Careers | Phone Book | A - Z Index

Drew Paine

Drew Paine
Drew Paine
Research Scientist

Drew Paine investigates collaborative scientific software development using ethnographic and user research methods. In USS he works on the Usable Data Abstractions (UDA), Science Capsule, and Deduce projects studying the work of scientists from multiple domains to inform the design of tools to facilitate their research.

He received his PhD from the Department of Human Centered Design & Engineering (HCDE) at the University of Washington in Seattle, WA in August 2016. Working in Dr. Charlotte Lee's Computer Supported Collaboration (CSC) Laboratory, Drew investigated the collaborative work of scientists in physics & astronomy, microbiology, oceanography, and climate science. He received a Software Engineering BS from Rose-Hulman Institute of Technology in May 2010.

Journal Articles

Drew Paine, Devarshi Ghoshal, Lavanya Ramakrishnan, "Experiences with a Flexible User Research Process to Build Data Change Tools", Journal of Open Research Software, September 1, 2020, doi: 10.5334/jors.284

Scientific software development processes are understood to be distinct from commercial software development practices due to uncertain and evolving states of scientific knowledge. Sustaining these software products is a recognized challenge, but under-examined is the usability and usefulness of such tools to their scientific end users. User research is a well-established set of techniques (e.g., interviews, mockups, usability tests) applied in commercial software projects to develop foundational, generative, and evaluative insights about products and the people who use them. Currently these approaches are not commonly applied and discussed in scientific software development work. The use of user research techniques in scientific environments can be challenging due to the nascent, fluid problem spaces of scientific work, varying scope of projects and their user communities, and funding/economic constraints on projects.

In this paper, we reflect on our experiences undertaking a multi-method user research process in the Deduce project. The Deduce project is investigating data change to develop metrics, methods, and tools that will help scientists make decisions around data change. There is a lack of common terminology since the concept of systematically measuring and managing data change is under explored in scientific environments. To bridge this gap we conducted user research that focuses on user practices, needs, and motivations to help us design and develop metrics and tools for data change. This paper contributes reflections and the lessons we have learned from our experiences. We offer key takeaways for scientific software project teams to effectively and flexibly incorporate similar processes into their projects.

Drew Paine, Charlotte P. Lee, "Coordinative Entities: Forms of Organizing in Data Intensive Science", Journal of Computer Supported Cooperative Work, February 11, 2020, doi: 10.1007/s10606-020-09372-2

Conference Papers

Christine T. Wolf, Drew Paine, "Sensemaking Practices in the Everyday Work of AI/ML Software Engineering", IEEE/ACM 42nd International Conference on Software Engineering Workshops (ICSEW’20), ACM, April 5, 2020, doi: 10.1145/3387940.3391496

Christine T. Wolf, Julia Bullard, Stacy Wood, Amelia Acker, Drew Paine, Charlotte P. Lee, "Mapping the “How” of Collaborative Action: Research Methods for Studying Contemporary Sociotechnical Processes", CSCW '19: Conference Companion Publication of the 2019 on Computer Supported Cooperative Work and Social Computing, November 10, 2019, doi: 10.1145/3311957.3359441

Process has been a concern since the beginning of CSCW. Developments in sociotechnical landscapes raise new challenges for studying processes (e.g., massive online communities bringing together vast crowds; Big Data technologies connecting many through the flow of data). This re-opens questions about how we study, document, conceptualize, and design to support processes in complex, contemporary sociotechnical systems. This one-day workshop will bring together researchers to discuss the CSCW community’s unique focus and methodological toolkit for studying process and workflow; provide a collaborative space for the improvement and extension of research projects within this space; and catalyze a network of scholars with expertise and interest in addressing challenging methodological questions around studying process in contemporary, sociotechnical systems.

Drew Paine, Lavanya Ramakrishnan, "Surfacing Data Change in Scientific Work", iConference 2019, Springer Verlag, March 19, 2019, 15-26, doi: 10.1007/978-3-030-15742-5_2

David P. Randall, Drew Paine, Charlotte P. Lee, "Educational Outreach & Stakeholder Role Evolution in a Cyberinfrastructure Project", 2018 IEEE 14th International Conference on e-Science, IEEE Computer Society, 2018, 201-211, doi: 10.1109/eScience.2018.00035

Presentation/Talks

Cheah You-Wei, Drew Paine, Devarshi Ghoshal, Lavanya Ramakrishnan, Bringing Data Science to Qualitative Analysis, 2018 IEEE 14th International Conference on e-Science, Pages: 325-326 2018, doi: 10.1109/eScience.2018.00076

Reports

Drew Paine, Lavanya Ramakrishnan, "Understanding Interactive and Reproducible Computing With Jupyter Tools at Facilities", LBNL Technical Report, October 31, 2020, LBNL LBNL-2001355,

Increasingly Jupyter tools are being adopted and incorporated into High Performance Computing (HPC) and scientific user facilities. Adopting Jupyter tools enables more interactive and reproducible computational work at facilities across data life cycles. As the volume, variety, and scope of data grow, scientists need to be able to analyze and share results in user friendly ways. Human-centered research highlights design challenges around computational notebooks, and our qualitative user study shifts focus to better characterize how Jupyter tools are being used in HPC and science user facilities today. We conducted twenty-nine interviews, and obtained 103 survey responses from NERSC Jupyter users, to better understand the increasing role of interactive computing tools in DOE sponsored scientific work. We examine a range of issues that emerge using and supporting Jupyter in HPC ecosystems, including: how Jupyter is being used by scientists in HPC and user facility ecosystems; how facilities are purposefully supporting Jupyter in their ecosystems; feedback NERSC users have about the facility’s deployment, and, discuss features NERSC indicated would be helpful. We offer a variety of takeaways for staff supporting Jupyter at facilities, Project Jupyter and related open source communities, and funding agencies supporting interactive computing work.

Drew Paine, Devarshi Ghoshal, Lavanya Ramakrishnan, "Investigating Scientific Data Change with User Research Methods", August 20, 2020, LBNL LBNL-2001347,

Scientific datasets are continually expanding and changing due to fluctuations with instruments, quality assessment and quality control processes, and modifications to software pipelines. Datasets include minimal information about these changes or their effects requiring scientists manually assess modifications through a number of labor intensive and ad-hoc steps. The Deduce project is investigating data change to develop metrics, methods, and tools that will help scientists systematically identify and make decisions around data changes. Currently, there is a lack of understanding, and common practices, for identifying and evaluating changes in datasets since systematically measuring and managing data change is under explored in scientific work. We are conducting user research to address this need by exploring scientist's conceptualizations, behaviors, needs, and motivations when dealing with changing datasets. Our user research utilizes multiple methods to produce foundational, generative insights and evaluate research products produced by our team. In this paper, we detail our user research process and outline our findings about data change that emerge from our studies. Our work illustrates how scientific software teams can push beyond just usability testing user interfaces or tools to better probe the underlying ideas they are developing solutions to address.