Careers | Phone Book | A - Z Index

John Bachan

memy29th
John Bachan
Computer Systems Engineer
Computer Architecture Group
Lawrence Berkeley National Laboratory
One Cyclotron Road
Berkeley, CA 94720 US

Biographical Sketch

John Bachan is Computer Systems Engineer in the Computer Architecture Group. His focus spans the software stack of modern HPC platforms, from low-level networking runtimes and concurrency primitives to high-level programming models for domain scientists. His musings of passion are projects which aim to make scientific programming easier and more productive without forfeiting the computational capability of the underlying machine.

Current Projects

  • UPC++: PGAS programming for C++
  • Mobiliti: Scalable Transportation Simulation Using High-Performance Computing
  • ProgrAMR: Enabling Task-Based Performance Models for AMR
  • OpenSoC Fabric: An Open-Source Network-On-Chip Generator

Conference Papers

John Bachan, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Dan Bonachea, Paul H. Hargrove, Hadia Ahmed, "UPC++: A High-Performance Communication Framework for Asynchronous Computation", 33rd IEEE International Parallel & Distributed Processing Symposium (IPDPS'19), Rio de Janeiro, Brazil, IEEE, May 2019, doi: 10.25344/S4V88H

UPC++ is a C++ library that supports high-performance computation via an asynchronous communication framework. This paper describes a new incarnation that differs substantially from its predecessor, and we discuss the reasons for our design decisions. We present new design features, including future-based asynchrony management, distributed objects, and generalized Remote Procedure Call (RPC).
We show microbenchmark performance results demonstrating that one-sided Remote Memory Access (RMA) in UPC++ is competitive with MPI-3 RMA; on a Cray XC40 UPC++ delivers up to a 25% improvement in the latency of blocking RMA put, and up to a 33% bandwidth improvement in an RMA throughput test. We showcase the benefits of UPC++ with irregular applications through a pair of application motifs, a distributed hash table and a sparse solver component. Our distributed hash table in UPC++ delivers near-linear weak scaling up to 34816 cores of a Cray XC40. Our UPC++ implementation of the sparse solver component shows robust strong scaling up to 2048 cores, where it outperforms variants communicating using MPI by up to 3.1x.
UPC++ encourages the use of aggressive asynchrony in low-overhead RMA and RPC, improving programmer productivity and delivering high performance in irregular applications.

Maximilian H Bremer, John D Bachan, Cy P Chan, "Semi-Static and Dynamic Load Balancing for Asynchronous Hurricane Storm Surge Simulations", 2018 Parallel Applications Workshop, Alternatives To MPI (PAW-ATM), November 16, 2018,

Cy P Chan, Bin Wang, John D Bachan, Jane Macfarlane, "Mobiliti: Scalable Transportation Simulation Using High-Performance Parallel Computing", 2018 IEEE International Conference on Intelligent Transportation Systems (ITSC), November 6, 2018,

Bin Wang, John D Bachan, Cy P Chan, "ExaGridPF: A parallel power flow solver for transmission and unbalanced distribution systems", 2018 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), February 22, 2018,

John Bachan, Dan Bonachea, Paul H Hargrove, Steve Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, Scott B Baden, "The UPC++ PGAS library for Exascale Computing", Proceedings of the Second Annual PGAS Applications Workshop (PAW17), November 13, 2017, 7, doi: 10.1145/3144779.3169108

We describe UPC++ V1.0, a C++11 library that supports APGAS programming. UPC++ targets distributed data structures where communication is irregular or fine-grained. The key abstractions are global pointers, asynchronous programming via RPC, and futures. Global pointers incorporate ownership information useful in optimizing for locality. Futures capture data readiness state, are useful for scheduling and also enable the programmer to chain operations to execute asynchronously as high-latency dependencies become satisfied, via continuations. The interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and closely resemble those used in modern C++. Communication in UPC++ runs at close to hardware speeds by utilizing the low-overhead GASNet-EX communication library.

Cy Chan, John Bachan, Joseph Kenny, Jeremiah Wilke, Vincent Beckner, Ann Almgren, John Bell, "Topology-Aware Performance Optimization and Modeling of Adaptive Mesh Refinement Codes for Exascale", (BEST PAPER AWARD) COMHPC 2016 - SC16 Workshop on Communication Optimization in High Performance Computing, Salt Lake City, UT, November 18, 2016,

Best Paper Award

Presentation/Talks

Amir Kamil, John Bachan, Scott B. Baden, Dan Bonachea, Rob Egan, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Kathy Yelick, UPC++: An Asynchronous RMA/RPC Library for Distributed C++ Applications, Argonne Leadership Computing Facility (ALCF) Webinar Series, May 27, 2020,

UPC++ is a C++ library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. The UPC++ API offers low-overhead one-sided RMA communication and Remote Procedure Calls (RPC), along with futures and promises. These constructs enable the programmer to express dependencies between asynchronous computations and data movement. UPC++ supports the implementation of simple, regular data structures as well as more elaborate distributed data structures where communication is fine-grained, irregular, or both. The library’s support for asynchrony enables the application to aggressively overlap and schedule communication and computation to reduce wait times.

UPC++ is highly portable and runs on platforms from laptops to supercomputers, with native implementations for HPC interconnects. As a C++ library, it interoperates smoothly with existing numerical libraries and on-node programming models (e.g., OpenMP, CUDA).

In this webinar, hosted by DOE’s Exascale Computing Project and the ALCF, we will introduce basic concepts and advanced optimization techniques of UPC++. We will discuss the UPC++ memory and execution models and walk through basic algorithm implementations. We will also look at irregular applications and show how they can take advantage of UPC++ features to optimize their performance.

Event page

Amir Kamil, John Bachan, Scott B. Baden, Dan Bonachea, Rob Egan, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Kathy Yelick, UPC++: A PGAS/RPC Library for Asynchronous Exascale Communication in C++, Exascale Computing Project (ECP) Annual Meeting 2020, February 6, 2020,

UPC++ is a C++ library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. The UPC++ API offers low-overhead one-sided RMA communication and Remote Procedure Calls (RPC), along with futures and promises. These constructs enable the programmer to express dependencies between asynchronous computations and data movement. UPC++ supports the implementation of simple, regular data structures as well as more elaborate distributed data structures where communication is fine-grained, irregular, or both. The library’s support for asynchrony enables the application to aggressively overlap and schedule communication and computation to reduce wait times.

UPC++ is highly portable and runs on platforms from laptops to supercomputers, with native implementations for HPC interconnects. As a C++ library, it interoperates smoothly with existing numerical libraries and on-node programming models (e.g., OpenMP, CUDA).

In this tutorial we will introduce basic concepts and advanced optimization techniques of UPC++. We will discuss the UPC++ memory and execution models and walk through basic algorithm implementations. We will also look at irregular applications and show how they can take advantage of UPC++ features to optimize their performance.

Event page

Amir Kamil, John Bachan, Scott B. Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Kathy Yelick, UPC++ Tutorial, National Energy Research Scientific Computing Center (NERSC), December 16, 2019,

This event was a repeat of the tutorial delivered on November 1, but with the restoration of the hands-on component which was omitted due to uncertainty surrounding the power outage at NERSC.

UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. UPC++ provides mechanisms for low-overhead one-sided communication, moving computation to data through remote-procedure calls, and expressing dependencies between asynchronous computations and data movement. It is particularly well-suited for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces are designed to be composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds.

In this tutorial we introduced basic concepts and advanced optimization techniques of UPC++. We discussed the UPC++ memory and execution models and walked through implementing basic algorithms in UPC++. We also discussed irregular applications and how to take advantage of UPC++ features to optimize their performance. The tutorial included hands-on exercises with basic UPC++ constructs. Registrants were given access to run their UPC++ exercises on NERSC’s Cori (currently the #14 fastest computer in the world).

Event page

tutorial 2019 12

 

Amir Kamil, John Bachan, Scott B. Baden, Dan Bonachea, Rob Egan, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Kathy Yelick, UPC++ Tutorial, National Energy Research Scientific Computing Center (NERSC), November 1, 2019,

UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. UPC++ provides mechanisms for low-overhead one-sided communication, moving computation to data through remote-procedure calls, and expressing dependencies between asynchronous computations and data movement. It is particularly well-suited for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces are designed to be composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds.

In this tutorial we will introduce basic concepts and advanced optimization techniques of UPC++. We will discuss the UPC++ memory and execution models and walk through implementing basic algorithms in UPC++. We will also look at irregular applications and how to take advantage of UPC++ features to optimize their performance.

Event Page

 

Reports

John Bachan, Scott B. Baden, Dan Bonachea, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ v1.0 Programmer’s Guide, Revision 2020.3.0", Lawrence Berkeley National Laboratory Tech Report, March 2020, LBNL 2001269, doi: 10.25344/S4P88Z

UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.

John Bachan, Dan Bonachea, Amir Kamil, "UPC++ v1.0 Specification, Revision 2020.3.0", Lawrence Berkeley National Laboratory Tech Report, March 12, 2020, LBNL 2001268, doi: 10.25344/S4T01S

UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. The key communication facilities in UPC++ are one-sided Remote Memory Access (RMA) and Remote Procedure Call (RPC). All communication operations are syntactically explicit and default to non-blocking; asynchrony is managed through the use of futures, promises and continuation callbacks, enabling the programmer to construct a graph of operations to execute asynchronously as high-latency dependencies are satisfied. A global pointer abstraction provides system-wide addressability of shared memory, including host and accelerator memories. The parallelism model is primarily process-based, but the interface is thread-safe and designed to allow efficient and expressive use in multi-threaded applications. The interface is designed for extreme scalability throughout, and deliberately avoids design features that could inhibit scalability.

John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ v1.0 Programmer’s Guide, Revision 2019.9.0", Lawrence Berkeley National Laboratory Tech Report, September 2019, LBNL 2001236, doi: 10.25344/S4V30R

UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.

John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ v1.0 Specification, Revision 2019.9.0", Lawrence Berkeley National Laboratory Tech Report, September 14, 2019, LBNL 2001237, doi: 10.25344/S4ZW2C

UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. We are revising the library under the auspices of the DOE’s Exascale Computing Project, to meet the needs of applications requiring PGAS support. UPC++ is intended for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds. The key facilities in UPC++ are global pointers, that enable the programmer to express ownership information for improving locality, one-sided communication, both put/get and RPC, futures and continuations. Futures capture data readiness state, which is useful in making scheduling decisions, and continuations provide for completion handling via callbacks. Together, these enable the programmer to chain together a DAG of operations to execute asynchronously as high-latency dependencies become satisfied.

John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ Programmer's Guide, v1.0-2019.3.0", Lawrence Berkeley National Laboratory Tech Report, March 2019, LBNL 2001191, doi: 10.25344/S4F301

UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.

John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ Specification v1.0, Draft 10", Lawrence Berkeley National Laboratory Tech Report, March 15, 2019, LBNL 2001192, doi: 10.25344/S4JS30

UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. We are revising the library under the auspices of the DOE’s Exascale Computing Project, to meet the needs of applications requiring PGAS support. UPC++ is intended for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds. The key facilities in UPC++ are global pointers, that enable the programmer to express ownership information for improving locality, one-sided communication, both put/get and RPC, futures and continuations. Futures capture data readiness state, which is useful in making scheduling decisions, and continuations provide for completion handling via callbacks. Together, these enable the programmer to chain together a DAG of operations to execute asynchronously as high-latency dependencies become satisfied.

John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ Programmer's Guide, v1.0-2018.9.0", Lawrence Berkeley National Laboratory Tech Report, September 2018, LBNL 2001180, doi: 10.25344/S49G6V

UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate constituent process having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the processes. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.

John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ Specification v1.0, Draft 8", Lawrence Berkeley National Laboratory Tech Report, September 26, 2018, LBNL 2001179, doi: 10.25344/S45P4X

UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. We are revising the library under the auspices of the DOE’s Exascale Computing Project, to meet the needs of applications requiring PGAS support. UPC++ is intended for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds. The key facilities in UPC++ are global pointers, that enable the programmer to express ownership information for improving locality, one-sided communication, both put/get and RPC, futures and continuations. Futures capture data readiness state, which is useful in making scheduling decisions, and continuations provide for completion handling via callbacks. Together, these enable the programmer to chain together a DAG of operations to execute asynchronously as high-latency dependencies become satisfied.

J Bachan, S Baden, D Bonachea, P Hargrove, S Hofmeyr, K Ibrahim, M Jacquelin, A Kamil, B Lelbach, B van Straalen, "UPC++ Specification v1.0, Draft 6", Lawrence Berkeley National Laboratory Tech Report, March 26, 2018, LBNL 2001135, doi: 10.2172/1430689

UPC++ is a C++11 library providing classes and functions that support Partitioned Global Address Space (PGAS) programming. We are revising the library under the auspices of the DOE’s Exascale Computing Project, to meet the needs of applications requiring PGAS support. UPC++ is intended for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds. The key facilities in UPC++ are global pointers, that enable the programmer to express ownership information for improving locality, one-sided communication, both put/get and RPC, futures and continuations. Futures capture data readiness state, which is useful in making scheduling decisions, and continuations provide for completion handling via callbacks. Together, these enable the programmer to chain together a DAG of operations to execute asynchronously as high-latency dependencies become satisfied.

J Bachan, S Baden, D Bonachea, PH Hargrove, S Hofmeyr, K Ibrahim, M Jacquelin, A Kamil, B van Straalen, "UPC++ Programmer’s Guide, v1.0-2018.3.0", Lawrence Berkeley National Laboratory Tech Report, March 2018, LBNL 2001136, doi: 10.2172/1430693

UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.

John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ Programmer’s Guide, v1.0-2017.9", Lawrence Berkeley National Laboratory Tech Report, September 2017, LBNL 2001065, doi: 10.2172/1398522

UPC++ is a C++11 library that provides Asynchronous Partitioned Global Address Space (APGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The APGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, APGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.

J Bachan, S Baden, D Bonachea, P Hargrove, S Hofmeyr, K Ibrahim, M Jacquelin, A Kamil, B Lelbach, B van Straalen, "UPC++ Specification v1.0, Draft 4", Lawrence Berkeley National Laboratory Tech Report, September 27, 2017, LBNL 2001066, doi: 10.2172/1398521

UPC++ is a C++11 library providing classes and functions that support Asynchronous Partitioned Global Address Space (APGAS) programming. We are revising the library under the auspices of the DOE’s Exascale Computing Project, to meet the needs of applications requiring PGAS support. UPC++ is intended for implementing elaborate distributed data structures where communication is irregular or fine-grained. The UPC++ interfaces for moving non-contiguous data and handling memories with different optimal access methods are composable and similar to those used in conventional C++. The UPC++ programmer can expect communication to run at close to hardware speeds. The key facilities in UPC++ are global pointers, that enable the programmer to express ownership information for improving locality, one-sided communication, both put/get and RPC, futures and continuations. Futures capture data readiness state, which is useful in making scheduling decisions, and continuations provide for completion handling via callbacks. Together, these enable the programmer to chain together a DAG of operations to execute asynchronously as high-latency dependencies become satisfied.

George Michelogiannakis, John Shalf, David Donofrio, John Bachan,, "Continuing the Scaling of Digital Computing Post Moore’s Law", LBNL report, April 2016, LBNL 1005126,

The approaching end of traditional CMOS technology scaling that up until now followed Moore's law is coming to an end in the next decade. However, the DOE has come to depend on the rapid, predictable, and cheap scaling of computing performance to meet mission needs for scientific theory, large scale experiments, and national security. Moving forward, performance scaling of digital computing will need to originate from energy and cost reductions that are a result of novel architectures, devices, manufacturing technologies, and programming models. The deeper issue presented by these changes is the threat to DOE’s mission and to the future economic growth of the U.S. computing industry and to society as a whole. With the impending end of Moore’s law, it is imperative for the Office of Advanced Scientific Computing Research (ASCR) to develop a balanced research agenda to assess the viability of novel semiconductor technologies and navigate the ensuing challenges. This report identifies four areas and research directions for ASCR and how each can be used to preserve performance scaling of digital computing beyond exascale and after Moore's law ends.

Posters

Amir Kamil, John Bachan, Dan Bonachea, Paul H. Hargrove, Erich Strohmaier and Daniel Waters, "UPC++: Asynchronous RMA and RPC Communication for Exascale Applications", Poster at Exascale Computing Project (ECP) Annual Meeting 2020, February 2020,

Scott B. Baden, Paul H. Hargrove, Hadia Ahmed, John Bachan, Dan Bonachea, Steve Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "Pagoda: Lightweight Communications and Global Address Space Support for Exascale Applications - UPC++", Poster at Exascale Computing Project (ECP) Annual Meeting 2019, January 2019,

Scott B. Baden, Paul H. Hargrove, Hadia Ahmed, John Bachan, Dan Bonachea, Steve Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ and GASNet-EX: PGAS Support for Exascale Applications and Runtimes", The International Conference for High Performance Computing, Networking, Storage and Analysis (SC'18), November 13, 2018,

Lawrence Berkeley National Lab is developing a programming system to support HPC application development using the Partitioned Global Address Space (PGAS) model. This work is driven by the emerging need for adaptive, lightweight communication in irregular applications at exascale. We present an overview of UPC++ and GASNet-EX, including examples and performance results.

GASNet-EX is a portable, high-performance communication library, leveraging hardware support to efficiently implement Active Messages and Remote Memory Access (RMA). UPC++ provides higher-level abstractions appropriate for PGAS programming such as: one-sided communication (RMA), remote procedure call, locality-aware APIs for user-defined distributed objects, and robust support for asynchronous execution to hide latency. Both libraries have been redesigned relative to their predecessors to meet the needs of exascale computing. While both libraries continue to evolve, the system already demonstrates improvements in microbenchmarks and application proxies.

John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ and GASNet: PGAS Support for Exascale Apps and Runtimes", Poster at Exascale Computing Project (ECP) Annual Meeting 2018., February 2018,

John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil, Brian Van Straalen, "UPC++: a PGAS C++ Library", ACM/IEEE Conference on Supercomputing, SC'17, November 2017,

John Bachan, Scott Baden, Dan Bonachea, Paul Hargrove, Steven Hofmeyr, Khaled Ibrahim, Mathias Jacquelin, Amir Kamil, Brian van Straalen, "UPC++ and GASNet: PGAS Support for Exascale Apps and Runtimes", Poster at Exascale Computing Project (ECP) Annual Meeting 2017., January 2017,