
Parallel Runtime Interface for
Fortran (PRIF)

Dan Bonachea1, Katherine Rasmussen 1, Brad Richardson2, Damian Rouson1

1Computer Languages and Systems Software (CLaSS) Group
National Energy Research Scientific Computing (NERSC) Center2

Platform for Advanced Scientific Computing (PASC24), Zurich, Switzerland, 5 June 2024

https://fortran.lbl.gov/

https://fortran.lbl.gov/

PRIF | BERKELEY LAB

02
Motivations:
CAF and PRIF

03
The Compiler Landscape

04
PRIF Design:
Overview & Status

05
PRIF Implementation:
Caffeine

Overview

2

01
Background:
Coarray Fortran (CAF)

06
Future Work

PRIF | BERKELEY LAB

02
Motivations:
CAF and PRIF

03
The Compiler Landscape

04
PRIF Design :
Overview & Status

05
PRIF Implementation:
Caffeine

Overview

3

01
Background:
Coarray Fortran

06
Future Work

PRIF | BERKELEY LAB

Background: Co-Array Fortran (CAF)

4

“The underlying philosophy of our design is to
make the smallest number of changes to the

language required to obtain a robust and
efficient parallel language without requiring the

programmer to learn very many new rules.”

Reid & Numrich (2007) “Co-arrays in the next Fortran standard,”
Scientific Programming, 15(1), 9-26.

Numrich & Reid (1998) “Co-Array Fortran for
parallel programming,” ACM SIGPLAN
Fortran Forum 17:2, 1-31.

Numrich invented CAF at Cray as Fortran 95 extensions

Numrich & Reid incorporated CAF into Fortran 2008

CAF = SPMD + PGAS

PRIF | BERKELEY LAB

Background: Parallelism in Fortran

5

1998 2010

Fortran 2008 (published in 2010):

Single Program Multiple Data (SPMD): images

Partitioned Global Address Space (PGAS): coarrays

Synchronization, locks, critical sections, termination,

image enumeration, some atomic subroutines/variables.

do concurrent: offload, vectorize, or multithread

“Enable programmers to communicate properties of their code rather
than to mandate specific optimizations that exploit those properties”

Dan Nagle (c. 2013)

PRIF | BERKELEY LAB

Background: Parallelism in Fortran

6

2018

Additional parallel features:

Collective subroutines, events, teams, failed-image handling, more atomics.

1998 2010

PRIF | BERKELEY LAB

Background: Parallelism in Fortran

7

2018

Notified access

Do concurrent reductions

1998 2010 2023

PRIF | BERKELEY LAB

02
Motivations:
CAF and PRIF

03
The Compiler Landscape

04
PRIF Design :
Overview & Status

05
PRIF Implementation:
Caffeine

Overview

8

01
Background:
Coarray Fortran

06
Future Work

PRIF | BERKELEY LAB 9

CAF Motivations: Performance + Programmability

Multithreaded Global Address Space Communication
Techniques for Gyrokinetic Fusion Applications on

Ultra-Scale Platforms

Robert Preissl
Lawrence Berkeley
National Laboratory

Berkeley, CA, USA 94720
rpreissl@lbl.gov

Nathan Wichmann
CRAY Inc.

St. Paul, MN, USA, 55101
wichmann@cray.com

Bill Long
CRAY Inc.

St. Paul, MN, USA, 55101
longb@cray.com

John Shalf
Lawrence Berkeley
National Laboratory

Berkeley, CA, USA 94720
jshalf@lbl.gov

Stephane Ethier
Princeton Plasma

Physics Laboratory
Princeton, NJ, USA, 08543

ethier@pppl.gov

Alice Koniges
Lawrence Berkeley
National Laboratory

Berkeley, CA, USA 94720
aekoniges@lbl.gov

ABSTRACT
We present novel parallel language constructs for the com-
munication intensive part of a magnetic fusion simulation
code. The focus of this work is the shift phase of charged
particles of a tokamak simulation code in toroidal geometry.
We introduce new hybrid PGAS/OpenMP implementations
of highly optimized hybrid MPI/OpenMP based commu-
nication kernels. The hybrid PGAS/OpenMP implemen-
tations use an extension of standard hybrid programming
techniques, enabling the distribution of high communica-
tion work loads of the underlying kernel among OpenMP
threads. Building upon lightweight one-sided CAF (Fortran
2008) communication techniques, we also show the benefits
of spreading out the communication over a longer period of
time, resulting in a reduction of bandwidth requirements and
a more sustained communication and computation overlap.
Experiments on up to 130560 processors are conducted on
the NERSC Hopper system, which is currently the largest
HPC platform with hardware support for one-sided com-
munication and show performance improvements of 52% at
highest concurrency.

Keywords: Particle-In-Cell, Fortran 2008, Coarrays, Hy-
brid MPI/OpenMP & PGAS/OpenMP computing

1. INTRODUCTION
Scaling highly parallel scientific applications and algorithms

strongly depends upon the successful adaptation to con-
stantly evolving HPC platforms with unprecedented num-
bers of processors and advanced interconnect technologies.
Hence, innovative algorithms and parallel computing lan-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11, November 12-18, 2011, Seattle, Washington, USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

guages exploiting modern achievements in HPC interconnect
fabrics are essential to prevent costs for large scale communi-
cation becoming a dominating factor. One such innovation
in communication technology is the development of one-
sided messaging methods and Partitioned Global Address
Space (PGAS) languages such as Unified Parallel C (UPC)
and Fortran 2008, which incorporates parallel features his-
torically identified as Coarray Fortran (CAF). PGAS lan-
guages are able to directly reference remote memory as a
first order construct, which reduces subroutine call overhead
and enables the compiler to participate in optimization of
the communication. The one-sided messaging abstractions
of PGAS languages also open the possibility of expressing
new algorithms and communications approaches that would
otherwise be impossible, or unmaintainable using the two-
sided messaging semantics of communication libraries like
MPI1. The expression of the one-sided messaging semantics
as language constructs (Coarrays in Fortran and shared ar-
rays in UPC) improves the legibility of the code and allows
the compiler to apply communication optimizations. Hard-
ware support for PGAS constructs and one-sided messaging,
such as that provided by the Cray XE6 Gemini interconnect,
is essential to realize the performance potential of these new
approaches.

Building upon previous e↵orts [15] on exploring one-sided
PGAS communication as a replacement for two-sided mes-
sage passing mechanisms in an existing MPI based commu-
nication kernel in the GTS application, we introduce novel
hybrid PGAS/OpenMP and MPI/OpenMP communication
algorithms extending the flat PGAS & MPI model intro-
duced in our previous work. GTS (Gyrokinetic Tokamak
Simulation) [17] is a global three-dimensional Particle-In-
Cell (PIC) code to study the microturbulence and associ-
ated transport in magnetically confined fusion plasmas of
tokamak toroidal devices. In our work we focus on Fortran
2008’s CAF extensions because Fortran is the language used
to implement the bulk of the GTS code base.

1For the rest of the paper we use the term MPI when MPI-1
is intended. If we refer to the MPI one-sided extension, we
use the term MPI-2 explicitly.

Application focus:
– The shift phases of charged particles in a tokamak

simulation code

Programming models studied:
– CAF + OpenMP or
– MPI Message-Passing + OpenMP

Highlights:
– Experiments on up to 130,560 processors
– 58% speedup with CAF relative to best

multithreaded MPI shifter algorithm on largest problem
– “the complexity required to implement… MPI-2 one-

sided, in addition to several other semantic limitations,
is prohibitive.”

Preissl, R., Wichmann, N., Long, B., Shalf, J., Ethier, S., & Koniges, A. (2011, November).
Multithreaded global address space communication techniques for gyrokinetic fusion applications on
ultra-scale platforms. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (pp. 1-11).

PRIF | BERKELEY LAB 10

CAF Motivations: Performance + Programmability

Applications and algorithms studied:
– Magnetohydrodynamics (MHD)
– 3D Fast Fourier Transforms (FFTs)
– Multigrid methods with point-wise smoothers requiring

fine-grained data transfers

Programming models studied:
– CAF or
– One-sided MPI RMA

Highlights:
– Simulations on up to 65,536 cores
– “… CAF either draws level with MPI-3 or shows a slight

advantage over MPI-3”
– “CAF code is of course much easier to write and maintain”

Journal of Computational Physics 297 (2015) 237–253

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Comparing Coarray Fortran (CAF) with MPI for several
structured mesh PDE applications

Sudip Garain a,∗, Dinshaw S. Balsara a, John Reid b

a Physics Department, University of Notre Dame, USA
b Rutherford Appleton Laboratory, Oxfordshire, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 November 2014
Received in revised form 6 April 2015
Accepted 14 May 2015
Available online 21 May 2015

Keywords:
PDEs
MultiGrid
CFD
FFT
Parallel computing
PetaScale

Language-based approaches to parallelism have been incorporated into the Fortran
standard. These Fortran extensions go under the name of Coarray Fortran (CAF) and
full-featured compilers that support CAF have become available from Cray and Intel;
the GNU implementation is expected in 2015. CAF combines elegance of expression
with simplicity of implementation to yield an efficient parallel programming language.
Elegance of expression results in very compact parallel code. The existence of a standard
helps with portability and maintainability. CAF was designed to excel at one-sided
communication and similar functions that support one-sided communication are also
available in the recent MPI-3 standard. One-sided communication is expected to be very
valuable for structured mesh applications involving partial differential equations, amongst
other possible applications. This paper focuses on a comparison of CAF and MPI for a
few very useful applications areas that are routinely used for solving partial differential
equations on structured meshes. The three specific areas are Fast Fourier Techniques,
Computational Fluid Dynamics, and Multigrid Methods.
For each of those applications areas, we have developed optimized CAF code and optimized
MPI code that is based on the one-sided messaging capabilities of MPI-3. Weak scalability
studies that compare CAF and MPI-3 are presented on up to 65,536 processors. Both
paradigms scale well, showing that they are well-suited for Petascale-class applications.
Some of the applications shown (like Fast Fourier Techniques and Computational Fluid
Dynamics) require large, coarse-grained messaging. Such applications emphasize high
bandwidth. Our other application (Multigrid Methods) uses pointwise smoothers which
require a large amount of fine-grained messaging. In such applications, a premium is placed
on low latency. Our studies show that both CAF and MPI-3 offer the twin advantages
of high bandwidth and low latency for messages of all sizes. Even for large numbers of
processors, CAF either draws level with MPI-3 or shows a slight advantage over MPI-3.
Both CAF and MPI-3 are shown to provide substantial advantages over MPI-2.
In addition to the weak scalability studies, we also catalogue some of the best-usage
strategies that we have found for our successful implementations of one-sided messaging
in CAF and MPI-3. We show that CAF code is of course much easier to write and maintain,
and the simpler syntax makes the parallelism easier to understand.

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: sgarain@nd.edu (S. Garain), dbalsara@nd.edu (D.S. Balsara), John.Reid@stfc.ac.uk (J. Reid).

http://dx.doi.org/10.1016/j.jcp.2015.05.020
0021-9991/© 2015 Elsevier Inc. All rights reserved.

Garain, S., Balsara, D. S., & Reid, J. (2015). Comparing Coarray Fortran (CAF) with MPI for several
structured mesh PDE applications. Journal of Computational Physics, 297, 237-253.

PRIF | BERKELEY LAB

CAF Motivations: Performance + Programmability

11

Article

The International Journal of High
Performance Computing Applications
2015, Vol. 29(3) 261–273
! The Author(s) 2015
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342015576773
hpc.sagepub.com

A Partitioned Global Address Space
implementation of the European
Centre for Medium Range Weather
Forecasts Integrated Forecasting
System

George Mozdzynski, Mats Hamrud and Nils Wedi

Abstract
Today the European Centre for Medium Range Weather Forecasts (ECMWF) runs a 16 km global T1279 operational
weather forecast model using 1536 cores of an IBM Power7. Following the historical evolution in resolution
upgrades, the ECMWF could expect to be running a 2.5 km global forecast model by 2030 on an exascale system
that should be available and hopefully affordable by then. To achieve this would require the Integrated Forecasting
System (IFS) to run efficiently on about 1000 times the number of cores it uses today. In a step towards this goal, the
ECMWF have demonstrated the IFS running a 10 km global model efficiently on over 40,000 cores of HECToR a
Cray XE6 at the Edinburgh Parallel Computing Centre. However, getting to over a million cores remains a formid-
able challenge, and many scalability improvements have yet to be implemented. The ECMWF is exploring the use of
Fortran2008 coarrays; in particular, it is possibly the first time that coarrays have been used in a world-leading pro-
duction application within the context of OpenMP parallel regions. The purpose of these optimisations is primarily
to allow the overlap of computation and communication, and further, in the semi-Lagrangian advection scheme, to
reduce the volume of data communicated. The importance of this research is such that if these and other planned
developments are successful, the IFS model may continue to use the spectral transform method to 2030 and beyond
on an exascale-sized system. The current status of the coarray scalability developments within the IFS are described
together with a brief outline of future developments.

Keywords
PGAS, Fortran2008, Coarrays

1. Introduction

The Integrated Forecasting System (IFS) is the
European Centre for Medium Range Weather
Forecasts’ (ECMWF’s) production application used to
provide medium-range weather forecast products up to
10 or 15 days ahead to its Member States and Co-oper-
ating States. At shorter range, national weather services
use products from the ECMWF to provide boundary
data for their own regional and local short-range fore-
cast models. Figure 1 shows the evolution of the IFS
model from the mid-1980s to the current T1279 opera-
tional model and extrapolated out to 2030. Figure 1
shows that halving the horizontal grid spacing has
occurred about every 8 years, and provides an estimate
for the dates when the T3999 (35 km) and T7999
(32.5 km) models could be introduced into operation.

It is clear that this simplistic extrapolation (given the
number of grid columns and slope from T106 to
T1279) does not take into account the many architec-
tural and technology changes that are needed to get to
the exascale.

The ECMWF is an application partner in a
European Union (EU)-funded project called CRESTA
(Collaborative Research into Exascale Systemware,
Tools and Applications) bringing the IFS numerical
weather prediction application to the project. For the

European Centre for Medium Range Weather Forecasts (ECMWF), UK

Corresponding author:
George Mozdzynski, European Centre for Medium Range Weather
Forecasts (ECMWF), Shinfield Park, Reading RG2 9AX, UK.
Email: George.Mozdzynski@ecmwf.int

Application:
– European Centre for Medium Range Weather Forecasts

(ECMWF) operational model

Programming models studied:
– CAF or
– MPI Message-Passing

Highlights:
– Simulations on >60K cores
– “… performance improvement form switching to CAF

peaks at 21% around 40K cores”

Mozdzynski, G., Hamrud, M., & Wedi, N. (2015). A partitioned global address space implementation of the European
centre for medium range weather forecasts integrated forecasting system. The International Journal of High
Performance Computing Applications, 29(3), 261-273.

PRIF | BERKELEY LAB

CAF Motivations: Performance Portability

12

Application:
– Intermediate Complexity Atmospheric Research (ICAR) model
– Regional impacts of global climate change

Programming models studied:
– CAF over one-sided MPI RMA
– CAF over OpenSHMEM
– MPI Message-Passing
– Cray CAF implementation

Highlights:
– “… we used up to 25,600 processes and found that at every

data point OpenSHMEM was outperforming MPI.”
– “The coarray Fortran with MPI backend stopped being usable

as we went over 2,000 processes… the initialization time
started to increase exponentially”

Development and performance comparison of MPI and Fortran
Coarrays within an atmospheric research model

Extended Abstract

Soren Rasmussen1, Ethan D Gutmann2, Brian Friesen3, Damian Rouson4, Salvatore Filippone 1,
Irene Moulitsas 1

1Cran�eld University, UK
2National Center for Atmospheric Research, USA
3Lawrence Berkeley National Laboratory, USA

4Sourcery Institute, USA

ABSTRACT
Amini-application of The Intermediate Complexity Research (ICAR)
Model o�ers an opportunity to compare the costs and performance
of the Message Passing Interface (MPI) versus coarray Fortran, two
methods of communication across processes. The application re-
quires repeated communication of halo regions, which is performed
with either MPI or coarrays. The MPI communication is done using
non-blocking two-sided communication, while the coarray library
is implemented using a one-sided MPI or OpenSHMEM communi-
cation backend. We examine the development cost in addition to
strong and weak scalability analysis to understand the performance
costs.

CCS CONCEPTS
• Software and its engineering→ Parallel programming lan-
guages; • Applied computing → Environmental sciences;

KEYWORDS
coarray Fortran, message passing interface, computational hydrom-
eteorology

ACM Reference Format:
Soren Rasmussen1, Ethan D Gutmann2, Brian Friesen3, Damian Rouson4,

Salvatore Filippone 1, IreneMoulitsas 1 1Cran�eld University, UK 2National
Center for Atmospheric Research, USA 3Lawrence Berkeley Na-
tional Laboratory, USA 4Sourcery Institute, USA . 2018. Develop-

ment and performance comparison of MPI and Fortran Coarrays
within an atmospheric research model. In Proceedings of PAW-ATM
18: Parallel Applications Workshop, Alternatives to MPI, Dallas, TX,
USA, November 11–16, 2018 (PAW18), 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PAW18, November 11–16, 2018, Dallas, TX, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
1.1 Motivation and Background
In high performance computing MPI has been the de facto method
for memory communication across a system’s nodes for many
years. MPI 1.0 was released in 1994 and research and development
has continued across academia and industry. A method in Fortran
2008, known as coarray Fortran, was introduced to express the
communication within the language [5]. This work was based on
an extension to Fortran that was introduced by Robert W. Numrich
and John Reid in 1998 [7]. Coarray Fortran, like MPI, is a single-
program, multiple-data (SPMD) programming technique. Coarray
Fortran’s single program is replicated across multiple processes,
which are called "images". Unlike MPI, it is based on the Partitioned
Global Address Space (PGAS) parallel programming model. This
allows the Fortran syntax to easily express communication while
maintaining the transparency of the underlying algorithm concept.
This will be further discussed in the programmability section.

The application used to examine the di�erent programming mod-
ules is a mini-application of The Intermediate Complexity Atmo-
spheric Research (ICAR) model. This simpli�ed atmospheric model
was developed at the National Center for Atmospheric Research
(NCAR) to predict aspects of weather such as precipitation, tem-
perature, and humidity [3]. The main impetus of the investigation
is to understand the scalability and performance of the di�erent
coarray and MPI programming models. The ICAR mini-app was
originally developed using coarrays to communicate halo regions.
For this paper we modi�ed the existing code to use MPI, instead of
coarrays, for communication between processes.

We used Open Coarrays, a library implementation of coarray
Fortran, for our runtime comparisons. The Open Coarrays commu-
nication backend can be implemented with either an OpenSHMEM
layer or MPI. Open Coarrays’ MPI implementation uses one-sided
communication with passive synchronization [2]. This has allowed
us to do performance comparisons between three versions of the
ICAR mini-app: the OpenSHMEM backend, the coarray one-sided
MPI, and the two-sided MPI implementation.

Past work has been done on the scalability and performance
di�erences between coarrays and MPI in the past [1, 4] . Past exper-
iments using this speci�c mini-app have looked at the comparisons
between the OpenSHMEM communication and the MPI commu-
nication backend [8]. To our knowledge the work done here is

Rasmussen, S., Gutmann, E. D., Friesen, B., Rouson, D., Filippone, S., & Moulitsas, I. (2018).
Development and performance comparison of MPI and Fortran Coarrays within an atmospheric
research model. In Workshop.

PRIF | BERKELEY LAB

02
Motivations:
CAF and PRIF

03
The Compiler Landscape

04
PRIF Design:
Overview & Status

05
PRIF Implementation:
Caffeine

Overview

13

01
Background:
Coarray Fortran

06
Future Work

PRIF | BERKELEY LAB

Compiler Status

14

Automatic offloading of do concurrent:

NVIDIA

Intel

Cray

Supporting CAF features:

Cray

Intel

GNU

NAG

LLVM Flang:

Parses and verifies CAF syntax and semantics

Does not yet lower CAF features

Berkeley Lab develops

-- Frontend unit tests

-- Frontend bug fixes

-- PRIF: a specification

-- Caffeine: a PRIF implementation using GASNet-EX

PRIF | BERKELEY LAB

The World’s Shortest Bug Reproducer

15

end

PRIF | BERKELEY LAB

02
Motivations:
CAF and PRIF

03
The Compiler Landscape

04
PRIF Design :
Overview & Status

05
PRIF Implementation:
Caffeine

Overview

16

01
Background:
Coarray Fortran

06
Future Work

PRIF | BERKELEY LAB

PRIF

17

• Enable a compiler to leverage multiple
alternative PRIF implementations

– e.g., vendor-specific ones
• Enable a PRIF implementation to support

multiple compilers
• Isolate a compiler’s support of the parallel

features of the language from any particular
details of the communication infrastructure

• Our group’s experience with UPC and
OpenCoarrays has shown this to be
valuable

Compiled Fortran Code

Compiler Runtime

Parallel Runtime

Communication Library
(i.e. GASNet, MPI, SHMEM, etc.)

Network Hardware
(InfiniBand, Slingshot, Aries, Omni-

Path, Ethernet, …)

PRIF

PRIF | BERKELEY LAB

Fortran Parallel Source Code & PRIF Equivalents

18

Compiler responsible for processing user’s source code and producing calls to PRIF implementation
PRIF specific types

– prif_coarray_handle, etc.

PRIF provides procedures for:
– associated intrinsic subroutines and functions

• num_images supported by prif_num_images, etc
– coarray allocation and accesses

• prif_allocate_coarray, prif_put, prif_get, etc
Intrinsic derived types that PRIF provides:

– prif_team_type, prif_event_type, prif_lock_type, prif_notify_type
ISO_FORTRAN_ENV constants that PRIF provides:

– prif_atomic_int_kind, prif_current_team, prif_stat_unlocked, etc.

PRIF | BERKELEY LAB

Intrinsic Functions and Subroutines

19

me = this_image()

call prif_this_image(image_index=me)

call co_sum(a, 1)

call prif_co_sum(a=a, result_image=1_c_int)

PRIF | BERKELEY LAB

Compiler

Establish and initialize static coarrays prior to main
Track corank of coarrays
Track local coarrays for implicit deallocation when
exiting a scope
Initialize a coarray with source= as part of
allocate
Provide prif_critical_type coarrays for
critical
Provide final subroutine for all derived types that
are finalizable or that have allocatable components
that appear in a coarray
Variable allocation status tracking, including use of
move_alloc

PRIF Implementation

Allocate and deallocate a coarray
Reference a coindexed object
Team statements/constructs:
Team stack abstraction
Track coarrays for implicit deallocation at end team
Intrinsics functions related to parallelism, e.g.,
num_images, coshape, image_index
Intrinsic subroutine: Atomics, collectives
Synchronization statements
Events, locks, critical, notify

PRIF Design Overview: Responsibilities

20

PRIF | BERKELEY LAB

prif_coarray_handle

21

Derived type with private components à opaque to compiler

Returned by call to prif_allocate_coarray

Serves as a reference to a coarray descriptor

Passed back and forth across PRIF for coarray operations

! Caffeine’ descriptor:

type, private, bind(C) :: handle_data
private
type(c_ptr) :: coarray_data
integer(c_int) :: corank
integer(c_size_t) :: coarray_size
integer(c_size_t) :: element_length
type(c_funptr) :: final_func
type(c_ptr) :: previous_handle, next_handle
integer(c_intmax_t) :: lcobounds(15), ucobounds(15)

end type

PRIF | BERKELEY LAB

Coarray allocation

22

integer :: coarr(10)[*]

call prif_allocate_coarray(&
lcobounds=[1_c_intmax_t], ucobounds=[prif_num_images()], & ! in
lbounds=[1_c_intmax_t], ubounds=[10_c_intmax_t)], & ! in
element_length=size_of_default_int_in_bytes, final_func=c_null_funptr, & ! in
coarray_handle=coarr_coarray_handle, allocated_memory=mem) ! out

! ^ facilitate local access w/o calling PRIF

coarr is a static array coarray with
• [lcobound : ucobound] = [1 : num_images()] => corank = 1
• [lbound : ubound] = [1 :10] => rank = 1

PRIF | BERKELEY LAB

Coarray accesses

23

coarr[1] = func_call()

call prif_put(&
coarray_handle=coarr_coarray_handle, cosubscripts=int([1], c_intmax_t), &
value=func_call(), first_element_addr=c_loc(coarr))

PRIF | BERKELEY LAB

PRIF Progress

Initial publication: PRIF 0.2 (December 2023), LBNL Tech. Report

Submitted PRIF pull request on GitHub.com/llvm-project

PRIF 0.3 (May 2024) reflects feedback from SiPearl

Future Work: PRIF 0.4 will reflect feedback from NVIDIA

Bonachea, D., Rasmussen, K., Richardson, B., Rouson, D. (2024) "Parallel Runtime Interface for Fortran (PRIF)
Specification, Revision 0.3", Lawrence Berkeley National Laboratory Technical Report, LBNL 2001590, doi:
10.25344/S4501W

24

https://doi.org/10.25344/S4501W
https://doi.org/10.25344/S4501W
https://dx.doi.org/10.25344/S4501W
https://dx.doi.org/10.25344/S4501W

PRIF | BERKELEY LAB

02
Motivations:
CAF and PRIF

03
The Compiler Landscape

04
PRIF Design :
Overview & Status

05
PRIF Implementation:
Caffeine

Overview

25

01
Background:
Coarray Fortran

06
Future Work

PRIF | BERKELEY LAB

Berkeley Lab’s Caffeine: PRIF Implementation Status (Some Partial)

Program launch & termination:
○ prif_init
○ prif_stop
○ prif_error_stop

Image inquiry functions:
○ prif_this_image
○ prif_num_images
○ prif_image_index

26

Coarray communication:
○ prif_put
○ prif_get

Coarray & component allocation:
○ prif_allocate_coarray
○ prif_deallocate_coarray
○ prif_allocate
○ prif_deallocate

Synchronization:
○ prif_sync_all

Collective Subroutines
○ prif_co_min
○ prif_co_max
○ prif_co_sum
○ prif_co_broadcast
○ prif_co_reduce

gasnet.lbl.gov/performance Hargrove P, Bonachea D. "GASNet-EX RMA Communication Performance on
Recent Supercomputing Systems", 2022 IEEE/ACM Parallel Applications Workshop,
Alternatives To MPI+X (PAW-ATM), November 2022. doi:10.25344/S40C7D

go.lbl.gov/caffiene

https://gasnet.lbl.gov/performance
https://gasnet-bugs.lbl.gov/gasnet-web/pubs/GASNet_PAW-ATM-22.pdf
https://gasnet-bugs.lbl.gov/gasnet-web/pubs/GASNet_PAW-ATM-22.pdf
https://doi.org/10.25344/S40C7D
https://go.lbl.gov/caffeine

PRIF | BERKELEY LAB

02
Motivations:
CAF and PRIF

03
Backdrop:
The Compiler Landscape

04
PRIF Design :
Overview & Status

05
PRIF Implementation:
Caffeine

Overview

27

01
Background:
Coarray Fortran

06
Future Work

PRIF | BERKELEY LAB

Future Work

Lower CAF syntax to PRIF invocations after PR has been approved and merged

Complete Caffeine support of PRIF
Track progress: https://github.com/BerkeleyLab/flang-testing-project/projects/7

For more information or to provide feedback:
– We welcome issues and PRs at the above GitHub Repository
– Discourse Post
– Email: lbl-flang@lbl.gov
– Specification Working Draft: https://go.lbl.gov/prif

28

https://github.com/BerkeleyLab/flang-testing-project/projects/7
https://discourse.llvm.org/t/rfc-parallel-runtime-interface-for-fortran-prif/75801
mailto:lbl-flang@lbl.gov
https://go.lbl.gov/prif

PRIF | BERKELEY LAB 29

Acknowledgements
● This material is based upon work supported by the U.S. Department of Energy, Office

of Science, Office of Advanced Scientific Computing Research.
● This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a

collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration

● This research used resources of the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at
Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-
05CH11231

PRIF | BERKELEY LAB

Thank You

30

PRIF | BERKELEY LAB

Questions

31

Email: fortran@lbl.gov

Fortran efforts at LBNL: fortran.lbl.gov
Specification Working Draft: go.lbl.gov/prif

PRIF | BERKELEY LAB

What is GASNet?

33

PRIF | BERKELEY LAB

Who We are

We have experience developing parallel runtimes, parallel applications, Flang frontend parallel
features, and parallel unit tests:

• OpenCoarrays: Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Nagle, D., & Rouson, D. (2014). “OpenCoarrays: open-source
transport layers supporting coarray Fortran compilers.” In Proceedings of the 8th International Conference on Partitioned Global Address
Space Programming Models (pp. 1-11). doi: 10.1145/2676870.2676876

• Caffeine: Rouson, D., & Bonachea, D. (2022). “Caffeine: CoArray Fortran Framework of Efficient Interfaces to Network Environments.”
In 2022 IEEE/ACM Eighth Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC) (pp. 34-42). IEEE. doi:
10.25344/S4459B

• Flang: Rasmussen, K., Rouson, D., George, N., Bonachea, D., Kadhem, H., & Friesen, B. (2022) "Agile Acceleration of LLVM Flang
Support for Fortran 2018 Parallel Programming", Research Poster at the International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC22). doi: 10.25344/S4CP4S

• Berkeley UPC: Chen, Bonachea, Duell, Husbands, Iancu, Yelick,, "A Performance Analysis of the Berkeley UPC Compiler",
Proceedings of the International Conference on Supercomputing (ICS), ACM, June 23, 2003, 63--73, doi: 10.1145/782814.782825

• UPC++: Bachan, Baden, Hofmeyr, Jacquelin, Kamil, Bonachea, Hargrove, Ahmed, "UPC++: A High-Performance Communication
Framework for Asynchronous Computation", 33rd IEEE International Parallel & Distributed Processing Symposium (IPDPS'19), May
2019, doi: 10.25344/S4V88H

34

https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1145/2676870.2676876
https://dx.doi.org/10.25344/S4459B
https://dx.doi.org/10.25344/S4459B
https://escholarship.org/uc/item/01h204x9
https://escholarship.org/uc/item/01h204x9
https://dx.doi.org/10.25344/S4CP4S
https://escholarship.org/uc/item/91v1j2jw
https://dx.doi.org/10.1145/782814.782825
https://escholarship.org/uc/item/1gd059hj
https://escholarship.org/uc/item/1gd059hj
https://dx.doi.org/10.25344/S4V88H

PRIF | BERKELEY LAB

Why not OpenCoarrays?

• Is hardwired to gfortran, e.g., many procedures manipulate gfortran-specific descriptors
• The interface implicitly assumes a MPI backend
• Only the MPI layer is maintained (GASNet & OpenSHMEM layers are legacy codes)
• Lacks full support for some parallel features (e.g., teams).
• Has a bus factor of ~1.

35

https://en.wikipedia.org/wiki/Bus_factor

