
32

asymmetric multi-core [3], with differ-
ent types of cores on a single chip, will
present an even greater challenge for
programmers to utilize effectively.

Programmers often find they must
make algorithmic changes to their pro-
gram in order to get performance when
moving between these different types
of architectures. For example, when
moving from a sequential to a parallel
architecture, a programmer may have
to change his or her algorithm to ex-
pose more parallelism.

A similar need for algorithmic
change arises when switching between
different types of parallel architec-
tures. In a recent paper [1], we showed
that even when changing between
similar architectures with the same
number of cores, dramatic algorithmic
changes can be required to optimize
performance.

To obtain portable performance in
this new world of more diverse archi-
tectures, we must build programs that
can adapt to whatever hardware plat-
form they are currently running on.
Our team of researchers at the Massa-
chusetts Institute of Technology has
developed PetaBricks [1], a new, im-
plicitly parallel language and compiler

that allows the user to specify algorith-
mic choices at the language level. Using
this mechanism, PetaBricks programs
define not a single algorithmic path,
but a search space of possible paths.
This flexibility allows our compiler to
build programs that can automatically

32

W ith the dawn of the multi-core era, programmers are being challenged to write
code that performs well on an increasingly diverse array of architectures. A single
program or library may be used on systems ranging in power from large servers
with dozens or hundreds of cores to small single-core netbooks or mobile phones.

A program may need to run efficiently both on architectures with many simple cores and on
those with fewer monolithic cores. Some of the systems a program encounters might have
GPU coprocessors, while others might not. Looking forward, processor designs such as

Building adaptable and more efficient programs
for the multi-core era is now within reach.
By Jason Ansel and Cy Chan
DOI: 10.1145/1836543.1836554

adapt, with empirical autotuning, to
every architecture they encounter.

PETABRICKS LANGUAGE
The PetaBricks language provides a
framework for the programmer to de-
scribe multiple ways of solving a prob-
lem while allowing the autotuner to de-
termine which of those ways is best for
the user’s situation. It provides both al-
gorithmic flexibility (multiple algorith-
mic choices) as well as coarse-grained
code generation flexibility (synthesized
outer control flow).

At the highest level, the programmer
can specify a transform, which takes
some number of inputs and produces
some number of outputs. In this re-
spect, the PetaBricks transform is like
a function call in any common proce-
dural language. The major difference
with PetaBricks is that we allow the
programmer to specify multiple path-
ways to convert the inputs to the out-
puts for each transform. Pathways are
specified in a dataflow manner using
a number of smaller building blocks
called rules, which encode both the
data dependencies of the rule and C++-
like code that converts the rule’s inputs
to outputs. Dependencies are specified

PetaBricks

“PetaBricks
programs define
not a single
algorithmic path,
but a search space of
possible paths. This
flexibility allows our
compiler to build
programs that can
automatically adapt,
with empirical
autotuning, to every
architecture they
encounter.”

XRDS • F A L L 2 0 1 0 • V O L . 17 • N O . 1

Figure 1: Pseudocode for kmeans, an example of the PetaBricks program, is shown.

3333XRDS • F A L L 2 0 1 0 • V O L . 17 • N O . 1

	 1	 transform kmeans

	 2	 from Points[n, 2]	 // Array of points (each column

	 3 			 // stores x and y coordinates)

	 4	 through Centroids[sqrt(n), 2]

	 5	 to Assignments[n]

	 7	 {

	 7		 // Rule 1:

	 8		 // One possible initial condition: Random

	 9		 // set of points

	 10 		 to (Centroids . column (i) c) from (Points p) {

	 11 		 c=p . column (rand (0, n))

	 12 		 }

	 13

	 14 		 / / Rule 2:

	 15 		 / / Another initial condition; Centerplus initial

	 16 		 / / centers (kmeans++)

	 17 		 to (Centroids c) from (Points p) {

	 18 		 CenterPlus (c , p) ;

	 19 		 }

	 20

	 21 		 / / Rule 3:

	 22 		 / / The kmeans iterative algorithm

	 23 		 to (Assignments a) from (Points p , Centroids c) {

	 24 		 while (true) {

	 25 			 int change ;

	 26 			 AssignClusters (a , change , p , c , a) ;

	 27 			 if (change==0) return ; 	 / / Reached fixed point

	 28 			 NewClusterLocations (c , p , a) ;

	 29 		 }

	 30 		 }

	 31	 }

34

by naming the inputs and outputs of
each rule, but unlike in a traditional
dataflow programming model, more
than one rule can be defined to output
the same data. Thus, the input depen-
dences of a rule can be satisfied by the
output of one or more rules.

It is up to the PetaBricks compiler
and autotuner to decide (for a given ar-
chitecture and input) which rule com-
bination will most efficiently produce
the transform output while satisfying
all intermediate data dependencies.
For example, the autotuner may find
that it is preferable to use rules that
minimize the critical path of the trans-
form on parallel architectures, while
rules with the lowest computational
complexity may fare better on sequen-
tial architectures. The example in the
following section will help further il-
lustrate the PetaBricks language.

While it is helpful for a PetaBricks
programmer to know beforehand what
algorithms perform best under what
circumstances, the framework can
help those who do not in a different,
and possibly more fundamental, way.

An expert may narrow the field of
algorithmic choices to those he or she
knows will perform well under a variety
of circumstances, and then leverage
PetaBricks to do the heavy lifting, tai-
loring their programs to their specific
machine architectures. A non-expert
with no such domain knowledge can
take advantage of PetaBricks by enu-

merating several algorithms, and then
learn from the autotuner what per-
forms well under what circumstances.

We hope both types of users will
find PetaBricks an indispensable tool
in their programming arsenal.

EXAMPLE PROGRAM
Figure 1 presents an example PetaBricks
program, kmeans. The program groups
the input Points into a number of clus-
ters and writes each point’s cluster to
the output Assignments. Internally the
program uses the intermediate data
Centroids to keep track of the current
center of each cluster. The transform
header declares each of the input (from),
intermediate (through), and output (to)
data structures. The rules contained
in the body of the transform define the
various pathways to construct the As-
signments data from the initial Points
data. The transform can be depicted
using the dependence graph shown in
Figure 2, which indicates the dependen-
cies of each of the three rules.

The first two rules specify two differ-
ent ways to initialize the Centroids data
needed by the iterative kmeans solver in
the third rule. Both of these rules require
the Points input data. The third rule
specifies how to produce the output As-
signments using both the input Points
and intermediate Centroids. Note that
since the third rule depends on the out-
put of either the first or second rule, the
third rule cannot be executed until the
intermediate data structure Centroids
has been computed by one of the first
two rules. The autotuner and compiler
will make sure the program will satisfy

these dependencies when producing
tuned code.

Additionally, the first rule provides
an example of how the autotuner can
synthesize outer control flow. Instead
of using a rule that explicitly loops over
every column of Centroids 2D array, the
programmer has specified a computa-
tion that is done for each column of the
output. The order over which these col-
umns are iterated is then synthesized
and tuned by the compiler and auto-
tuner. Columns may also be processed
in parallel if dependencies are satis-
fied. Operations can be specified on a
per-row or per-cell basis as well, allow-
ing optimizations such as cache-block-
ing to be automatically discovered.

To summarize, when our transform
is executed, the cluster centroids are
initialized either by the first rule, which
performs random initialization on a
per-column basis with synthesized out-
er control flow, or the second rule, which
calls the CenterPlus algorithm. Once
Centroids is generated, the iterative al-
gorithm in the third rule is called.

PETABRICKS COMPILER
INFRASTRUCTURE
Figure 3 displays the general flow for
the compilation of a PetaBricks trans-
form. Compilation is split into two rep-
resentations. The first representation
operates at the rule level, and is similar
to a traditional high-level sequential in-
termediate representation. The second
representation operates at the trans-
form level, and is responsible for man-
aging choices and for code synthesis.

The main transform level represen-

“It is a daunting task
to write a program
that will perform
well on not only
today’s architectures
but also those of the
future. We believe
that PetaBricks
can give programs
the portable
performance needed
to increase their
effective lifetimes.”

Figure 2: In this dependency graph for kmeans example, the rules are the vertices
while each edge represents the dependencies of each rule. Each edge color corre-
sponds to each named data dependence in the pseudocode shown in Figure 1.

XRDS • F A L L 2 0 1 0 • V O L . 17 • N O . 1

Input

Points Centroids

Intermediate Output

Assignments

Rule 1

(run n times)

Rule 2

(run once)

Rule 3
(run once)

tation is the choice dependency graph,
which is the primary way that choices
are represented in PetaBricks. At a
high level, the information contained
in the choice dependency graph is sim-
ilar to the dependency graph shown
for our example program in Figure 2.
However, the data is represented as an
“inverse” of that graph: data dependen-
cies (previously represented by edges)
are represented by vertices, while rules
(previously represented by vertices) are
represented by graph hyperedges. Ad-
ditionally, data may be split into mul-
tiple vertices in the choice dependency
graph if the transform contains rules
that operate on just subregions of that
data. The PetaBricks compiler uses
this graph to manage code choices and
to synthesize the outer control flow of
the rules.

The final phase of compilation gen-
erates an output binary and a training
information file containing static anal-
ysis information. These two outputs
are used by the autotuner to search the
space of possible algorithmic paths.
Autotuning creates a choice configura-
tion file, which can either be used by
the output binary to run directly or can
be fed back into the compiler to allow
additional optimizations.

The autotuner follows a genetic al-
gorithm approach to search through
the available choice space. It maintains
a population of candidate algorithms
which it continually expands using a
fixed set of high level mutators, which
are generated through static code

analysis. The autotuner then prunes
the population in order to allow it to
evolve more optimal algorithms. The
input sizes used for testing during this
process grow exponentially, which nat-
urally exploits any optimal substruc-
ture inherent to most programs.

For more details on the PetaBricks
language and compiler infrastructure
please see our prior work [1].

PERFORMANCE
In our prior work [1], we implemented
a suite of benchmarks to showcase the
benefits of using our compiler and auto-
tuner. First, we illustrate the impact of
allowing greater algorithmic flexibility
on computational performance. Fig-
ures 4-6 show the performance of our
autotuned sort, eigenproblem, and 2D
Poisson’s equation solver algorithms,
respectively, compared to implementa-
tions that utilize a single algorithmic
choice. In all cases the autotuned algo-
rithm obtained a significant speedup.
These results were gathered on a 8-way
(dual socket, quad core) Intel Xeon
E7340 system running at 2.4 GHz us-
ing 64-bit CSAIL Debian 4.0 with Linux
kernel 2.6.18 and GCC 4.1.2.

Note that in some cases, such as
with our sort benchmark, the auto-
tuned algorithm was able to signifi-
cantly outperform the best available
single algorithm. This is because our
autotuned algorithm is able to leverage
multiple algorithms during a single ex-
ecution. Our autotuned sort program
is able to switch from radix sort to

merge sort to insertion sort during its
recursive decomposition whenever the
best algorithm for the current input
size changes.

Second, we illustrate the benefits to
program portability. Multi-core archi-
tectures have drastically increased the
processor design space resulting in a
large variety of processor designs cur-
rently on the market. Such variance can
significantly hinder efforts to port per-
formance critical code. We optimized
our sort benchmark on three parallel ar-
chitectures designed for a variety of pur-
poses: Intel Core 2 Due mobile proces-
sor, Intel Xeon E7340 server processor,
and the Sun Fire T200 Niagara low pow-
er, high throughput server processor.

Table 1 illustrates the benefits of
targeted tuning on each architecture.
We found that programs trained on ar-
chitectures different from the ones on
which they are run exhibit significant
slowdowns. For example, even though
they have the same number of cores,
the autotuned configuration file from
the Niagara machine results in a 2.35x
loss of performance when used on the
Xeon processor. On average we ob-
served a slowdown of 1.68x across all
of the systems we tested.

Table 2 displays the optimal config-
urations for the sort benchmark after
running the same autotuning process
on the three architectures. It is inter-
esting to note the dramatic differences
between the choice of algorithms, com-
position switching points, and scal-
ability. The Intel architectures (with

35

Figure 3: The flow for the compilation of a PetaBricks program with a single trans-
form is shown. Additional transforms would cause the center part of the diagram
to be duplicated.

“Multi-core
architectures have
drastically increased
the processor design
space resulting in
a large variety of
processor designs
currently on the
market.”

XRDS • F A L L 2 0 1 0 • V O L . 17 • N O . 1

XRDS • F A L L 2 0 1 0 • V O L . 17 • N O . 136

PetaBricks

Direct
Jacobi

SOR
Multigrid

Autotuned

10000

1000

100

10

1

0.1

0.01

0.001

0.0001

1e-05

Input size
1 10 100 1000

0.0025

0.002

0.015

0.001

0.0005

0
0 250 500 750 1000 1250 1500 1750

Input size

Insertion Sort
Quick Sort

Merge Sort
Radix Sort
Autotuned

Mobile

Bisection
DC
QR

Cutoff 25
Autotuned

0 200 400 600 800 1000

0.12

0.1

0.8

0.6

0.4

0.2

0

Input size

Figure 5: Differences in performance are shown
for solving the eigenvalue problem using various
algorithms compared to our autotuned PetaBricks al-
gorithm. “Cutoff 25” corresponds to the hard-coded
hybrid algorithm found in LAPACK.

Figure 6: Differences in performance are shown for
solving the 2D Poisson’s equation up to an accuracy
level of 10^9 using different algorithms compared to
our autotuned PetaBricks algorithm.

Figure 4: Given a model of a DNA complex, the various
kinds of reactions can be analyzed by a simulation.

“To obtain portable
performance in this
new world of more
diverse architectures,
we must build
programs that can
adapt to whatever
hardware platform
they are currently
running on.”

larger computation to communication
ratios) appear to perform better when
PetaBricks produces code with less
parallelism, suggesting that the cost of
communication often outweighs any
benefits from running code containing
fine-grained parallelism. On the other
hand, the Sun Niagara processor per-
forms best when executing code with
lots of parallelism as shown by the ex-
clusive use of recursive algorithms.

CURRENT AND FUTURE WORK
Variable accuracy. Different algorith-
mic choices available to the program-
mer often produce outputs of vary-
ing quality. We must understand the
trade-off between computation time
and accuracy in order to make the cor-
rect choices during autotuning. To ex-
pose these trade-offs to the compiler,
we added simple language extensions
to PetaBricks. With these extensions,
our compiler can perform fully auto-
matic compile-time and install-time
autotuning and analysis to construct
optimized algorithms for any user-
specified target accuracy.

Dynamic choices. One facet of op-
timizing numerical algorithms we
wish to explore is the selection of algo-
rithms based on the numerical char-
acteristics of the input, such as the
condition number of a matrix, or the
“pre-sortedness” of an array. We are
exploring the use of run-time analysis
for algorithm selection and parameter
tuning that may make decisions based
on deeper characteristics of the input
in addition to size.

Heterogeneous architectures. One
of the most difficult types of architec-
ture to utilize is those with different

Table 2: The table shows the automatically tuned configuration settings for the sort benchmark on various architectures.

types of cores in a single system. Exam-
ples of this include coprocessors such
as GPGPUs and asymmetric multi-core
chips [3]. We are expanding our run-
time and autotuning infrastructure to
support these types of processors so
PetaBricks programs can effectively
utilize heterogeneous architectures.

Distributed memory and clus-
ters. An interesting future direction
is support for a distributed memory
back-end so that we can run unmodi-
fied PetaBricks programs on clusters.
Moving to clusters will add even more
choices for the compiler to analyze, as
it must decide both what algorithms to
use and where to run them. A key chal-
lenge in this area is autotuning the
management of data.

RECOMMENDED FURTHER READING
There is a large variety of work related to
PetaBricks’ autotuning approach of op-
timizing programs. Please see our origi-
nal PetaBricks paper [1] for a more de-
tailed description of our framework and
a more comprehensive listing of related

work. For readers who are more appli-
cations-oriented, please see an in-depth
example of our framework applied to a
variable-accuracy multigrid solver [2].

PORTABILITY AND PERFORMANCE
Getting consistent, scalable, and porta-
ble performance is difficult. The com-
piler has the daunting task of selecting
an effective optimization configura-
tion from possibilities with drastically
different impacts on the performance.
No single choice of parameters can
yield the best possible result as differ-
ent algorithms may be required under
different circumstances. The high per-
formance computing community has
always known that in many problem
domains, the best sequential algo-
rithm is different from the best paral-
lel algorithm. Varying problem size
and data sets will also require differ-
ent algorithms. Currently there is no
viable way for incorporating all these
algorithmic choices into a single pro-
gram to produce portable programs
with consistently high performance.

We have introduced the first lan-
guage that allows programmers to
naturally express algorithmic choice
explicitly so as to empower the compiler
to perform deeper optimization. We
have created a compiler and an auto-
tuner that is not only able to compose a
complex program using fine-grained al-
gorithmic choices but also find the right
choice for many other parameters.

Trends show us that programs have
a lifetime running into decades while
architectures are much shorter lived.
With the advent of multi-core pro-
cessors, architectures are experienc-
ing drastic changes at an even faster
rate. Under these circumstances, it
is a daunting task to write a program
that will perform well on not only to-
day’s architectures but also those of
the future. We believe that PetaBricks
can give programs the portable perfor-
mance needed to increase their effec-
tive lifetimes.

Biographies

Jason Ansel and Cy Chan are PhD candidates in the
Computer Science and Artificial Intelligence Laboratory at
MIT. Ansel is advised by Professor Saman Amarasinghe and
Chan is advised by Professor Alan Edelman.

References

1.	 Ansel, J., Chan, C., Wong, Y. L., Olszewski, M., Zhao, Q.,
Edelman, A., and Amarasinghe, S. 2009. PetaBricks:
A language and compiler for algorithmic choice. In
ACM SIGPLAN Conference on Programming Language
Design and Implementation, Dublin, Ireland.

2.	 Chan, C., Ansel, J., Wong, Y. L., Amarasinghe,
S., and Edelman, A. 2009. Autotuning multigrid
with PetaBricks. In ACM/IEEE Conference on
Supercomputing, Portland, Ore.

3.	 Kumar, R., Tullsen, D. M., Jouppi, N. P., and
Ranganathan, P. 2005. Heterogeneous chip
multiprocessors. Computer, 38:32–38, 2005.

Table 1: Slowdown for sort benchmark on an input size of 100,000 can be seen
when the program is tuned on a machine different from the one it is run on.
Slowdowns are relative to training natively. Descriptions of abbreviated system
names can be found in Table 2.

XRDS • F A L L 2 0 1 0 • V O L . 17 • N O . 1 37

The numbers in parentheses next to the algorithm indicate the upper bound
on the range of input sizes handled by that algorithm; for example, for Xeon
1-way, insertion sort is used for sizes up to 75, 4MS for 76 to 98, and RS for
99 and larger. Multiple algorithms are used as the problem is recursively
decomposed into smaller and smaller sub-problems.

Trained on

Mobile Xeon 1-way Xeon 8-way Niagra

Mobile – 1.09x 1.67x 1.47x

2.50x

2.35x

–

1.61x – 2.08x

1.59x 2.14x –

1.12x 1.51x 1.08x

Xeon 1-way

Xeon 8-way

Niagra

R
un

 o
n

Abbreviation	 System	 Frequency	 Cores Used	 Scalability	 Algorithm Choices (with switching points)

Mobile Core 2 Duo Mobile 1.6 GHz 2 of 2 1.92 IS (150) 8MS (600) 4MS (1295) 2MS (38400) QS(∞)

Xeon 1-way Xeon E7340 (2x4 core) 2.4 GHz 1 of8 – IS (75) 4MS (98) RS(∞)

Xeon 8-way Xeon E7340 (2x4 core) 2.4 GHz 8 of 8 5.69 IS (600) QS (1420) 2MS (∞)

Niagara Sun Fire T200 Niagra 1.2 GHz 8 of 8 7.79 16MS (75) 8MS (1461) 4MS (2400) 2MS (∞)

Abbreviations
IS	 insertion sort
QS	 quick sort
RS	 radix sort
16MS	 16-way merge sort
8MS	 8-way merge sort

4MS	 4-way merge sort
2MS	 2-way merge sort,
	 with recursive
	 merge that can be
	 parallelized.

© 2010 ACM 1528-4972/10/0900 $10.00

