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asymmetric  multi-core [3], with differ-
ent types of cores on a single chip, will 
present an even greater challenge for 
programmers to utilize effectively.

Programmers often find they must 
make algorithmic changes to their pro-
gram in order to get performance when 
moving between these different types 
of architectures. For example, when 
moving from a sequential to a parallel 
architecture, a programmer may have 
to change his or her algorithm to ex-
pose more parallelism. 

A similar need for algorithmic 
change arises when switching between 
different types of parallel architec-
tures. In a recent paper [1], we showed 
that even when changing between 
similar architectures with the same 
number of cores, dramatic algorithmic 
changes can be required to optimize 
performance.

To obtain portable performance in 
this new world of more diverse archi-
tectures, we must build programs that 
can adapt to whatever hardware plat-
form they are currently running on. 
Our team of researchers at the Massa-
chusetts Institute of Technology has 
developed PetaBricks [1], a new, im-
plicitly parallel language and compiler 

that allows the user to specify algorith-
mic choices at the language level. Using 
this mechanism, PetaBricks programs 
define not a single algorithmic path, 
but a search space of possible paths. 
This flexibility allows our compiler to 
build programs that can automatically 
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W ith the dawn of the multi-core era, programmers are being challenged to write 
code that performs well on an increasingly diverse array of architectures. A single 
program or library may be used on systems ranging in power from large servers 
with dozens or hundreds of cores to small single-core netbooks or mobile phones. 

A program may need to run efficiently both on architectures with many simple cores and on 
those with fewer monolithic cores. Some of the systems a program encounters might have 
GPU coprocessors, while others might not. Looking forward, processor designs such as 
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adapt, with empirical autotuning, to 
every architecture they encounter.

PETABRICKS LANGUAGE
The PetaBricks language provides a 
framework for the programmer to de-
scribe multiple ways of solving a prob-
lem while allowing the autotuner to de-
termine which of those ways is best for 
the user’s situation. It provides both al-
gorithmic flexibility (multiple algorith-
mic choices) as well as coarse-grained 
code generation flexibility (synthesized 
outer control flow).

At the highest level, the programmer 
can specify a transform, which takes 
some number of inputs and produces 
some number of outputs. In this re-
spect, the PetaBricks transform is like 
a function call in any common proce-
dural language. The major difference 
with PetaBricks is that we allow the 
programmer to specify multiple path-
ways to convert the inputs to the out-
puts for each transform. Pathways are 
specified in a dataflow manner using 
a number of smaller building blocks 
called rules, which encode both the 
data dependencies of the rule and C++-
like code that converts the rule’s inputs 
to outputs. Dependencies are specified 

PetaBricks

“PetaBricks 
programs define 
not a single 
algorithmic path, 
but a search space of 
possible paths. This 
flexibility allows our 
compiler to build 
programs that can 
automatically adapt, 
with empirical 
autotuning, to every 
architecture they 
encounter.”
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Figure 1: Pseudocode for kmeans, an example of the PetaBricks program, is shown.
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	 1	 transform kmeans

	 2	 from Points[n, 2]	 // Array of points (each column

	 3 			   // stores x and y coordinates)

	 4	 through Centroids[sqrt(n), 2]

	 5	 to Assignments[n]

	 7	 {

	 7		  // Rule 1:

	 8		  // One possible initial condition: Random

	 9		  // set of points

	 10 		  to (Centroids . column ( i )  c)  from ( Points  p) {

	 11 		         c=p . column (rand ( 0, n ) )

	 12 		  }

	 13

	 14 		  / / Rule  2:

	 15 		  / / Another initial condition; Centerplus initial

	 16 		  / / centers (kmeans++)

	 17 		  to ( Centroids c )   from ( Points  p )    {

	 18 		  CenterPlus ( c ,   p) ;

	 19 		  }

	 20

	 21 		  / / Rule 3:

	 22 		  / / The kmeans iterative algorithm

	 23 		  to  ( Assignments  a )    from  ( Points   p ,   Centroids  c  )    {

	 24 		        while    ( true )    {

	 25 			   int   change ;

	 26 			   AssignClusters ( a ,   change ,  p ,  c ,  a )  ; 

	 27 			   if   ( change==0 )    return ; 	 / /   Reached fixed point

	 28 			   NewClusterLocations  ( c ,  p ,  a ) ;

	 29 		        }

	 30 		  }

	 31	 }
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by naming the inputs and outputs of 
each rule, but unlike in a traditional 
dataflow programming model, more 
than one rule can be defined to output 
the same data. Thus, the input depen-
dences of a rule can be satisfied by the 
output of one or more rules.

It is up to the PetaBricks compiler 
and autotuner to decide (for a given ar-
chitecture and input) which rule com-
bination will most efficiently produce 
the transform output while satisfying 
all intermediate data dependencies. 
For example, the autotuner may find 
that it is preferable to use rules that 
minimize the critical path of the trans-
form on parallel architectures, while 
rules with the lowest computational 
complexity may fare better on sequen-
tial architectures. The example in the 
following section will help further il-
lustrate the PetaBricks language.

While it is helpful for a PetaBricks 
programmer to know beforehand what 
algorithms perform best under what 
circumstances, the framework can 
help those who do not in a different, 
and possibly more fundamental, way. 

An expert may narrow the field of 
algorithmic choices to those he or she 
knows will perform well under a variety 
of circumstances, and then leverage 
PetaBricks to do the heavy lifting, tai-
loring their programs to their specific 
machine architectures. A non-expert 
with no such domain knowledge can 
take advantage of PetaBricks by enu-

merating several algorithms, and then 
learn from the autotuner what per-
forms well under what circumstances. 

We hope both types of users will 
find PetaBricks an indispensable tool 
in their programming arsenal.

EXAMPLE PROGRAM
Figure 1 presents an example PetaBricks 
program, kmeans. The program groups 
the input Points into a number of clus-
ters and writes each point’s cluster to 
the output Assignments. Internally the 
program uses the intermediate data 
Centroids to keep track of the current 
center of each cluster. The transform 
header declares each of the input (from), 
intermediate (through), and output (to) 
data structures. The rules contained 
in the body of the transform define the 
various pathways to construct the As-
signments data from the initial Points 
data. The transform can be depicted 
using the dependence graph shown in 
Figure 2, which indicates the dependen-
cies of each of the three rules.

The first two rules specify two differ-
ent ways to initialize the Centroids data 
needed by the iterative kmeans solver in 
the third rule. Both of these rules require 
the Points input data. The third rule 
specifies how to produce the output As-
signments using both the input Points 
and intermediate Centroids. Note that 
since the third rule depends on the out-
put of either the first or second rule, the 
third rule cannot be executed until the 
intermediate data structure Centroids 
has been computed by one of the first 
two rules. The autotuner and compiler 
will make sure the program will satisfy 

these dependencies when producing 
tuned code.

Additionally, the first rule provides 
an example of how the autotuner can 
synthesize outer control flow. Instead 
of using a rule that explicitly loops over 
every column of Centroids 2D array, the 
programmer has specified a computa-
tion that is done for each column of the 
output. The order over which these col-
umns are iterated is then synthesized 
and tuned by the compiler and auto-
tuner. Columns may also be processed 
in parallel if dependencies are satis-
fied. Operations can be specified on a 
per-row or per-cell basis as well, allow-
ing optimizations such as cache-block-
ing to be automatically discovered.

To summarize, when our transform 
is executed, the cluster centroids are 
initialized either by the first rule, which 
performs random initialization on a 
per-column basis with synthesized out-
er control flow, or the second rule, which 
calls the CenterPlus algorithm. Once 
Centroids is generated, the iterative al-
gorithm in the third rule is called.

PETABRICKS COMPILER  
INFRASTRUCTURE
Figure 3 displays the general flow for 
the compilation of a PetaBricks trans-
form. Compilation is split into two rep-
resentations. The first representation 
operates at the rule level, and is similar 
to a traditional high-level sequential in-
termediate representation. The second 
representation operates at the trans-
form level, and is responsible for man-
aging choices and for code synthesis.

The main transform level represen-

“It is a daunting task 
to write a program 
that will perform 
well on not only 
today’s architectures 
but also those of the 
future. We believe 
that PetaBricks 
can give programs 
the portable 
performance needed 
to increase their 
effective lifetimes.”

Figure 2: In this dependency graph for kmeans example, the rules are the vertices 
while each edge represents the dependencies of each rule. Each edge color corre-
sponds to each named data dependence in the pseudocode shown in Figure 1.
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tation is the choice dependency graph, 
which is the primary way that choices 
are represented in PetaBricks. At a 
high level, the information contained 
in the choice dependency graph is sim-
ilar to the dependency graph shown 
for our example program in Figure 2. 
However, the data is represented as an 
“inverse” of that graph: data dependen-
cies (previously represented by edges) 
are represented by vertices, while rules 
(previously represented by vertices) are 
represented by graph hyperedges. Ad-
ditionally, data may be split into mul-
tiple vertices in the choice dependency 
graph if the transform contains rules 
that operate on just subregions of that 
data. The PetaBricks compiler uses 
this graph to manage code choices and 
to synthesize the outer control flow of 
the rules.

The final phase of compilation gen-
erates an output binary and a training 
information file containing static anal-
ysis information. These two outputs 
are used by the autotuner to search the 
space of possible algorithmic paths. 
Autotuning creates a choice configura-
tion file, which can either be used by 
the output binary to run directly or can 
be fed back into the compiler to allow 
additional optimizations.

The autotuner follows a genetic al-
gorithm approach to search through 
the available choice space. It maintains 
a population of candidate algorithms 
which it continually expands using a 
fixed set of high level mutators, which 
are generated through static code 

analysis. The autotuner then prunes 
the population in order to allow it to 
evolve more optimal algorithms. The 
input sizes used for testing during this 
process grow exponentially, which nat-
urally exploits any optimal substruc-
ture inherent to most programs.

For more details on the PetaBricks 
language and compiler infrastructure 
please see our prior work [1].

PERFORMANCE
In our prior work [1], we implemented 
a suite of benchmarks to showcase the 
benefits of using our compiler and auto-
tuner. First, we illustrate the impact of 
allowing greater algorithmic flexibility 
on computational performance. Fig-
ures 4-6 show the performance of our 
autotuned sort, eigenproblem, and 2D 
Poisson’s equation solver algorithms, 
respectively, compared to implementa-
tions that utilize a single algorithmic 
choice. In all cases the autotuned algo-
rithm obtained a significant speedup. 
These results were gathered on a 8-way 
(dual socket, quad core) Intel Xeon 
E7340 system running at 2.4 GHz us-
ing 64-bit CSAIL Debian 4.0 with Linux 
kernel 2.6.18 and GCC 4.1.2.

Note that in some cases, such as 
with our sort benchmark, the auto-
tuned algorithm was able to signifi-
cantly outperform the best available 
single algorithm. This is because our 
autotuned algorithm is able to leverage 
multiple algorithms during a single ex-
ecution. Our autotuned sort program 
is able to switch from radix sort to 

merge sort to insertion sort during its 
recursive decomposition whenever the 
best algorithm for the current input 
size changes.

Second, we illustrate the benefits to 
program portability. Multi-core archi-
tectures have drastically increased the 
processor design space resulting in a 
large variety of processor designs cur-
rently on the market. Such variance can 
significantly hinder efforts to port per-
formance critical code. We optimized 
our sort benchmark on three parallel ar-
chitectures designed for a variety of pur-
poses: Intel Core 2 Due mobile proces-
sor, Intel Xeon E7340 server processor, 
and the Sun Fire T200 Niagara low pow-
er, high throughput server processor.

Table 1 illustrates the benefits of 
targeted tuning on each architecture. 
We found that programs trained on ar-
chitectures different from the ones on 
which they are run exhibit significant 
slowdowns. For example, even though 
they have the same number of cores, 
the autotuned configuration file from 
the Niagara machine results in a 2.35x 
loss of performance when used on the 
Xeon processor. On average we ob-
served a slowdown of 1.68x across all 
of the systems we tested.

Table 2 displays the optimal config-
urations for the sort benchmark after 
running the same autotuning process 
on the three architectures. It is inter-
esting to note the dramatic differences 
between the choice of algorithms, com-
position switching points, and scal-
ability. The Intel architectures (with 
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Figure 3: The flow for the compilation of a PetaBricks program with a single trans-
form is shown. Additional transforms would cause the center part of the diagram 
to be duplicated.

“Multi-core 
architectures have 
drastically increased 
the processor design 
space resulting in 
a large variety of 
processor designs 
currently on the 
market.” 
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Figure 5: Differences in performance are shown 
for solving the eigenvalue problem using various 
algorithms compared to our autotuned PetaBricks al-
gorithm. “Cutoff 25” corresponds to the hard-coded 
hybrid algorithm found in LAPACK.

Figure 6: Differences in performance are shown for 
solving the 2D Poisson’s equation up to an accuracy 
level of 10^9 using different algorithms compared to 
our autotuned PetaBricks algorithm.

Figure 4: Given a model of a DNA complex, the various 
kinds of reactions can be analyzed by a simulation.

“To obtain portable 
performance in this 
new world of more 
diverse architectures, 
we must build 
programs that can 
adapt to whatever 
hardware platform 
they are currently 
running on.”

larger computation to communication 
ratios) appear to perform better when 
PetaBricks produces code with less 
parallelism, suggesting that the cost of 
communication often outweighs any 
benefits from running code containing 
fine-grained parallelism. On the other 
hand, the Sun Niagara processor per-
forms best when executing code with 
lots of parallelism as shown by the ex-
clusive use of recursive algorithms.

CURRENT AND FUTURE WORK
Variable accuracy. Different algorith-
mic choices available to the program-
mer often produce outputs of vary-
ing quality. We must understand the 
trade-off between computation time 
and accuracy in order to make the cor-
rect choices during autotuning. To ex-
pose these trade-offs to the compiler, 
we added simple language extensions 
to PetaBricks. With these extensions, 
our compiler can perform fully auto-
matic compile-time and install-time 
autotuning and analysis to construct 
optimized algorithms for any user-
specified target accuracy.

Dynamic choices. One facet of op-
timizing numerical algorithms we 
wish to explore is the selection of algo-
rithms based on the numerical char-
acteristics of the input, such as the 
condition number of a matrix, or the 
“pre-sortedness” of an array. We are 
exploring the use of run-time analysis 
for algorithm selection and parameter 
tuning that may make decisions based 
on deeper characteristics of the input 
in addition to size.

Heterogeneous architectures. One 
of the most difficult types of architec-
ture to utilize is those with different 



Table 2: The table shows the automatically tuned configuration settings for the sort benchmark on various architectures. 

types of cores in a single system. Exam-
ples of this include coprocessors such 
as GPGPUs and asymmetric  multi-core 
chips [3]. We are expanding our run-
time and autotuning infrastructure to 
support these types of processors so 
PetaBricks programs can effectively 
utilize heterogeneous architectures.

Distributed memory and clus-
ters. An interesting future direction 
is support for a distributed memory 
back-end so that we can run unmodi-
fied PetaBricks programs on clusters. 
Moving to clusters will add even more 
choices for the compiler to analyze, as 
it must decide both what algorithms to 
use and where to run them. A key chal-
lenge in this area is autotuning the 
management of data.

RECOMMENDED FURTHER READING
There is a large variety of work related to 
PetaBricks’ autotuning approach of op-
timizing programs. Please see our origi-
nal PetaBricks paper [1] for a more de-
tailed description of our framework and 
a more comprehensive listing of related 

work. For readers who are more appli-
cations-oriented, please see an in-depth 
example of our framework applied to a 
variable-accuracy multigrid solver [2].

PORTABILITY AND PERFORMANCE
Getting consistent, scalable, and porta-
ble performance is difficult. The com-
piler has the daunting task of selecting 
an effective optimization configura-
tion from possibilities with drastically 
different impacts on the performance. 
No single choice of parameters can 
yield the best possible result as differ-
ent algorithms may be required under 
different circumstances. The high per-
formance computing community has 
always known that in many problem 
domains, the best sequential algo-
rithm is different from the best paral-
lel algorithm. Varying problem size 
and data sets will also require differ-
ent algorithms. Currently there is no 
viable way for incorporating all these 
algorithmic choices into a single pro-
gram to produce portable programs 
with consistently high performance.

We have introduced the first lan-
guage that allows programmers to 
naturally express algorithmic choice 
explicitly so as to empower the compiler 
to perform deeper optimization. We 
have created a compiler and an auto-
tuner that is not only able to compose a 
complex program using fine-grained al-
gorithmic choices but also find the right 
choice for many other parameters.

Trends show us that programs have 
a lifetime running into decades while 
architectures are much shorter lived. 
With the advent of  multi-core pro-
cessors, architectures are experienc-
ing drastic changes at an even faster 
rate. Under these circumstances, it 
is a daunting task to write a program 
that will perform well on not only to-
day’s architectures but also those of 
the future. We believe that PetaBricks 
can give programs the portable perfor-
mance needed to increase their effec-
tive lifetimes.
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Table 1: Slowdown for sort benchmark on an input size of 100,000 can be seen 
when the program is tuned on a machine different from the one it is run on. 
Slowdowns are relative to training natively. Descriptions of abbreviated system 
names can be found in Table 2.
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The numbers in parentheses next to the algorithm indicate the upper bound 
on the range of input sizes handled by that algorithm; for example, for Xeon 
1-way, insertion sort is used for sizes up to 75, 4MS for 76 to 98, and RS for 
99 and larger. Multiple algorithms are used as the problem is recursively 
decomposed into smaller and smaller sub-problems.

Trained on

Mobile Xeon 1-way Xeon 8-way Niagra

Mobile – 1.09x 1.67x 1.47x

2.50x

2.35x

–

1.61x – 2.08x

1.59x 2.14x –

1.12x 1.51x 1.08x

Xeon 1-way

Xeon 8-way

Niagra

R
un

 o
n 

Abbreviation	 System	 Frequency	 Cores Used	 Scalability	 Algorithm Choices (with switching points)

Mobile Core 2 Duo Mobile 1.6 GHz 2 of 2 1.92 IS (150) 8MS (600) 4MS (1295) 2MS (38400) QS(∞)

Xeon 1-way Xeon E7340 (2x4 core) 2.4 GHz 1 of8 – IS (75)  4MS (98) RS(∞)

Xeon 8-way Xeon E7340 (2x4 core) 2.4 GHz 8 of 8 5.69 IS (600) QS (1420)  2MS (∞) 

Niagara Sun Fire T200 Niagra 1.2 GHz 8 of 8 7.79 16MS (75) 8MS (1461) 4MS (2400) 2MS (∞)

Abbreviations 
IS	 insertion sort
QS	 quick sort
RS	 radix sort
16MS	 16-way merge sort
8MS	 8-way merge sort

4MS	 4-way merge sort
2MS	 2-way merge sort,
	 with recursive 
	 merge that can be 
	 parallelized. 
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