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ABSTRACT
This paper describes a compiler transformation on stencil
operators that automatically converts a standard stencil rep-
resentation into an accumulation. We use this as an enabling
transformation to optimize the stencil operators in the con-
text of Geometric Multigrid (GMG), a widely used method
to solve partial differential equations. GMG has four stencil
operators, the smoother, residual, restriction, and interpo-
lation some of which require inter-process and inter-thread
communication. This new optimization allows us, at each
level of a GMG V-Cycle, to fuse all operators when recurs-
ing down the V-Cycle, and all smooth operations when re-
turning up the V-Cycle. In turn, this fusion allows us to
create a parallel wavefront across the fused operators that
reduces communication. Thus, these combined optimiza-
tions reduce vertical (through the memory hierarchy) data
movement and horizontal (inter-thread and inter-process)
messages and synchronization.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Compilers, Optimiza-
tion, Code Generation

Keywords
Geometric Multigrid, Compiler Optimization, Autotuning

1. INTRODUCTION
Stencil operations, or nearest-neighbor structured grid com-

putations, are at the heart of many key numerical applica-
tions, making their efficient execution increasingly critical
across a broad range of domains, including fluid dynamics,
combustion, electromagnetics and MRI imaging. Optimiz-
ing stencil computations is a well studied area, employing
techniques like cache oblivious algorithms, time skewing,
wavefront optimizations and overlapped tiling [5, 10, 11, 17,
19, 24, 27, 32–34]. In many of these efforts, the problems
were simplified as compared to real-world applications, by
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Figure 1: The Multigrid V-cycle for solving Luh =
fh. Note, superscripts denote grid spacing.

using 2-dimensional or constant-coefficient stencils without
control flow. Moreover, most of them consider the stencil
computations in isolation rather than examining the solver
or numerical method as a whole.

This paper examines stencil optimizations in the context
of Geometric Multigrid (GMG), a family of algorithms used
to accelerate the convergence of iterative solvers for linear
systems. To enable a portable solution, we use a compiler
framework to generate optimized code for the miniGMG
benchmark [18, 29, 30], which proxies the multigrid solvers
in Adaptive Mesh Refinement (AMR) applications.

Geometric Multigrid solvers perform a few basic opera-
tions, which can be seen in Figure 1. The smoother, residual
and restriction operations are all stencil computations. The
smoother is composed of stencils and pointwise updates to a
structured grid. Our work in this paper focuses on variable-
coefficient stencils for the smoother and residual operators
and a constant-coefficient stencil for the restriction opera-
tor. In Geometric Multigrid, the smooth operation usually
dominates execution time and variable-coefficient smoothers
in GMG are heavily memory bound as not only the stencil
points but also their coefficients must be read from memory.
As a result, managing data movement through the memory
hierarchy and reducing inter-process communication are key
to achieving high performance.

Communication-avoiding optimizations targeting GMG on
modern architectures have been used in both manual tun-
ing and been built into compiler frameworks [1, 30]. Such
optimizations reduce vertical communication through the
memory hierarchy and horizontal communication across pro-
cesses or threads, sometimes at the expense of redundant
computation. Previously described communication-avoiding
optimizations built into the loop transformation framework
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Figure 2: (left)Domain decomposition in miniGMG
from global problem to individual MPI processes to
individual boxes (subdomains) of elements. (right)
2D visualization of the local 3D stencil operation.

CHiLL, a polyhedral transformation and code generation
framework, optimize just the smooth operator and are used
in conjunction with autotuning to find the optimal ghost-
zone and wavefront depth [1].

This paper extends the capabilities of CHiLL to include
a novel transformation that automatically converts a sten-
cil computation into an accumulation. The transformation
allows the compiler to fuse the residual and restriction sten-
cil operations together, matching the previous manual opti-
mization [30]. We then take communication-avoiding a step
further by combining our new optimization with previous
work by fusing all smoother operations with the residual and
restriction operators. This fusion allows the compiler to cre-
ate an even deeper wavefront (with a corresponding deeper
ghost-zone) with nested thread-level parallelism exploited to
manage the larger working sets. Finally, we demonstrate
that this additional collection of communication-avoiding
optimization improves performance for the in-place stencil
updates in Gauss-Seidel Red-black (GSRB) smoothers, but
does not pay off for Jacobi-style smoothers. Therefore, we
conclude that any optimization framework used for the sten-
cils in GMG must be able to evaluate different optimizations
within their execution context (architecture and stencil con-
figuration) to determine which optimizations will achieve the
best performance.

2. MULTIGRID AND miniGMG
Elliptic PDE solvers are ubiquitous in scientific comput-

ing. Multigrid is an iterative method for solving these ellip-
tic PDEs in linear time. Multigrid solvers calculate a cor-
rection to the solution at the current grid resolution using
a coarser grid approximation and may be expressed recur-
sively. Geometric multigrid (GMG) uses a structured mesh
and a corresponding stencil operator. As restriction and in-
terpolation are geometric, coarse grids have half the number
of cells in each dimension (1/8 overall).

Figure 1 visualizes the structure of a multigrid V-cycle for
solving Luh = fh in which L is the operator, u is the solu-
tion, f is the right-hand side, and superscripts represent grid
spacings. At each grid spacing, a smoother reduces the error
in the solution. The literature presents many smoothers of
varying convergence and computational characteristics. The
right-hand side of a coarse grid is constructed from the ge-
ometric restriction of the residual (fh −Luh) of the current
fine grid. For simplicity, many multigrid solvers terminate
when geometric restriction can no longer be performed lo-

Operation Sweeps #Flops #Bytes Radius
2×7-point VC GSRB 4 50 256 1
4×7-point VC Jacobi 4 104 288 1

8-pt Restriction 1 4 10 1

Table 1: Overview of Operator Characteristics.
Note, sweeps represent the number of stencil traver-
sals through the grid per up or down the V-cycle
while #Flops and #Bytes represent per cell totals.

cally. At this point, the calculation uses a“bottom solver”or
coarse grid solver such as BiCGStab [22] or multiple point-
wise smooths. With a coarsest grid solution computed, the
multigrid algorithm interpolates this correction to progres-
sively finer grids, and subsequently applies the smoother to
reduce the error.

This paper uses the miniGMG proxy multigrid bench-
mark [18,29] originally evaluated in Williams et al. [30] and
our previous work [1]. As shown in Figure 2(left), the bench-
mark creates a block structured 3D domain partitioned into
subdomains (boxes) which are distributed among processes.
Boxes must exchange ghost zones via MPI (or buffer copy if
local) before application of an operator.

This work explores compiler optimization for the 7-point
variable-coefficient (face-averaged coefficients) Helmholtz with
either two Gauss-Seidel Red-Black (GSRB) relaxations or
four weighted Jacobi relaxations per smooth. Figure 2(right)
visualizes this operator, while Table 1 presents a breakdown
of the operator characteristics. We use the piecewise con-
stant restriction and prolongation typical of finite volume
methods. Although these restriction and prolongation (in-
terpolation) operators do not require ghost zone communi-
cation, they are a type of stencil and thus amenable to our
optimizations.

To highlight the generality and effectiveness of compiler-
based optimizations, we decompose the smooth operations
into three separate loop nests: the first applies the Lapla-
cian to the current solution and writes to the temporary
array, the second reads the temporary array and forms the
Helmholtz operator, and the third performs either a weighted
Jacobi or a Gauss-Seidel Red-Black (GSRB) smooth of the
current solution. This is slightly different than the version of
the code online [18] where a few combinations of stencil and
smoother were manually fused. Figures 3, 4 and 5 illustrate
the three operators used as input to the compiler. We now
describe the compiler-driven optimization transformations
used in our study.

3. STENCIL OPERATORS AS POINTWISE
ACCUMULATION

The novel optimization described in this paper reorders
constant coefficient stencil operations by exploiting their as-
sociativity. The stencil operator is converted to an accumu-
lation of right-hand side terms (weighted points) into the
output location for the stencil. As presented, this optimiza-
tion works for box-shaped stencils where each input element
is used in the computation of only a single output element.
This case arises in Figure 5, where the restriction operator
in miniGMG uses the eight values from a fine grid to com-
pute a single value of a coarse grid. As mentioned before,
the restriction operation is integral to geometric multigrid,
and the piecewise constant restriction used here is common
to finite volume methods. The compiler can therefore safely



/* Laplacian(phi) = b div beta grad phi */
for (k=0;j<N;k++)

for (j=0;j<N;j++)
for (i=0;i<N;i++)
/* statement S0 */
temp[k][j][i] = b*h2inv*(

beta_i[k][j][i+1]*( phi[k][j][i+1]-phi[k][j][i] )
-beta_i[k][j][i] *( phi[k][j][i] -phi[k][j][i-1])
+beta_j[k][j+1][i]*( phi[k][j+1][i]-phi[k][j][i] )
-beta_j[k][j][i] *( phi[k][j][i] -phi[k][j-1][i])
+beta_k[k+1][j][i]*( phi[k+1][j][i]-phi[k][j][i] )
-beta_k[k][j][i] *( phi[k][j][i] -phi[k-1][j][i])

);

/* Helmholtz(phi) = (a alpha I - laplacian)*phi */
for (k=0;j<N;k++)

for (j=0;j<N;j++)
for (i=0;i<N;i++)
/* statement S1 */
temp[k][j][i] = a * alpha[k][j][i] * phi[k][j][i]

-temp[k][j][i];

/* GSRB relaxation: phi = phi - lambda(helmholtz-rhs) */
/* Jacobi smoother is similar but without if-condition */
/* and reads, writes separate grids */
for (k=0;j<N;k++)
for (j=0;j<N;j++)
for(i=0;i<N;i++){
if((i+j+k+color)%2==0)
/* color is 0 for Red pass, 1 for black */
/* statement S2 */
phi[k][j][i] = phi[k][j][i] - lambda[k][j][i]*(

temp[k][j][i]-rhs[k][j][i]
);

}

Figure 3: The Smooth operator.

reorder these calculations by converting the array accesses
in the stencil into two loop nests. The first loop nest ini-
tializes the output grid, and the second loop nest iterates
through points in the input grid and accumulates their val-
ues in the output grid. The resulting new loops are then
fused together to reduce stencil grid sweeps, and thus im-
prove DRAM traffic, as grids are likely to exceed last-level
cache capacity. In the resultant fused loop nest, the leading
plane in the output grid (the smaller coarse grid) is first ini-
tialized to zero. Subsequently, points in the trailing input
plane are read, restricted, and stored to the output (coarse)
grid.

While this optimization could be used for register and
other optimizations of stencils, as similar techniques de-
scribed in [7,25], we instead use it here as an enabling trans-
formation for the communication-avoiding optimizations de-
scribed in the subsequent subsections.

3.1 Using Reordering Transformation to Fuse
Operators

The optimization shown as the output of Figure 5 en-
ables the fusion of the restriction operator with the pre-
ceding residual operator in Figure 4, as it eliminates the
fusion-preventing dependences on the variable res. This fu-
sion is a vertical communication-avoiding optimization, as
it exposes reuse of res in cache. However, since execution
time is dominated by the smooth operator, we would like to
additionally fuse smooth, residual and restriction together.

In our prior work on compiler-based optimization of GMG,
the compiler fused the Laplacian, Helmholtz and GSRB of
Figure 3, employing array data-flow analysis to contract
the iteration space and eliminate a fusion-preventing de-
pendence [1]. In addition, as described in Section 2, the

/* Input: Residual Operation */
for(k=0;k<K;k++)

for(j=0;j<J;j++)
for(i=0;i<I;i++)

/* statement S3 : Compute residual */
res[k][j][i] = rhs[k][j][i]

- a * alpha[k][j][i] * phi[k][j][i]
- b*h2inv*(

beta_i[k][j][i+1]*( phi[k][j][i+1]-phi[k][j][i] )
-beta_i[k][j][i] *( phi[k][j][i] -phi[k][j][i-1])
+beta_j[k][j+1][i]*( phi[k][j+1][i]-phi[k][j][i] )
-beta_j[k][j][i] *( phi[k][j][i] -phi[k][j-1][i])
+beta_k[k+1][j][i]*( phi[k+1][j][i]-phi[k][j][i] )
-beta_k[k][j][i] *( phi[k][j][i] -phi[k-1][j][i])

);

Figure 4: The Residual operator.

/* Input: Restriction Operation */
for(k=0;k<K;k+=2)

for(j=0;j<J;j+=2)
for(i=0;i<I;i+=2)

coarser_res[k/2][j/2][i/2] = 0.125 *(
res[k ][j ][i] + res[k ][j ][i+1] +
res[k ][j+1][i] + res[k ][j+1][i+1] +
res[k+1][j ][i] + res[k+1][j ][i+1] +
res[k+1][j+1][i] + res[k+1][j+1][i+1]
);

/* Output: Restriction as a Scatter Operation */
for(k=0;k<K;k+=2)

for(j=0;j<J;j+=2)
for(i=0;i<I;i+=2)

/* statement S4 : Initialize coarse_res*/
coarser_res[k/2][j/2][i/2] = 0;

for(k=0;k<K;k++)
for(j=0;j<J;j++)

for(i=0;i<I;i++)
/* statement S5 : Restrict fine_res to coarse_res */
coarser_res[k/2][j/2][i/2] += 0.125* res[k][j][i];

Figure 5: Example code for the Restriction opera-
tion and the transformed output.

smooth is applied multiple time steps in a row. To further
fuse the multiple smooths together, our prior work intro-
duced ghost zones that store data associated with redun-
dant computation across time steps, a well-known horizontal
communication-avoiding optimization. This allowed mul-
tiple applications of smooth per communication exchange
phase, with one layer of ghost zone per smooth application.

In this paper, we fuse these multiple smooth applications
together with residual and restriction. Since typically there
is communication of variable phi between smooth and resid-
ual, the fusion will require an additional layer of ghost zone
to effectively avoid this communication. With all these op-
erators fused together, we only need one communication
phase to exchange ghost-zone data for the application of
the smooth, residual and restriction, thus further eliminat-
ing expensive horizontal communication.

3.2 Communication Avoiding Optimizations:
Wavefront Computation

The fusion and larger ghost-zones not only improves per-
formance, but also presents an opportunity to further reduce
vertical communication to the DRAM by creating a wave-
front computation. Figures 6 and 7 illustrate the wavefront
optimization — which reduces multiple sweeps of the grid
into a single sweep — for smooth, and for smooth fused with
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Figure 6: Figure illustrates a cross-sectional view of
a four deep wavefront for GSRB which processes a
red, black, red and then black planes in that order.

residual and restriction, respectively.
Figure 6 shows the progress of a four deep wavefront for

the GSRB smoother (using a four deep ghost zone). The
left and right grids in the figure are the before and after
snapshots of the wavefront as it sweeps through the 3D grid.
Planes (3,2,1,0) are held in memory and processed in that
order as shown by the white arrows in the figure; the trailing
plane, plane 0, has been fully processed after the second
black smooth is applied to it. The wavefront then moves on
to process planes (4,3,2,1). Thus after a single grid sweep,
all planes have been processed. CHiLL creates the wavefront
via the following transformations: overlapped ghost zones,
loop skewing and permutation [1].

This paper extends the wavefront optimization, as shown
in Figure 7, which illustrates a deeper wavefront where the
two GSRB computations, the residual and restriction are all
fused into one sweep. Since the residual operation requires
ghost zone data, the subdomains are required to exchange
ghost zones between computing the GSRB smoother and the
residual. By using a five deep ghost zone instead of four,
the optimization avoids horizontal communication between
smooth and residual. Our approach can then exploit the
larger ghost zone to create the deeper wavefront, computing
smooth, residual and restriction in a single sweep.

Deeper wavefronts increases the working set even further,
thus necessitating collaborative threading to effectively re-
duce working set pressure by having more than one thread
work on a subdomain (box). Figure 8 shows possible thread-
ing strategies on Hopper that contains 6 cores/chip, where
x boxes are being processed in parallel, while y threads col-
laborate inside a box (x ∗ y is the number of cores per chip).

Figure 9 shows CHiLL-generated code corresponding to
Figure 7 for a 643 box. There are three threads working
collaboratively inside the box, and they synchronize using
spin locks. The code illustrates that the k-loop was skewed
against the time t-loop, and then they are permuted, making
k the outer-loop and giving a single grid sweep (in the k-
dimension). The smooths are followed by initializing a plane
of the output coarser grid, and then the computation of the
residual and the restriction.

In a similar manner, wavefront computations can be gen-
erated for Jacobi style stencil, but Jacobi stencils present
additional challenges to the memory system. Jacobi reads
and writes to different arrays leading to an even larger work-
ing set. Collaborative threading for Jacobi stencils is less
effective, since due to dependences, threads must synchro-
nize after computing each plane, unlike GSRB, where all the
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Figure 7: Visualization of the fused and threaded
GSRB+Residual+Restriction wavefront strategy
exploited when pre-smoothing in the V-Cycle. This
wavefront uses a deeper wavefront than the figure
above. Hence it is able to compute the GSRB
smoother, residual and restriction in one sweep of
the fine grid. Note, Jacobi or Chebyshev smoothers
can be similarly implemented. Residual and restric-
tion are not present when post-smoothing.

planes in the wavefront can be computed before the threads
need to synchronize. Thus deeper wavefront may not always
help Jacobi smoothers.

Integrating these transformations into the compiler allows
the flexibility of selectively applying them on only the suit-
able architectural configurations, as demonstrated in Sec-
tion 5.

4. COMPILER IMPLEMENTATION
The transformations described in the previous section have

been implemented in the CHiLL polyhedral transformation
and code generation framework [3] and extend previous
communication-avoiding optimizations in CHiLL targeting
GMG [1]. This section describes the abstractions used by
the compiler and the implementation of the transformation
that converts a stencil to a pointwise accumulation.

We make the following assumptions about the input code
to our framework. Stencil computations may be either out-
of-place or in-place. Out-of-place updates are loop nest com-
putations where the right-hand sides are read-only matrices
per time step of the stencil computation (e.g., Jacobi). In-
place stencil computations read and write the same matrix
each time step (e.g., Gauss-Seidel). Stencils may be the
sum of pairwise products of two or more matrices (variable-
coefficient) or a weighted sum of a single matrix (constant
coefficient).

The accumulation transformation described in Section 3
targets constant coefficient out-of-place stencils, such as the
8-point stencil of the restriction operator. As is standard
with polyhedral compiler frameworks, we require that all
subscript expressions are affine, or linear combinations of
the loop indices and loop-invariant variables.
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Figure 8: Space of parallel decompositions on Hop-
per which has 6-cores per chip. All the boxes in a
subdomain may work in parallel, or all the threads
may work on one box collaboratively, or nested par-
allelism may be used.

Background on Polyhedral Compiler Frameworks.
In miniGMG and other representative applications, sten-
cils are implemented as multi-dimensional loop nest com-
putations (assumed to be 3-dimensional in this paper). In
CHiLL, we represent this loop nest by an iteration space IS,
which mathematically represents the polyhedra correspond-
ing to points in the 3D iteration space as follows:

IS = {[l1, l2, l3] : 0 ≤ l1, l2, l3 < N} (1)

By convention, l3 is the innermost loop. It is standard to
normalize iteration spaces to start at 0 as in this exam-
ple. Bounds constraints can be far more complex, but for
simplicity, we show an upper bound that is a constant or
variable. The compiler applies a series of affine transforma-
tions that map from the original iteration space to trans-
formed iteration spaces. A separate dependence graph is
used to determine the safety of the transformations to be ap-
plied. When all transformations are completed, polyhedra
scanning is used to scan the iteration spaces and generate
transformed loop nests [2]. The array index expressions are
mapped to the new iteration space, but are typically oth-
erwise copied from the original input. In the following, the
transformation we describe modifies both iteration spaces
and statements.

4.1 Converting to Accumulation
Examining the statement associated with a stencil compu-

tation, the compiler computes a bounding box of the points
in the stencil statement, such that each dimension derives
its lower and upper bound from the minimum and maximum
values in that dimension. Concretely, at every iteration ~I =
〈i1, i2, i3〉 ∈ IS, we compute a single output of the stencil.
For a 2D stencil, for example, this requires loading {[i1][i2],
[i1][i2 ± 1],[i1 ± 1][i2],[i1 ± 1][i2 ± 1]} from input array in,
and writing the weighted sum of these points to output ar-
ray out[i1][i2] on every iteration. Using the above notation,
we can rewrite an out-of-place constant coefficient p-point
stencil as a weighted sum of p points.

out[i1][i2][i3] =
p∑

m=1

wm * in[i1+om1 ][i2+om2 ][i3+om3 ]

Using this notation, each stencil point m is characterized by
its constant coefficient wm, and the vector offset from the
iteration ~I, ~Om = 〈om1 , om2 , om3 〉.

The bounding box is computed from the lower and upper
bounds for each dimension.

#pragma omp parallel private(...)\
shared(locks) num_threads(3)

{
tid = omp_get_thread_num();
num_threads = omp_get_num_threads();
left = min(tid - 1,0);
right = max(tid + 1,num_threads - 1);

for(k = -4; k <= 67; k++){
for(t = 0; t <= min(3,intFloor(k+4,2)); t++){

for(j = 24*tid-4; j <= 24*tid + 19; j++){
for(i= -4+intMod(-k-color-j-(t-4),2); i<=67; i+=2) {

S0(t,k-t,j,i); /* Laplacian */
S1(t,k-t,j,i); /* Helhmoltz */
S2(t,k-t,j,i); /* GSRB */

}}} /* End t,j,i */

if(4<=k && intMod(k,2) == 0){
for(j = max(24 * tid - 4,0);

j <= min(62,24 * tid + 18); j += 2){
for(i = 0; i <= 62; i += 2 ) {
S4(t,k-t,j,i); /* Initialize coarse_res */
}}} /* End if */

if(4<=k){
for(j = max(24 * tid - 4,0);

j <= min(62,24 * tid + 18); j ++){
for(i = 0; i <= 63; i ++ ) {
S3(t,k-t,j,i); /* Compute residual */
S5(t,k-t,j,i); /* Restrict fine_res to coarse_res */
}}} /* End if */

/* After computing the 5-deep wavefront */
/* Threads sync with their right and left neighbors */

locks[tid] = k;
if(left!= tid){ while (locks[left] < k) pause();}
if(right!= tid){ while (locks[right] < k) pause();}

}/* End k */

}/* End OMP region */

Figure 9: Simplified generated code for threaded
wavefront with GSRB and residual and restriction
fused. The code is specialized for a 643 box, with
a 5-deep ghost zone and 3-threads working inside a
box.

lb1 = minmo
m
1 , lb2 = minmo

m
2 , lb3 = minmo

m
3

ub1 = maxmo
m
1 , ub2 = maxmo

m
2 , ub3 = maxmo

m
3

BoundingBox = {[b1,b2,b3]: lb1 ≤ b1 ≤ ub1, lb2 ≤ b2 ≤ ub2,
lb3 ≤ b3 ≤ ub3 }

If the set of points of the stencil and its bounding box repre-
sent the identical volume, as in the case of the 8-point restric-
tion operation, we call this a full stencil. In this paper, we
will restrict this accumulation optimization to computations
on full stencils. If we are willing to tolerate complex con-
trol flow to determine what points to execute, and therefore
potentially inefficient code, more general stencils can be sup-
ported by the compiler using operations such as convex hull
and set difference, which are supported in CHiLL/Omega+.

The key concept is that the compiler rewrites the state-
ment representing the stencil as an accumulation and mod-
ifies the loop nest accordingly. From the perspective of a
polyhedral compiler, it adds additional loops to the iteration
space IS for the computation, and replaces the stencil state-
ment with a different statement that reads and accumulates
into the output variable. For correctness, the compiler must
also create a new statement and iteration space to initialize
the output variable. These steps are shown in Figure 10.



Initialize Output.

Assume stencil statement S0 has iteration space IS
Create initialization statement S1 with iteration space IS.

out[l1][l2][l3] = 0;

Insert S1 lexicographically before S0.

Expand the iteration space for the accumulation.

Create a mapping M for IS to incorporate BoundingBox.

M := {[l1, l2, l3]→ [l′1, b1, l
′
2, b2, l

′
3, b3] :

l′1 = l1, l
′
2 = l2, l

′
3 = l3,

lb1, lb2, lb3 ≤ b1, b2, b3 ≤ ub1, ub2, ub3}

Apply M to IS to create new iteration space IS’
IS’ = M(IS)
/* In special case IS’ can be simplified to */
/* coalesce the loops and is described in the text */

Replace S0 with the new statement S2.

Create new statement S2 with iteration space IS’.

out[l1][l2][l3] += in[l1+b1][l2+b2][l3+b3;

Figure 10: Code generation steps for accumulation
transformation.

The example below illustrates this approach for the re-
striction operator, The iteration space IS is:

IS= {[k, j, i] :
∃α : (0 ≤ k, j, i < N && i, j, k = 2 ∗ α)}

The original stencil statement is modified and two new
statements are created, S1 (initialization) and S2 (accumulation)
are as follows (c1 is the common constant coefficient of the
stencil, if the stencil has unique coefficients, we will use
coeff[b1][b2][b3] instead ):

S1: coarser res[k/2][j/2][i/2] = 0;
S2: coarser res[k/2][j/2][i/2] += c1 * res[k+b1][j+b2][i+b3];

The iteration space for the initialization statement S1 is
the original iteration space for the restriction loop, which we
call IS. The iteration for S2 is modified. In Figure 10, the
relation M maps the original iteration space IS to the new
iteration space IS.

IS’ = M (IS)

For the restriction computation, where there is a stride on
the original loops and the bounding box is contained within
the stride, it is beneficial to apply an additional coalescing
transformation to IS to eliminate the loops associated with
the bounding box and convert the k, j, and i loops to unit
stride accesses.

M ′ := {[k, b1, j, b2, i, b3]→ [k′, j′, i′] :
k − b1 ≤ k′ ≤ k + b1, j − b2 ≤ j′ ≤ j + b2,

i− b3 ≤ i′ ≤ i+ b3}
ISfinal = M’ (IS’ )

When the code generator scans the loop nests associated
with IS and ISfinal, the compiler then derives the code
shown as the output of Figure 5.

Although not strictly a polyhedral transformation, the
new statements and loop iteration spaces are essentially con-
verting subscript expressions to loop iteration spaces, and
rely heavily on the polyhedral framework abstractions. A

Intel AMD
Core Architecture Ivy Bridge Opteron

Clock (GHz) 2.40 2.1
DP GFlop/s 19.2 8.4

Data Cache (KB) 32+256 64+512
Intel AMD

Chip Architecture Xeon E5-2695v2 Opteron 6172
Cores 12 6

Last-level Cache 30 MB 5 MB
DP GFlop/s 230.4 50.4

STREAM Bandwidth 45 GB/s 12 GB/s
Memory Capacity 32 GB 8 GB

Cray XC30 Cray XE6
System (Edison) (Hopper)

CPUs/Node 2 4
Compiler icc 14.0.0 icc 13.1.3

Table 2: Overview of Evaluated Platforms .

similar approach is used in CHiLL to introduce statements
and modify the iteration space when performing loop un-
rolling [14].

5. EXPERIMENTAL RESULTS
In this paper, we evaluate the benefits of our compiler

technology using two different system architectures detailed
in Table 2. In both cases, we use the default Intel compiler
available on the NERSC machines with -O3 -fno-alias -

fno-fnalias and either -xAVX or -msse3.
Edison is a Cray XC30 MPP at NERSC. Each node

contains two 12-core Xeon Ivy Bridge chips each with four
DDR3-1600 memory controllers and a 30MB L3 cache [9].
Each core implements the 4-way AVX SIMD instruction set
and includes both a 32KB L1 and a 256B L2 cache.

Hopper is a Cray XE6 MPP at NERSC. Each node con-
tains four 6-core Opteron chips each with two DDR3-1333
memory controllers and a 6MB L3 cache [13]. Each core im-
plements the 2-way SSE3 SIMD instruction set and includes
both a 64KB L1 and a 512KB L2 cache.

In all experiments, our finest grid in miniGMG is 2563

cells per compute node decomposed into 64×643 boxes dis-
tributed among MPI processes with 1 process per NUMA
node (2 processes on Edison, 4 processes on Hopper). The V-
Cycle is terminated when each box reaches 43 cells. We run
a fixed 10 V-Cycles with a point relaxation bottom solver.

Figure 11 quantifies the overall speedup on the MG solver
attained via the CHiLL compiler as a function of optimiza-
tions employed for the 7-point variable-coefficient opera-
tor using either the Jacobi or the GSRB smoother. Ob-
serve that applying the best communication-avoiding wave-
front smoother (requiring 4 ghost zones) can improve per-
formance by up to 2.4×. At that point, the residual and
restriction operations can be fused to create the RHS for
the next coarser grid. Although this significantly acceler-
ates these operations, the overall benefit is relatively small
given the total data movement eliminated is a small frac-
tion of the overall MG solver, which used 4 pre-smooths and
4 post-smooths. Nevertheless, we effectively fuse all oper-
ations of pre-smoothing into a single wavefront (“+Wave-
front(everything)”) that performs all smooths, residual, and
restriction with a single communication phase requiring the
exchange of a five deep ghost zone.

The performance benefit is highly dependent on archi-
tecture and smoother. A communication-avoiding Jacobi
smoother requires a significantly larger per-cache working
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Figure 11: Speedup for the MG Solver attained from
incrementally-enabled optimizations obtained in the
CHiLL compiler categorized by smoother and archi-
tecture. Note, “VC” is variable-coefficient.

set than a communication-avoiding GSRB smoother using
multiple threads per box. As GSRB is more likely to main-
tain a working set in the L2, it should be no surprise that
we see a more significant benefit from a communication-
avoiding GSRB smoother — up to 2.5× on Edison. The
working set continues to balloon as one fuses the Residual
and Restriction calculations. At this point, it is unlikely that
the working set will be maintained in the L2, thus resulting
in reduced bandwidth to the L3 and a differentiation of Hop-
per and Edison — with the latter attaining a significant net
speedup over 3× for the variable-coefficient GSRB.

6. RELATED WORK
In the past, operations on large structured grids could eas-

ily be bound by capacity misses in cache, leading to a variety
of studies on blocking and tiling optimizations [6,8,15,21,23,
28,31]. In recent years, numerous efforts have focused on in-
creasing temporal locality by fusing multiple stencil sweeps
through techniques like cache oblivious, time skewing, wave-
front or overlapped tiling [5,10,11,16,17,19,24,27,32–34,36].
In addition, domain-specific compilers have recently been
developed for parallel code generation from a stylized sten-
cil specification [4,26,35] or from a code excerpt [12]. Man-
ual optimization of stencil computations has developed tech-
niques such as semi-stencils to reduce loads [7].

Prior work developed manual optimizations for multigrid
that incorporated communication-avoiding optimizations such
as fusion of operators, wavefront parallelism, and hierarchi-
cal threading [30]. In addition, lower-level optimizations
such as explicit use of SIMD and prefetch intrinsics im-
proved the performance of the inner loops. Subsequently,
the communication-avoiding optimizations were implemented
in an autotuning compiler and demonstrated for just the
smooth operator [1]. The compiler-generated code yielded
comparable performance as compared to manual optimiza-
tion, even though some of the optimizations from the man-
ual version were not included. In this paper, we expand the
compiler-directed optimizations to include a stencil reorder-
ing transformation that rewrites stencils as accumulations.
This rewriting enables fusion of the residual and restriction
operators, and the possibility of fusing of all of the operators
in a V-cycle. When optimizing a complex proxy application

such as miniGMG, we have to optimize several stencil op-
erators and how they work together. To the best of our
knowledge, the DSL Halide [20] which focuses on image
processing pipelines is the only other framework to do so.

Recent work reorders stencil computations from the di-
rect specification of the stencil as an update from a set of
input points [25]. Stencils are converted to a reduction and
then loop shifting exposes register reuse of the same input,
contributing to different output. Their work focuses on ex-
ploiting reuse in registers for higher-order stencils. However,
it does not automatically derive the accumulation from gen-
eral stencil code or initialize the output.

7. CONCLUSION
This paper expands on prior work to develop automatic

compiler and autotuning technology that is able to achieve
manually-tuned levels of performance (or better in some
cases) for Geometric Multigrid. Our work describes a spe-
cific optimization that converts a stencil to an accumula-
tion. Our paper applies this optimization to enable fusion
of smooth, residual and restriction operators. This in turn
permits the compiler to introduce a deeper ghost zone and
reduce the number of sweeps in the grid, thus providing a
performance gain of over 3× as compared to the baseline
implementation on Edison, and a 20% gain as compared
to optimizations on only the smooth operator for variable-
coefficient GSRB smoothers on Edison.

Our long-term goal is to develop domain-specific optimiza-
tions for stencil computations, with a particular focus on
the context of GMG. The miniGMG proxy application per-
mits exploration of compiler techniques in the context of
different stencil computations, data sets and target architec-
tures. Optimizing every possible combination of operator,
smoother and target architecture is not feasible. Therefore,
the availability of an optimization framework that can selec-
tively apply such transformations and automatically tune for
the right implementation provides a powerful starting point
for productively deriving high-performance GMG implemen-
tations for current and future architectures.
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