1, 2019,
UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. UPC++ provides mechanisms for low-overhead one-sided communication, moving computation to data through remote-procedure calls, and expressing dependencies between asynchronous computations and data movement. It is particularly well-suited for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces are designed to be composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds.
In this tutorial we will introduce basic concepts and advanced optimization techniques of UPC++. We will discuss the UPC++ memory and execution models and walk through implementing basic algorithms in UPC++. We will also look at irregular applications and how to take advantage of UPC++ features to optimize their performance.
Erik Paulson, Dan Bonachea, Paul Hargrove, GASNet ofi-conduit, Presentation at the Open Fabrics Interface BoF at Supercomputing 2017, November 2017,
Yili Zheng, Filip Blagojevic, Dan Bonachea, Paul H. Hargrove, Steven Hofmeyr, Costin Iancu, Seung-Jai Min, Katherine Yelick, Getting Multicore Performance with UPC, SIAM Conference on Parallel Processing for Scientific Computing, February 2010,
- Download File: Multicore-Performance-with-UPC-SIAMPP10-Zheng.pdf (pdf: 933 KB)
Paul H. Hargrove, Dan Bonachea, Christian Bell, Experiences Implementing Partitioned Global Address Space (PGAS) Languages on InfiniBand, OpenFabrics Alliance 2008 International Sonoma Workshop, April 2008,
Dan Bonachea, Rajesh Nishtala, Paul Hargrove, Katherine Yelick, Efficient Point-to-point Synchronization in UPC, 2nd Conf. on Partitioned Global Address Space Programming Models (PGAS06), October 4, 2006,
- Download File: upc-sem-0.2.pdf (pdf: 174 KB)
- Download File: PGAS06-p2p.pdf (pdf: 945 KB)
- Download File: UPC-p2p-abstract.pdf (pdf: 37 KB)
Tarek El-Ghazawi, Bob Numrich, Dan Bonachea, Programming in the Distributed Shared-memory Model, Tutorial at the International Parallel and Distributed Processing Symposium (IPDPS'03), April 26, 2003,
The distributed shared-memory programming paradigm has been lately getting rising attention. Recent developments have resulted in viable distributed shared memory languages that are gaining vendors' support, and several early compilers have been developed. This programming model has the potential of achieving a balance between ease-of-programming and performance. As in the shared-memory model, programmers need not to explicitly specify whether accesses are local or remote. Meanwhile, programmers can exploit data locality in distributed memory systems using an abstract model that can enable program portability.
In this tutorial, we present the fundamental concepts associated with the distributed shared-memory programming model. These will include execution models, synchronization, workload distribution, and memory consistency. We then introduce the syntax and semantics of three parallel programming language instances with growing interest. These are the Unified Parallel C or UPC, which is developed by a consortium of academia, industry, and government; Co-Array FORTRAN, which is mainly developed at Cray Inc.; and Titanium, a JAVA implementation from UCB. It will be shown through experimental case studies that optimized distributed shared memory programs can perform at least as good as message passing codes, without much departure from the ease of programming of the shared memory model.
Reports
Dan Bonachea, Katherine Rasmussen, Brad Richardson, Damian Rouson, "Parallel Runtime Interface for Fortran (PRIF) Specification, Revision 0.4", Lawrence Berkeley National Laboratory Tech Report, July 12, 2024, LBNL 2001604, doi: 10.25344/S4WG64
This document specifies an interface to support the parallel features of Fortran, named the Parallel Runtime Interface for Fortran (PRIF). PRIF is a proposed solution in which the runtime library is responsible for coarray allocation, deallocation and accesses, image synchronization, atomic operations, events, and teams. In this interface, the compiler is responsible for transforming the invocation of Fortran-level parallel features into procedure calls to the necessary PRIF procedures. The interface is designed for portability across shared- and distributed-memory machines, different operating systems, and multiple architectures. Implementations of this interface are intended as an augmentation for the compiler’s own runtime library. With an implementation-agnostic interface, alternative parallel runtime libraries may be developed that support the same interface. One benefit of this approach is the ability to vary the communication substrate. A central aim of this document is to define a parallel runtime interface in standard Fortran syntax, which enables us to leverage Fortran to succinctly express various properties of the procedure interfaces, including argument attributes.
Dan Bonachea, Paul H. Hargrove, "GASNet-EX Specification Collection, Revision 2024.5.0", Lawrence Berkeley National Laboratory Tech Report, May 2024, LBNL 2001595, doi: 10.25344/S4160B
GASNet-EX is a portable, open-source, high-performance communication library designed to efficiently support the networking requirements of PGAS runtime systems and other alternative models in emerging exascale systems. It provides network-independent, high-performance communication primitives including Remote Memory Access (RMA) and Active Messages (AM). GASNet-EX is an evolution of the popular GASNet communication system, building upon over 20 years of lessons learned, and the primary goals are high performance, interface portability, and expressiveness. The library has been used to implement parallel programming models and libraries such as UPC, UPC++, Fortran coarrays, Legion, Chapel, and many others.
This anthology collects together the four separate volumes that currently comprise the GASNet-EX specification, as of the 2024.5.0 release of GASNet-EX.
Dan Bonachea, Katherine Rasmussen, Brad Richardson, Damian Rouson, "Parallel Runtime Interface for Fortran (PRIF) Specification, Revision 0.3", Lawrence Berkeley National Laboratory Tech Report, May 3, 2024, LBNL 2001590, doi: 10.25344/S4501W
This document specifies an interface to support the parallel features of Fortran, named the Parallel Runtime Interface for Fortran (PRIF). PRIF is a proposed solution in which the runtime library is responsible for coarray allocation, deallocation and accesses, image synchronization, atomic operations, events, and teams. In this interface, the compiler is responsible for transforming the invocation of Fortran-level parallel features into procedure calls to the necessary PRIF procedures. The interface is designed for portability across shared- and distributed-memory machines, different operating systems, and multiple architectures. Implementations of this interface are intended as an augmentation for the compiler’s own runtime library. With an implementation-agnostic interface, alternative parallel runtime libraries may be developed that support the same interface. One benefit of this approach is the ability to vary the communication substrate. A central aim of this document is to define a parallel runtime interface in standard Fortran syntax, which enables us to leverage Fortran to succinctly express various properties of the procedure interfaces, including argument attributes.
Damian Rouson, Brad Richardson, Dan Bonachea, Katherine Rasmussen, "Parallel Runtime Interface for Fortran (PRIF) Design Document, Revision 0.2", Lawrence Berkeley National Laboratory Tech Report, December 20, 2023, LBNL 2001563, doi: 10.25344/S4DG6S
This design document proposes an interface to support the parallel features of Fortran, named the Parallel Runtime Interface for Fortran (PRIF). PRIF is a proposed solution in which the runtime library is responsible for coarray allocation, deallocation and accesses, image synchronization, atomic operations, events, and teams. In this interface, the compiler is responsible for transforming the invocation of Fortran-level parallel features into procedure calls to the necessary PRIF procedures. The interface is designed for portability across shared- and distributed-memory machines, different operating systems, and multiple architectures. Implementations of this interface are intended as an augmentation for the compiler’s own runtime library. With an implementation-agnostic interface, alternative parallel runtime libraries may be developed that support the same interface. One benefit of this approach is the ability to vary the communication substrate. A central aim of this document is to define a parallel runtime interface in standard Fortran syntax, which enables us to leverage Fortran to succinctly express various properties of the procedure interfaces, including argument attributes.
Dan Bonachea, Amir Kamil, "UPC++ v1.0 Specification, Revision 2023.9.0", Lawrence Berkeley National Laboratory Tech Report LBNL-2001561, December 2023, doi: 10.25344/S4J592
UPC++ is a C++ library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). All communication operations are syntactically explicit and default to non-blocking; asynchrony is managed through the use of futures, promises and continuation callbacks, enabling the programmer to construct a graph of operations to execute asynchronously as high-latency dependencies are satisfied. A global pointer abstraction provides system-wide addressability of shared memory, including host and accelerator memories. The parallelism model is primarily process-based, but the interface is thread-safe and designed to allow efficient and expressive use in multi-threaded applications. The interface is designed for extreme scalability throughout, and deliberately avoids design features that could inhibit scalability.
John Bachan, Scott B. Baden, Dan Bonachea, Johnny Corbino, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, Daniel Waters, "UPC++ v1.0 Programmer’s Guide, Revision 2023.9.0", Lawrence Berkeley National Laboratory Tech Report LBNL-2001560, December 2023, doi: 10.25344/S4P01J
UPC++ is a C++ library that supports Partitioned Global Address Space (PGAS) programming. It is designed for writing efficient, scalable parallel programs on distributed-memory parallel computers. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). The UPC++ control model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. The PGAS memory model additionally provides one-sided RMA communication to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ also features Remote Procedure Call (RPC) communication, making it easy to move computation to operate on data that resides on remote processes. UPC++ was designed to support exascale high-performance computing, and the library interfaces and implementation are focused on maximizing scalability. In UPC++, all communication operations are syntactically explicit, which encourages programmers to consider the costs associated with communication and data movement. Moreover, all communication operations are asynchronous by default, encouraging programmers to seek opportunities for overlapping communication latencies with other useful work. UPC++ provides expressive and composable abstractions designed for efficiently managing aggressive use of asynchrony in programs. Together, these design principles are intended to enable programmers to write applications using UPC++ that perform well even on hundreds of thousands of cores.
Dan Bonachea, Amir Kamil, "UPC++ v1.0 Specification, Revision 2023.3.0", Lawrence Berkeley National Laboratory Tech Report, March 31, 2023, LBNL 2001516, doi: 10.25344/S46W2J
UPC++ is a C++ library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). All communication operations are syntactically explicit and default to non-blocking; asynchrony is managed through the use of futures, promises and continuation callbacks, enabling the programmer to construct a graph of operations to execute asynchronously as high-latency dependencies are satisfied. A global pointer abstraction provides system-wide addressability of shared memory, including host and accelerator memories. The parallelism model is primarily process-based, but the interface is thread-safe and designed to allow efficient and expressive use in multi-threaded applications. The interface is designed for extreme scalability throughout, and deliberately avoids design features that could inhibit scalability.
John Bachan, Scott B. Baden, Dan Bonachea, Johnny Corbino, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, Daniel Waters, "UPC++ v1.0 Programmer’s Guide, Revision 2023.3.0", Lawrence Berkeley National Laboratory Tech Report, March 30, 2023, LBNL 2001517, doi: 10.25344/S43591
UPC++ is a C++ library that supports Partitioned Global Address Space (PGAS) programming. It is designed for writing efficient, scalable parallel programs on distributed-memory parallel computers. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). The UPC++ control model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. The PGAS memory model additionally provides one-sided RMA communication to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ also features Remote Procedure Call (RPC) communication, making it easy to move computation to operate on data that resides on remote processes.
UPC++ was designed to support exascale high-performance computing, and the library interfaces and implementation are focused on maximizing scalability. In UPC++, all communication operations are syntactically explicit, which encourages programmers to consider the costs associated with communication and data movement. Moreover, all communication operations are asynchronous by default, encouraging programmers to seek opportunities for overlapping communication latencies with other useful work. UPC++ provides expressive and composable abstractions designed for efficiently managing aggressive use of asynchrony in programs. Together, these design principles are intended to enable programmers to write applications using UPC++ that perform well even on hundreds of thousands of cores.
Dan Bonachea, Amir Kamil, "UPC++ v1.0 Specification, Revision 2022.9.0", Lawrence Berkeley National Laboratory Tech Report, September 30, 2022, LBNL 2001480, doi: 10.25344/S4M59P
UPC++ is a C++ library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). All communication operations are syntactically explicit and default to non-blocking; asynchrony is managed through the use of futures, promises and continuation callbacks, enabling the programmer to construct a graph of operations to execute asynchronously as high-latency dependencies are satisfied. A global pointer abstraction provides system-wide addressability of shared memory, including host and accelerator memories. The parallelism model is primarily process-based, but the interface is thread-safe and designed to allow efficient and expressive use in multi-threaded applications. The interface is designed for extreme scalability throughout, and deliberately avoids design features that could inhibit scalability.
John Bachan, Scott B. Baden, Dan Bonachea, Johnny Corbino, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, Daniel Waters, "UPC++ v1.0 Programmer’s Guide, Revision 2022.9.0", Lawrence Berkeley National Laboratory Tech Report, September 30, 2022, LBNL 2001479, doi: 10.25344/S4QW26
UPC++ is a C++ library that supports Partitioned Global Address Space (PGAS) programming. It is designed for writing efficient, scalable parallel programs on distributed-memory parallel computers. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). The UPC++ control model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. The PGAS memory model additionally provides one-sided RMA communication to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ also features Remote Procedure Call (RPC) communication, making it easy to move computation to operate on data that resides on remote processes.
UPC++ was designed to support exascale high-performance computing, and the library interfaces and implementation are focused on maximizing scalability. In UPC++, all communication operations are syntactically explicit, which encourages programmers to consider the costs associated with communication and data movement. Moreover, all communication operations are asynchronous by default, encouraging programmers to seek opportunities for overlapping communication latencies with other useful work. UPC++ provides expressive and composable abstractions designed for efficiently managing aggressive use of asynchrony in programs. Together, these design principles are intended to enable programmers to write applications using UPC++ that perform well even on hundreds of thousands of cores.
John Bachan, Scott B. Baden, Dan Bonachea, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, Daniel Waters, "UPC++ v1.0 Programmer’s Guide, Revision 2022.3.0", Lawrence Berkeley National Laboratory Tech Report, March 2022, LBNL 2001453, doi: 10.25344/S41C7Q
UPC++ is a C++ library that supports Partitioned Global Address Space (PGAS) programming. It is designed for writing efficient, scalable parallel programs on distributed-memory parallel computers. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). The UPC++ control model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. The PGAS memory model additionally provides one-sided RMA communication to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ also features Remote Procedure Call (RPC) communication, making it easy to move computation to operate on data that resides on remote processes.
UPC++ was designed to support exascale high-performance computing, and the library interfaces and implementation are focused on maximizing scalability. In UPC++, all communication operations are syntactically explicit, which encourages programmers to consider the costs associated with communication and data movement. Moreover, all communication operations are asynchronous by default, encouraging programmers to seek opportunities for overlapping communication latencies with other useful work. UPC++ provides expressive and composable abstractions designed for efficiently managing aggressive use of asynchrony in programs. Together, these design principles are intended to enable programmers to write applications using UPC++ that perform well even on hundreds of thousands of cores.
Dan Bonachea, Amir Kamil, "UPC++ v1.0 Specification, Revision 2022.3.0", Lawrence Berkeley National Laboratory Tech Report, March 2022, LBNL 2001452, doi: 10.25344/S4530J
UPC++ is a C++ library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). All communication operations are syntactically explicit and default to non-blocking; asynchrony is managed through the use of futures, promises and continuation callbacks, enabling the programmer to construct a graph of operations to execute asynchronously as high-latency dependencies are satisfied. A global pointer abstraction provides system-wide addressability of shared memory, including host and accelerator memories. The parallelism model is primarily process-based, but the interface is thread-safe and designed to allow efficient and expressive use in multi-threaded applications. The interface is designed for extreme scalability throughout, and deliberately avoids design features that could inhibit scalability.
John Bachan, Scott B. Baden, Dan Bonachea, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, Daniel Waters, "UPC++ v1.0 Programmer’s Guide, Revision 2021.9.0", Lawrence Berkeley National Laboratory Tech Report, September 2021, LBNL 2001424, doi: 10.25344/S4SW2T
UPC++ is a C++ library that supports Partitioned Global Address Space (PGAS) programming. It is designed for writing efficient, scalable parallel programs on distributed-memory parallel computers. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). The UPC++ control model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. The PGAS memory model additionally provides one-sided RMA communication to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ also features Remote Procedure Call (RPC) communication, making it easy to move computation to operate on data that resides on remote processes.
UPC++ was designed to support exascale high-performance computing, and the library interfaces and implementation are focused on maximizing scalability. In UPC++, all communication operations are syntactically explicit, which encourages programmers to consider the costs associated with communication and data movement. Moreover, all communication operations are asynchronous by default, encouraging programmers to seek opportunities for overlapping communication latencies with other useful work. UPC++ provides expressive and composable abstractions designed for efficiently managing aggressive use of asynchrony in programs. Together, these design principles are intended to enable programmers to write applications using UPC++ that perform well even on hundreds of thousands of cores.
Dan Bonachea, Amir Kamil, "UPC++ v1.0 Specification, Revision 2021.9.0", Lawrence Berkeley National Laboratory Tech Report, September 2021, LBNL 2001425, doi: 10.25344/S4XK53
UPC++ is a C++ library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). All communication operations are syntactically explicit and default to non-blocking; asynchrony is managed through the use of futures, promises and continuation callbacks, enabling the programmer to construct a graph of operations to execute asynchronously as high-latency dependencies are satisfied. A global pointer abstraction provides system-wide addressability of shared memory, including host and accelerator memories. The parallelism model is primarily process-based, but the interface is thread-safe and designed to allow efficient and expressive use in multi-threaded applications. The interface is designed for extreme scalability throughout, and deliberately avoids design features that could inhibit scalability.
Dan Bonachea, "UPC++ as_eager Working Group Draft, Revision 2020.6.2", Lawrence Berkeley National Laboratory Tech Report, August 9, 2021, LBNL 2001416, doi: 10.25344/S4FK5R
This draft proposes an extension for a new future-based completion variant that can be more effectively streamlined for RMA and atomic access operations that happen to be satisfied at runtime using purely node-local resources. Many such operations are most efficiently performed synchronously using load/store instructions on shared-memory mappings, where the actual access may only require a few CPU instructions. In such cases we believe it’s critical to minimize the overheads imposed by the UPC++ runtime and completion queues, in order to enable efficient operation on hierarchical node hardware using shared-memory bypass.
The new upcxx::{source,operation}_cx::as_eager_future() completion variant accomplishes this goal by relaxing the current restriction that future-returning access operations must return a non-ready future whose completion is deferred until a subsequent explicit invocation of user-level progress. This relaxation allows access operations that are completed synchronously to instead return a ready future, thereby avoiding most or all of the runtime costs associated with deferment of future completion and subsequent mandatory entry into the progress engine.
We additionally propose to make this new as_eager_future() completion variant the new default completion for communication operations that currently default to returning a future. This should encourage use of the streamlined variant, and may provide performance improvements to some codes without source changes. A mechanism is proposed to restore the legacy behavior on-demand for codes that might happen to rely on deferred completion for correctness.
Finally, we propose a new as_eager_promise() completion variant that extends analogous improvements to promise-based completion, and corresponding changes to the default behavior of as_promise().
Dan Bonachea, Amir Kamil, "UPC++ v1.0 Specification, Revision 2021.3.0", Lawrence Berkeley National Laboratory Tech Report, March 31, 2021, LBNL 2001388, doi: 10.25344/S4K881
UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). All communication operations are syntactically explicit and default to non-blocking; asynchrony is managed through the use of futures, promises and continuation callbacks, enabling the programmer to construct a graph of operations to execute asynchronously as high-latency dependencies are satisfied. A global pointer abstraction provides system-wide addressability of shared memory, including host and accelerator memories. The parallelism model is primarily process-based, but the interface is thread-safe and designed to allow efficient and expressive use in multi-threaded applications. The interface is designed for extreme scalability throughout, and deliberately avoids design features that could inhibit scalability.
John Bachan, Scott B. Baden, Dan Bonachea, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ v1.0 Programmer’s Guide, Revision 2020.10.0", Lawrence Berkeley National Laboratory Tech Report, October 2020, LBNL 2001368, doi: 10.25344/S4HG6Q
UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.
Dan Bonachea, Amir Kamil, "UPC++ v1.0 Specification, Revision 2020.10.0", Lawrence Berkeley National Laboratory Tech Report, October 30, 2020, LBNL 2001367, doi: 10.25344/S4CS3F
UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). All communication operations are syntactically explicit and default to non-blocking; asynchrony is managed through the use of futures, promises and continuation callbacks, enabling the programmer to construct a graph of operations to execute asynchronously as high-latency dependencies are satisfied. A global pointer abstraction provides system-wide addressability of shared memory, including host and accelerator memories. The parallelism model is primarily process-based, but the interface is thread-safe and designed to allow efficient and expressive use in multi-threaded applications. The interface is designed for extreme scalability throughout, and deliberately avoids design features that could inhibit scalability.
John Bachan, Scott B. Baden, Dan Bonachea, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ v1.0 Programmer’s Guide, Revision 2020.3.0", Lawrence Berkeley National Laboratory Tech Report, March 2020, LBNL 2001269, doi: 10.25344/S4P88Z
UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.
John Bachan, Dan Bonachea, Amir Kamil, "UPC++ v1.0 Specification, Revision 2020.3.0", Lawrence Berkeley National Laboratory Tech Report, March 12, 2020, LBNL 2001268, doi: 10.25344/S4T01S
UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). All communication operations are syntactically explicit and default to non-blocking; asynchrony is managed through the use of futures, promises and continuation callbacks, enabling the programmer to construct a graph of operations to execute asynchronously as high-latency dependencies are satisfied. A global pointer abstraction provides system-wide addressability of shared memory, including host and accelerator memories. The parallelism model is primarily process-based, but the interface is thread-safe and designed to allow efficient and expressive use in multi-threaded applications. The interface is designed for extreme scalability throughout, and deliberately avoids design features that could inhibit scalability.
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ v1.0 Programmer’s Guide, Revision 2019.9.0", Lawrence Berkeley National Laboratory Tech Report, September 2019, LBNL 2001236, doi: 10.25344/S4V30R
UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ v1.0 Specification, Revision 2019.9.0", Lawrence Berkeley National Laboratory Tech Report, September 14, 2019, LBNL 2001237, doi: 10.25344/S4ZW2C
UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. We are revising the library under the auspices of the DOE’s Exascale Computing Project, to meet the needs of applications requiring PGAS support. UPC++ is intended for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds. The key facilities in UPC++ are global pointers, that enable the programmer to express ownership information for improving locality, one-sided communication, both put/get and RPC, futures and continuations. Futures capture data readiness state, which is useful in making scheduling decisions, and continuations provide for completion handling via callbacks. Together, these enable the programmer to chain together a DAG of operations to execute asynchronously as high-latency dependencies become satisfied.
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ Programmer's Guide, v1.0-2019.3.0", Lawrence Berkeley National Laboratory Tech Report, March 2019, LBNL 2001191, doi: 10.25344/S4F301
UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ Specification v1.0, Draft 10", Lawrence Berkeley National Laboratory Tech Report, March 15, 2019, LBNL 2001192, doi: 10.25344/S4JS30
UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. We are revising the library under the auspices of the DOE’s Exascale Computing Project, to meet the needs of applications requiring PGAS support. UPC++ is intended for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds. The key facilities in UPC++ are global pointers, that enable the programmer to express ownership information for improving locality, one-sided communication, both put/get and RPC, futures and continuations. Futures capture data readiness state, which is useful in making scheduling decisions, and continuations provide for completion handling via callbacks. Together, these enable the programmer to chain together a DAG of operations to execute asynchronously as high-latency dependencies become satisfied.
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ Programmer's Guide, v1.0-2018.9.0", Lawrence Berkeley National Laboratory Tech Report, September 2018, LBNL 2001180, doi: 10.25344/S49G6V
UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ Specification v1.0, Draft 8", Lawrence Berkeley National Laboratory Tech Report, September 26, 2018, LBNL 2001179, doi: 10.25344/S45P4X
UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. We are revising the library under the auspices of the DOE’s Exascale Computing Project, to meet the needs of applications requiring PGAS support. UPC++ is intended for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds. The key facilities in UPC++ are global pointers, that enable the programmer to express ownership information for improving locality, one-sided communication, both put/get and RPC, futures and continuations. Futures capture data readiness state, which is useful in making scheduling decisions, and continuations provide for completion handling via callbacks. Together, these enable the programmer to chain together a DAG of operations to execute asynchronously as high-latency dependencies become satisfied.
Dan Bonachea, Paul Hargrove, "GASNet-EX Performance Improvements Due to Specialization for the Cray Aries Network (tech report version)", Lawrence Berkeley National Laboratory Tech Report, March 27, 2018, LBNL 2001134, doi: 10.2172/1430690
This document is a deliverable for milestone STPM17-6 of the Exascale Computing Project, delivered by WBS 2.3.1.14. It reports on the improvements in performance observed on Cray XC-series systems due to enhancements made to the GASNet-EX software. These enhancements, known as “specializations”, primarily consist of replacing network-independent implementations of several recently added features with implementations tailored to the Cray Aries network. Performance gains from specialization include (1) Negotiated-Payload Active Messages improve bandwidth of a ping-pong test by up to 14%, (2) Immediate Operations reduce running time of a synthetic benchmark by up to 93%, (3) non-bulk RMA Put bandwidth is increased by up to 32%, (4) Remote Atomic performance is 70% faster than the reference on a point-to-point test and allows a hot-spot test to scale robustly, and (5) non-contiguous RMA interfaces see up to 8.6x speedups for an intra-node benchmark and 26% for inter-node. These improvements are available in the GASNet-EX 2018.3.0 release.
John Bachan, Scott Baden, Dan Bonachea, Paul H. Hargrove, Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil, Bryce Lelbach, Brian Van Straalen, "UPC++ Specification v1.0, Draft 6", Lawrence Berkeley National Laboratory Tech Report, March 26, 2018, LBNL 2001135, doi: 10.2172/1430689
UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. We are revising the library under the auspices of the DOE’s Exascale Computing Project, to meet the needs of applications requiring PGAS support. UPC++ is intended for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds. The key facilities in UPC++ are global pointers, that enable the programmer to express ownership information for improving locality, one-sided communication, both put/get and RPC, futures and continuations. Futures capture data readiness state, which is useful in making scheduling decisions, and continuations provide for completion handling via callbacks. Together, these enable the programmer to chain together a DAG of operations to execute asynchronously as high-latency dependencies become satisfied.
John Bachan, Scott Baden, Dan Bonachea, Paul H. Hargrove, Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil, Brian Van Straalen, "UPC++ Programmer’s Guide, v1.0-2018.3.0", Lawrence Berkeley National Laboratory Tech Report, March 2018, LBNL 2001136, doi: 10.2172/1430693
UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ Programmer’s Guide, v1.0-2017.9", Lawrence Berkeley National Laboratory Tech Report, September 2017, LBNL 2001065, doi: 10.2172/1398522
UPC++ is a C++11 library that provides Asynchronous Partitioned Global Address Space (APGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The APGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, APGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.
John Bachan, Scott Baden, Dan Bonachea, Paul H. Hargrove, Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil, Bryce Lelbach, Brian Van Straalen, "UPC++ Specification v1.0, Draft 4", Lawrence Berkeley National Laboratory Tech Report, September 27, 2017, LBNL 2001066, doi: 10.2172/1398521
UPC++ is a C++11 library providing classes and functions that support Asynchronous Partitioned Global Address Space (APGAS) programming. We are revising the library under the auspices of the DOE’s Exascale Computing Project, to meet the needs of applications requiring PGAS support. UPC++ is intended for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds. The key facilities in UPC++ are global pointers, that enable the programmer to express ownership information for improving locality, one-sided communication, both put/get and RPC, futures and continuations. Futures capture data readiness state, which is useful in making scheduling decisions, and continuations provide for completion handling via callbacks. Together, these enable the programmer to chain together a DAG of operations to execute asynchronously as high-latency dependencies become satisfied.
Dan Bonachea, Paul Hargrove, "GASNet Specification, v1.8.1", Lawrence Berkeley National Laboratory Tech Report, August 31, 2017, LBNL 2001064, doi: 10.2172/1398512
GASNet is a language-independent, low-level networking layer that provides network-independent, high-performance communication primitives tailored for implementing parallel global address space SPMD languages and libraries such as UPC, UPC++, Co-Array Fortran, Legion, Chapel, and many others. The interface is primarily intended as a compilation target and for use by runtime library writers (as opposed to end users), and the primary goals are high performance, interface portability, and expressiveness. GASNet stands for "Global-Address Space Networking".
UPC Consortium, "UPC Language and Library Specifications, Version 1.3", Lawrence Berkeley National Laboratory Technical Report, November 16, 2013, LBNL 6623E, doi: 10.2172/1134233
UPC is an explicitly parallel extension to the ISO C 99 Standard. UPC follows the partitioned global address space programming model. This document is the formal specification for the UPC language and library syntax and semantics, and supersedes prior specification version 1.2 (LBNL-59208).
Dan Bonachea, "Proposal for Extending the UPC Memory Copy Library Functions and Supporting Extensions to GASNet, v2.0", Lawrence Berkeley National Lab Tech Report, March 22, 2007, LBNL 56495 v2.0, doi: 10.2172/920052
This document outlines a proposal for extending UPC's point-to-point memcpy library with support for explicitly non-blocking transfers, and non-contiguous (indexed and strided) transfers. Various portions of this proposal could stand alone as independent extensions to the UPC library. The designs presented here are heavily influenced by analogous functionality which exists in other parallel communication systems, such as MPI, ARMCI, Titanium, and network hardware API's such as Quadrics elan, Infiniband vapi, IBM LAPI and Cray X-1. Each section contains proposed extensions to the libraries in the UPC Language Specification (section 7) and corresponding extensions to the GASNet communication system API.
Adam Leko, Dan Bonachea, Hung-Hsun Su, Alan D. George, "GASP: A Performance Analysis Tool Interface for Global Address Space Programming Models, Version 1.5", Lawrence Berkeley National Laboratory Technical Report, September 14, 2006, LBNL 61606, doi: 10.2172/918569
Due to the wide range of compilers and the lack of a standardized performance tool interface, writers of performance tools face many challenges when incorporating support for global address space (GAS) programming models such as Unified Parallel C (UPC),Titanium, and Co-Array Fortran (CAF). This document presents a Global Address Space Performance tool interface (GASP) that is flexible enough to be adapted into current global address space compiler and runtime infrastructures with little effort, while allowing performance analysis tools to gather much information about the performance of global address space programs.
Dan Bonachea, Paul Hilfinger, Kaushik Datta, David Gay, Susan Graham, Amir Kamil, Ben Liblit, Geoff Pike, Jimmy Su, Katherine Yelick, "Titanium Language Reference Manual, Version 2.20", University of California, Berkeley Tech Report (UCB/EECS-2005-15.1), August 3, 2006, doi: 10.25344/S4H59R
The Titanium language is a Java dialect for high-performance parallel scientific computing. Titanium’s differences from Java include multi-dimensional arrays, an explicitly parallel SPMD model of computation with a global address space, a form of value class, and zone-based memory management. This reference manual describes the differences between Titanium and Java.
Paul N. Hilfinger, Dan Bonachea, Kaushik Datta, David Gay, Susan L. Graham, Benjamin Robert Liblit, Geoffrey Pike, Jimmy Zhigang Su, Katherine A. Yelick, "Titanium Language Reference Manual, Version 2.19", University of California, Berkeley Tech Report (UCB/EECS-2005-15), November 17, 2005, doi: 10.25344/S47305
The Titanium language is a Java dialect for high-performance parallel scientific computing. Titanium’s differences from Java include multi-dimensional arrays, an explicitly parallel SPMD model of computation with a global address space, a form of value class, and zone-based memory management. This reference manual describes the differences between Titanium and Java.
UPC Consortium, "UPC Language Specifications, v1.2", Lawrence Berkeley National Laboratory Technical Report, May 31, 2005, LBNL 59208, doi: 10.2172/862127
UPC is an explicitly parallel extension to the ISO C 99 Standard. UPC follows the partitioned global address space programming model. This document is the formal specification for the UPC language syntax and semantics.
Tarek El-Ghazawi, Francois Cantonnet, Proshanta Saha, Rajeev Thakur, Rob Ross, Dan Bonachea, "UPC-IO: A Parallel I/O API for UPC, v1.0", UPC Consortium, July 29, 2004, doi: 10.25344/S4ZK5D
Katherine Yelick, Dan Bonachea, Charles Wallace, "A Proposal for a UPC Memory Consistency Model, v1.0", Lawrence Berkeley National Laboratory Technical Report, May 5, 2004, LBNL 54983, doi: 10.2172/823757
The memory consistency model in a language defines the order in which the results of write operations maybe observed through read operations. The behavior of a UPC program may depend on the timing of accesses to shared variables, so a program defines a set of possible executions, rather than a single execution. The memory consistency model constrains the set of possible executions for a given program; the user may then rely on properties that are true of all of those executions.The memory consistency model is defined in terms of the read and write operations issued by each thread in naive translation of the code, i.e., without any code transformations by the compiler – with each thread issuing operations as defined by the abstract machine defined in ISO C 5.1.2.3. A UPC compiler or runtime system may perform various code transformations to improve performance, so long as they are not visible to the programmer – i.e. provided the set of externally-visible behaviors (the input/output dynamics and volatile behavior defined in ISO C 5.1.2.3) from any execution of the transformed program are identical to those of the original program executing on the abstract machine and adhering to the consistency model defined in this document.
Dan Bonachea, Bill Carlson, Jason Duell, Steve Seidel, Brian Wibecan, "UPC Collective Operations Specifications, V1.0", UPC Consortium, December 12, 2003, doi: 10.25344/S4TS3G
Dan Bonachea, "GASNet Specification, v1.1", University of California, Berkeley Tech Report UCB/CSD-02-1207, October 28, 2002, doi: 10.25344/S4MW28
This document has been superseded by: GASNet Specification, v1.8.1 (LBNL-2001064)
This GASNet specification describes a network-independent and language-independent high-performance communication interface intended for use in implementing the runtime system for global address space languages (such as UPC or Titanium).
Paul N. Hilfinger, Dan Bonachea, David Gay, Susan L. Graham, Benjamin Liblit, Geoffrey Pike, Katherine A. Yelick, "Titanium Language Reference Manual, Version 1.5", University of California, Berkeley, Technical Report No. UCB/CSD-01-1163, November 9, 2001, doi: 10.25344/S4388P
The Titanium language is a Java dialect for high-performance parallel scientific computing. Titanium’s differences from Java include multi-dimensional arrays, an explicitly parallel SPMD model of computation with a global address space, a form of value class, and zone-based memory management. This reference manual describes the differences between Titanium and Java.
Dan Bonachea, Scott McPeak, "SafeTP: Transparently Securing FTP Network Services", University of California, Berkeley Tech Report (UCB/CSD-01-1152), February 1, 2001, doi: 10.25344/S4159D
One of the most challenging practical aspects of providing end-to-end network security for legacy client-server protocols such as non-anonymous FTP (File Transfer Protocol) is convincing end users to actually use the secure alternatives, rather than abandoning them in favor of simpler, more familiar, or more fully featured insecure clients. A number of secure alternatives to the FTP protocol have been developed, but thus far have met with only limited success -- we feel this is primarily due to the fact that these solutions almost universally require the end user to learn a new, unfamiliar client interface or tweak complicated settings in order to make the security work. The average end user is interested in maintaining the security of their account, but is unwilling to invest a significant effort to setup a complicated system or the time to learn a whole new interface. SafeTP is a unique new FTP security system that strikes at the heart of this problem by providing completely transparent FTP security for users of Microsoft Windows. SafeTP operates by installing a transparent proxy in the Windows networking stack which detects outgoing FTP connections from any legacy (insecure) Windows FTP client, and silently secures them using modern cryptographic techniques (the server must also support SafeTP in order for a secure connection to be successfully established). SafeTP is 100% compatible with existing (insecure) FTP servers, and will operate in an insecure mode if the server does not yet support the SafeTP protocol. One key feature of the SafeTP client proxy is that it was designed to be completely transparent to the client FTP application. This way, users can reap the benefits of FTP security, while continuing to use their existing FTP software. Since its recent release on the internet, SafeTP has become extremely popular and is rapidly gaining acceptance in a diverse user community that includes numerous corporations, educational institutions and private users. In this paper, we describe the design of SafeTP and our experiences in implementing and maintaining this successful system. We discuss various challenges encountered in designing a fully transparent and interoperable security layer, and the solutions we implemented. We also describe various aspects of the hybrid public-key and shared-key cryptosystem used to provide confidentiality, integrity, and authenticity for FTP sessions.
Dan Bonachea, Scott McPeak, "Protocol Negotiation Extensions to Secure FTP", Internet Engineering Task Force (IETF) Internet Draft, June 18, 1999, doi: 10.25344/S4Q30H
- Download File: draft-bonachea-sftp-00.pdf (pdf: 21 KB)
This document presents refinements to RFC 2228, "FTP Security Extensions" (October 1997). It lends support for more efficient and secure protocol negotiation in the presence of multiple protocol possibilities, by adding one new optional command and several new reply codes. The following new optional command is introduced in this specification: DIGT (Protocol Negotiation Digest) This document also seeks to solidify several issues that were left underspecified in RFC 2228. Specifically, it adds additional reply codes to cover cases not mentioned in the original specification and it defines a legal naming convention for security mechanisms.
Web Articles
"Berkeley Lab’s Networking Middleware GASNet Turns 20: Now, GASNet-EX is Gearing Up for the Exascale Era", Linda Vu, HPCWire (Lawrence Berkeley National Laboratory CS Area Communications), December 7, 2022, doi: 10.25344/S4BP4G
GASNet Celebrates 20th Anniversary
For 20 years, Berkeley Lab’s GASNet has been fueling developers’ ability to tap the power of massively parallel supercomputers more effectively. The middleware was recently upgraded to support exascale scientific applications.
Posters
Katherine Rasmussen, Damian Rouson, Dan Bonachea, Brad Richardson, "A Full-Stack Exploration of Language-Based Parallelism in Fortran 2023", Poster at CARLA2024: Latin America High Performance Computing Conference, September 30, 2024, doi: 10.25344/S4RP5K
This poster explores native parallel features in Fortran 2023 through the lens of supporting applications with libraries, compilers, and parallel runtimes. The language revision informally named Fortran 2008 introduced parallelism in the form of Single Program Multiple Data (SPMD) execution with two broad feature sets: (1) loop-level parallelism via do concurrent and (2) a Partitioned Global Address Space (PGAS) comprised of distributed “coarray” data structures. Fortran’s native parallelism has demonstrated high performance [1] and reduced the burden of inserting what sometimes amounts to more directives than code. Several compilers support both feature sets, typically by translating do concurrent into serial do loops annotated by parallel directives and by translating SPMD/PGAS features into direct calls to a communication library. Our research focuses primarily on two questions: (1) can the compiler’s parallel runtime library be developed in the language being compiled (Fortran) and (2) can we define an interface to the runtime that liberates compilers from being hardwired to one runtime and vice versa. We are answering these questions by developing the Parallel Runtime Interface for Fortran (PRIF) [2] and the Co-Array Fortran Framework of Efficient Interfaces to Network Environments (Caffeine) [3]. Caffeine is initially targeting adoption by LLVM Flang, a new open-source Fortran compiler developed by a broad community in industry, academia, and government labs. We are also exploring the use of these features in Inference-Engine, a deep learning library designed to facilitate neural network training and inference for high-performance computing applications written in modern Fortran.
Paul H. Hargrove, Dan Bonachea, Johnny Corbino, Amir Kamil, Colin A. MacLean, Damian Rouson, Daniel Waters, "UPC++ and GASNet: PGAS Support for Exascale Apps and Runtimes (ECP'23)", Poster at Exascale Computing Project (ECP) Annual Meeting 2023, January 2023,
The Pagoda project is developing a programming system to support HPC application development using the Partitioned Global Address Space (PGAS) model. The first component is GASNet-EX, a portable, high-performance, global-address-space communication library. The second component is UPC++, a C++ template library. Together, these libraries enable agile, lightweight communication such as arises in irregular applications, libraries and frameworks running on exascale systems.
GASNet-EX is a portable, high-performance communications middleware library which leverages hardware support to implement Remote Memory Access (RMA) and Active Message communication primitives. GASNet-EX supports a broad ecosystem of alternative HPC programming models, including UPC++, Legion, Chapel and multiple implementations of UPC and Fortran Coarrays. GASNet-EX is implemented directly over the native APIs for networks of interest in HPC. The tight semantic match of GASNet-EX APIs to the client requirements and hardware capabilities often yields better performance than competing libraries.
UPC++ provides high-level productivity abstractions appropriate for Partitioned Global Address Space (PGAS) programming such as: remote memory access (RMA), remote procedure call (RPC), support for accelerators (e.g. GPUs), and mechanisms for aggressive asynchrony to hide communication costs. UPC++ implements communication using GASNet-EX, delivering high performance and portability from laptops to exascale supercomputers. HPC application software using UPC++ includes: MetaHipMer2 metagenome assembler, SIMCoV viral propagation simulation, NWChemEx TAMM, and graph computation kernels from ExaGraph.
Katherine Rasmussen, Damian Rouson, Naje George, Dan Bonachea, Hussain Kadhem, Brian Friesen, "Agile Acceleration of LLVM Flang Support for Fortran 2018 Parallel Programming", Research Poster at the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC22), November 2022, doi: 10.25344/S4CP4S
The LLVM Flang compiler ("Flang") is currently Fortran 95 compliant, and the frontend can parse Fortran 2018. However, Flang does not have a comprehensive 2018 test suite and does not fully implement the static semantics of the 2018 standard. We are investigating whether agile software development techniques, such as pair programming and test-driven development (TDD), can help Flang to rapidly progress to Fortran 2018 compliance. Because of the paramount importance of parallelism in high-performance computing, we are focusing on Fortran’s parallel features, commonly denoted “Coarray Fortran.” We are developing what we believe are the first exhaustive, open-source tests for the static semantics of Fortran 2018 parallel features, and contributing them to the LLVM project. A related effort involves writing runtime tests for parallel 2018 features and supporting those tests by developing a new parallel runtime library: the CoArray Fortran Framework of Efficient Interfaces to Network Environments (Caffeine).
Paul H. Hargrove, Dan Bonachea, Amir Kamil, Colin A. MacLean, Damian Rouson, Daniel Waters, "UPC++ and GASNet: PGAS Support for Exascale Apps and Runtimes (ECP'22)", Poster at Exascale Computing Project (ECP) Annual Meeting 2022, May 5, 2022,
We present UPC++ and GASNet-EX, distributed libraries which together enable one-sided, lightweight communication such as arises in irregular applications, libraries and frameworks running on exascale systems.
UPC++ is a C++ PGAS library, featuring APIs for Remote Procedure Call (RPC) and for Remote Memory Access (RMA) to host and GPU memories. The combination of these two features yields performant, scalable solutions to problems of interest within ECP.
GASNet-EX is PGAS communication middleware, providing the foundation for UPC++ and Legion, plus numerous non-ECP clients. GASNet-EX RMA interfaces match or exceed the performance of MPI-RMA across a variety of pre-exascale systems.
Paul H. Hargrove, Dan Bonachea, Colin A. MacLean, Daniel Waters, "GASNet-EX Memory Kinds: Support for Device Memory in PGAS Programming Models", The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC'21) Research Poster, November 2021, doi: 10.25344/S4P306
Lawrence Berkeley National Lab is developing a programming system to support HPC application development using the Partitioned Global Address Space (PGAS) model. This work includes two major components: UPC++ (a C++ template library) and GASNet-EX (a portable, high-performance communication library). This poster describes recent advances in GASNet-EX to efficiently implement Remote Memory Access (RMA) operations to and from memory on accelerator devices such as GPUs. Performance is illustrated via benchmark results from UPC++ and the Legion programming system, both using GASNet-EX as their communications library.
Paul H. Hargrove, Dan Bonachea, Max Grossman, Amir Kamil, Colin A. MacLean, Daniel Waters, "UPC++ and GASNet: PGAS Support for Exascale Apps and Runtimes (ECP'21)", Poster at Exascale Computing Project (ECP) Annual Meeting 2021, April 2021,
We present UPC++ and GASNet-EX, which together enable one-sided, lightweight communication such as arises in irregular applications, libraries and frameworks running on exascale systems.
UPC++ is a C++ PGAS library, featuring APIs for Remote Memory Access (RMA) and Remote Procedure Call (RPC). The combination of these two features yields performant, scalable solutions to problems of interest within ECP.
GASNet-EX is PGAS communication middleware, providing the foundation for UPC++ and Legion, plus numerous non-ECP clients. GASNet-EX RMA interfaces match or exceed the performance of MPI-RMA across a variety of pre-exascale systems
Amir Kamil, John Bachan, Dan Bonachea, Paul H. Hargrove, Erich Strohmaier and Daniel Waters, "UPC++: Asynchronous RMA and RPC Communication for Exascale Applications (ECP'20)", Poster at Exascale Computing Project (ECP) Annual Meeting 2020, February 2020,
Paul H. Hargrove, Dan Bonachea, "GASNet-EX: RMA and Active Message Communication for Exascale Programming Models (ECP'20)", Poster at Exascale Computing Project (ECP) Annual Meeting 2020, February 2020,
Scott B. Baden, Paul H. Hargrove, Hadia Ahmed, John Bachan, Dan Bonachea, Steve Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "Pagoda: Lightweight Communications and Global Address Space Support for Exascale Applications - UPC++ (ECP'19)", Poster at Exascale Computing Project (ECP) Annual Meeting 2019, January 2019,
Scott B. Baden, Paul H. Hargrove, Dan Bonachea, "Pagoda: Lightweight Communications and Global Address Space Support for Exascale Applications - GASNet-EX (ECP'19)", Poster at Exascale Computing Project (ECP) Annual Meeting 2019, January 2019,
Scott B. Baden, Paul H. Hargrove, Hadia Ahmed, John Bachan, Dan Bonachea, Steve Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ and GASNet-EX: PGAS Support for Exascale Applications and Runtimes", The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC'18) Research Poster, November 2018,
Lawrence Berkeley National Lab is developing a programming system to support HPC application development using the Partitioned Global Address Space (PGAS) model. This work is driven by the emerging need for adaptive, lightweight communication in irregular applications at exascale. We present an overview of UPC++ and GASNet-EX, including examples and performance results.
GASNet-EX is a portable, high-performance communication library, leveraging hardware support to efficiently implement Active Messages and Remote Memory Access (RMA). UPC++ provides higher-level abstractions appropriate for PGAS programming such as: one-sided communication (RMA), remote procedure call, locality-aware APIs for user-defined distributed objects, and robust support for asynchronous execution to hide latency. Both libraries have been redesigned relative to their predecessors to meet the needs of exascale computing. While both libraries continue to evolve, the system already demonstrates improvements in microbenchmarks and application proxies.
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ and GASNet: PGAS Support for Exascale Apps and Runtimes (ECP'18)", Poster at Exascale Computing Project (ECP) Annual Meeting 2018, February 2018,
Scott Baden, Dan Bonachea, Paul Hargrove, "GASNet-EX: PGAS Support for Exascale Apps and Runtimes (ECP'18)", Poster at Exascale Computing Project (ECP) Annual Meeting 2018, February 2018,
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil, Brian Van Straalen, "UPC++: a PGAS C++ Library", The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC'17) Research Poster, November 2017,
John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ and GASNet: PGAS Support for Exascale Apps and Runtimes (ECP'17)", Poster at Exascale Computing Project (ECP) Annual Meeting 2017, January 2, 2017,
Hung-Hsun Su, Adam Leko, Dan Bonachea, Bryan Golden, Hans Sherburne, Max Billingsley III, Alan D. George, "Parallel Performance Wizard: A Performance Analysis Tool for Partitioned Global-Address-Space Programming Models", ACM/IEEE Conference on Supercomputing (SC'06) Poster Session, November 2006, doi: 10.1145/1188455.1188647
Scientific programmers must optimize the total time-to-solution, the combination of software development and refinement time and actual execution time. The increasing complexity at all levels of supercomputing architectures, coupled with advancements in sequential performance and a growing degree of hardware parallelism, has increasingly placed the bulk of the time-to-solution cost into the software development and tuning phase. Performance analysis tools have been useful for reducing the time-to-solution for message-passing applications; however, there is insufficient tool support for programs developed using Global-Address-Space (GAS) programming models. With the aim of maximizing user productivity, the Parallel Performance Wizard (PPW) fills this void by providing a full range of visualizations and analyses specifically designed for GAS models. To facilitate accurate instrumentation and measurement of GAS programs in PPW, a portable, model-independent performance tool interface (GASP) has been developed and successfully used with Berkeley UPC.
Dan Bonachea, Rajesh Nishtala, Paul Hargrove, Mike Welcome, Kathy Yelick,, "Optimized Collectives for PGAS Languages with One-Sided Communication", ACM/IEEE Conference on Supercomputing (SC'06) Poster Session, November 2006, doi: 10.1145/1188455.1188604
Optimized collective operations are a crucial performance factor for many scientific applications. This work investigates the design and optimization of collectives in the context of Partitioned Global Address Space (PGAS) languages such as Unified Parallel C (UPC). Languages with one-sided communication permit a more flexible and expressive collective interface with application code, in turn enabling more aggressive optimization and more effective utilization of system resources. We investigate the design tradeoffs in a collectives implementation for UPC, ranging from resource management to synchronization mechanisms and target-dependent selection of optimal communication patterns. Our collectives are implemented in the Berkeley UPC compiler using the GASNet communication system, tuned across a wide variety of supercomputing platforms, and benchmarked against MPI collectives. Special emphasis is placed on the newly added Cray XT3 backend for UPC, whose characteristics are benchmarked in detail.