Gustavo Chávez
Bio
Gustavo Chávez is a postdoctoral fellow at the scalable solvers group at the Lawrence Berkeley National Laboratory, funded by the U.S. Department of Energy through the Exascale Computing Project.
His research is in Computational Science & Engineering at extreme scale, primarily through the development and support of the Structured Matrix Package: STRUMPACK.
He received a Ph.D. in Computer Science under supervision of Prof. David Keyes and a M.Sc. in Applied Mathematics from the King Abdullah University of Science and Technology (KAUST), and a B.Eng. in Software Engineering from the Universidad Tecnológica de México.
Publications

C. Gorman, G. Chávez, P. Ghysels, T. Mary, F.H. Rouet, and X. Sherry Li. “Matrixfree construction of HSS representation using adaptive randomized sampling”. Submitted to the SIAM Journal on Scientific Computing (SISC).

E. Rebrova, G. Chávez, Y. Liu, P. Ghysels, X. Sherry Li. “A Study of Clustering Techniques and Hierarchical Matrix Formats for Kernel Ridge Regression”. IEEE International Parallel & Distributed Processing Symposium (IPDPS). Workshop on Parallel and Distributed Computing for LargeScale Machine Learning and Big Data Analytics. (2018)

G. Chávez, G. Turkiyyah, S. Zampini, D. Keyes. “Parallel accelerated cyclic reduction preconditioner for threedimensional elliptic PDEs with variable coefficients”. Elsevier Journal of Computational Applied Mathematics (2017).

G. Chávez. "Robust and scalable hierarchical matrixbased fast direct solver and preconditioner for the numerical solution of elliptic partial differential equations". Ph.D. thesis (2017).

G. Chávez, G. Turkiyyah, S. Zampini, H. Ltaief, D. Keyes. “Accelerated cyclic reduction: a distributedmemory fast solver for structured linear systems”. Elsevier Journal of Parallel Computing (2016).

G. Chávez, G. Turkiyyah, D. Keyes. “A direct elliptic solver based on hierarchically lowrank Schur complements”. Domain Decomposition Methods in Science and Engineering XXIII (2015).

G. Chávez, A. Rockwood “Marching surfaces: Isosurface approximation using G1 multisided surfaces”. arXiv:1502.02139 (2014).

G. Chávez, F. Ávila, A Rockwood. “Lightweight visualization for highquality materials on WebGL”. Proceedings of the 18th International Conference on 3D Web Technology (2013).
Research activities
 Highperformance linear solvers based on hierarchical matrices.
 Approximate factorizations of kernel matrices for highdimensional data.
2018 talks
> June 18th, 2018. Berkeley CA, USA. The 13th Scheduling For Large Scale Systems Workshop. A Study of Clustering Techniques and Hierarchical Matrix Formats for Kernel Ridge Regression.
> May 21th, 2018. Vancouver, Canada. IPDPS Workshop on Parallel and Distributed Computing for LargeScale Machine Learning and Big Data Analytics. A Study of Clustering Techniques and Hierarchical Matrix Formats for Kernel Ridge Regression.
> March 8th, 2018. Tokyo, Japan. Minisymposium: Hierarchical LowRank Approximation Methods / 18th SIAM Conference on Parallel Processing for Scientific Computing (PP18). Hierarchical matrix preconditioners on distributed memory environments. (slides)
> February 7th 2018. Knoxville TN, USA. Exascale Computing Project ECP Annual Meeting. Poster: STRUMPACK.