
1

3D Lattice Boltzmann Magneto-hydrodynamics
(LBMHD3D)

Sam Williams1,2, Jonathan Carter2, Leonid Oliker2,
John Shalf2, Katherine Yelick1,2

1University of California Berkeley
2Lawrence Berkeley National Lab

samw@cs.berkeley.edu

October 26, 2006

2

• Previous Cell Work
• Lattice Methods & LBMHD
• Implementation
• Performance

Outline

3

Previous Cell Work

4

Sparse Matrix and Structured Grid PDEs

• Double precision implementations
• Cell showed significant promise for structured grids, and did

very well on sparse matrix codes.
• Single precision structured grid on cell was ~30x better than

nearest competitor
• SpMV performance is matrix dependent (average shown)

18.0

4.4

5.6

14.63

Peak
GFLOP/s

1.143.91X1E

0.360.57Opteron

0.361.19Itanium2

2.667.16Cell

SpMV
GFLOP/s

Structured Grid
GFLOP/s

Architecture

5

Quick Introduction to
Lattice Methods and LBMHD

6

Lattice Methods

• Lattice Boltzmann models are an alternative to "top-down",
e.g. Navier-Stokes and "bottom-up", e.g. molecular
dynamics algorithms, approaches

• Embedded higher dimensional kinetic phase space
– Divide space into a lattice
– At each grid point, particles in discrete number of velocity

states
• Recovery macroscopic quantities from discrete components

7

Lattice Methods (example)

• 2D lattice maintains up to 9 doubles (including a rest
particle) per grid point instead of just a single scalar.

• To update one grid point (all lattice components), one needs
a single lattice component from each of its neighbors

• Update all grid points within the lattice each time step

8

3D Lattice

• Rest point (lattice component 26)
• 12 edges (components 0-11)
• 8 corners (components 12-19)
• 6 faces (components 20-25)

• Total of 27 components, and 26
neighbors

2

11

7

1

8

4

9 6

0

 10
5

3

14

18

19 17

13

 12

 15

16

22

25

21

20

23

24

9

LBMHD3D
• Navier-Stokes equations + Maxwell’s equations.
• Simulates high temperature plasmas in astrophysics and magnetic fusion
• Implemented in Double Precision
• Low to moderate Reynolds number

10

LBMHD3D

• Originally developed by George Vahala @ College of William
and Mary

• Vectorized(13x), better MPI(1.2x), and combined
propagation&collision(1.1x) by Jonathan Carter @ LBNL

• C pthreads, and SPE versions by Sam Williams @ UCB/LBL

11

LBMHD3D (data structures)

• Must maintain the following for each grid point:
– F : Momentum lattice (27 scalars)
– G : Magnetic field lattice (15 cartesian vectors, no edges)
– R : macroscopic density (1 scalar)
– V : macroscopic velocity (1 cartesian vector)
– B : macroscopic magnetic field (1 cartesian vector)

• Out of place → even/odd copies of F&G (jacobi)
• Data is stored as structure of arrays

– e.g. G[jacobi][vector][lattice][z][y][x]
– i.e. a given vector of a given lattice component is a 3D array

• Good spatial locality, but 151 streams into memory
• 1208 bytes per grid point
• A ghost zone bounds each 3D grid

(to hold neighbor’s data)

12

LBMHD3D (code structure)

• Full Application performs perhaps 100K time steps of:
– Collision (advance data by one time step)
– Stream (exchange ghost zones with neighbors via MPI)

• Collision function(focus of this work) loops over 3D grid,
and updates each grid point.

for(z=1;z<=Zdim;z++){
 for(y=1;y<=Ydim;y++){
 for(x=1;x<=Xdim;x++){
 for(lattice=… // gather lattice components from neighbors
 for(lattice=… // compute temporaries
 for(lattice=… // use temporaries to compute next time step
}}}

• Code performs 1238 flops per point (including one divide)
but requires 1208 bytes of data

• ~1 byte per flop

13

Implementation on Cell

14

Parallelization

• 1D decomposition
• Partition outer (ZDim) loop among SPEs
• Weak scaling to ensure load balanced

• 643 is typical local size for current scalar and vector nodes
• requires 331MB

• 1K3 (2K3?) is a reasonable problem size (1-10TB)
• Need thousands of Cell blades

15

Vectorization

• Swap for(lattice=…) and for(x=…) loops
– converts scalar operations into vector operations
– requires several temp arrays of length XDim to be kept in the

local store.
– Pencil = all elements in unit stride direction (const Y,Z)
– matches well with MFC requirements: gather large number of

pencils
– very easy to SIMDize

• Vectorizing compilers do this and go one step further by
fusing the spatial loops and strip mining based on max
vector length.

16

Software Controlled Memory

• To update a single pencil, each SPE must:
– gather 73 pencils from current time (27 momentum

pencils, 3x15 magnetic pencils, and one density)
– Perform 1238*XDim flops (easily SIMDizable, but not all

FMA)
– scatter 79 updated pencils (27 momentum pencils, 3x15

magnetic pencils, one density pencil, 3x1 macroscopic
velocity, and 3x1 macroscopic magnetic field)

• Use DMA List commands
– If we pack the incoming 73 contiguously in the local

store, a single GETL command can be used
– If we pack the outgoing 79 contiguously in the local

store, a single PUTL command can be used

17

DMA Lists (basically pointer arithmetic)

• Create a base DMA get list that includes the inherit offsets to
access different lattice elements

– i.e. lattice elements 2,14,18 have inherit offset of:
-Plane+Pencil

• Create even/odd buffer get lists that are just:
– base + Y*Pencil + Z*Plane
– just ~150 adds per pencil (dwarfed by FP compute time)

• Put lists don’t include lattice offsets

y

z
x

1
13
17
8

10
23
0

12
15

5
7

24
20
21
26
4
6

25

3
16
19
9

11
22
2

14
18

Momentum Lattice

13[3]
17[3]

23[3]

12[3]
15[3]

24[3]

20[3]
21[3]
26[3]

25[3]

16[3]
19[3]

22[3]

14[3]
18[3]

Magnetic Vector Lattice

+Plane
-Pencil

-Pencil

-Plane
-Pencil

+Plane

0

-Plane

+Plane
+Pencil

+Pencil

-Plane
+Pencil

YZ Offsets

18

Double Buffering

• Want to overlap computation and communication
• Simultaneously:

– Load the next pencil
– Compute the current pencil
– Store the last pencil

• Need 307 pencils in the local store at any time
• Each SPE has 152 pencils in flight at any time
• Full blade has 2432 pencils in flight (up to 1.5MB)

19

Local Computation

• Easily SIMDized with intrinsics into vector like
operations

• DMA offsets are only in the YZ directions, but the
lattice method requires an offset in X direction

– Used permutes to look forward/back in unit stride
direction

– worst case to simplify code
• No unrolling / software pipelining
• Relied on ILP alone to hide latency

20

Putting it all together

[2,12] [2,13] [2,26]. . .
[1,12] [1,13] [1,26]. . .

[0,12] [0,13] [0,26]. . .

[0] [1] [26]. . .

[2,12] [2,13] [2,26]. . .
[1,12] [1,13] [1,26]. . .

[0,12] [0,13] [0,26]. . .

[0] [1] [26]. . . [2]
[1]

[0]

[2]
[1]

[0]

F[:,:,:,:] G[:,:,:,:,:] Rho[:,:,:]

Feq[:,:,:,:]
Geq[:,:,:,:,:]Rho[:,:,:]

V[:,:,:,:]
B[:,:,:,:]

Compute

21

Code example
 for(p=0;p<TotalPencils+3;p++){
 // generate list for next/last pencils -
 if((p>=0)&&(p<TotalPencils)){
 DMAGetList_AddToBase(buf^1,((LoadY*PencilSizeInDoubles)+(LoadZ*PlaneSizeInDoubles))<<3);
 if(LoadY==Grid.YDim){ LoadY=1; LoadZ++;}else{ LoadY++;}
 }
 if((p>=2)&&(p<TotalPencils+2)){
 DMAPutList_AddToBase(buf^1,((StoreY*PencilSizeInDoubles)+(StoreZ*PlaneSizeInDoubles))<<3);
 if(StoreY==Grid.YDim){StoreY=1;StoreZ++;}else{StoreY++;}
 }

 // initiate scatter/gather -
 if((p>=0)&&(p<TotalPencils))
 spu_mfcdma32(LoadPencils_F[buf^1][0],(uint32_t)&(DMAGetList[buf^1][0]),(R_0+1)<<3,buf^1,MFC_GETL_CMD);
 if((p>=2)&&(p<TotalPencils+2))
 spu_mfcdma32(StorePencils_F[buf^1][0],(uint32_t)&(DMAPutList[buf^1][0]),(B_2+1)<<3,buf^1,MFC_PUTL_CMD);

 // wait for previous DMAs -
 if((p>=1)&&(p<TotalPencils+3)){
 mfc_write_tag_mask(1<<(buf));
 mfc_read_tag_status_all();
 }

 // compute current (buf) -
 if((p>=1)&&(p<TotalPencils+1)){
 LBMHD_collision_pencil(buf,ComputeY,ComputeZ);
 if(ComputeY==Grid.YDim){ComputeY=1;ComputeZ++;}else{ComputeY++;}
 }

 buf^=1;
 }

22

Cell Performance

23

Cell Double Precision Performance

• Strong scaling examples
• Largest problem, with 16 threads, achieves over 17GFLOP/s
• Memory performance penalties if not cache aligned

24

*Collision Only (typically >>85% of time)

Double Precision Comparison

124x
28.0x
27.2x
14.5x
11.0x
1.59x
1.54x
0.90x

8 SPE
speedup

1%0.073.2GHz Cell (1 PPE)*
6%
6%

14%
10%
68%
31%
60%
59%
59%

% of Peak

0.310.7GHz BGL Chip

0.791.9GHz Power5
5.451GHz Earth Simulator

0.321.4GHz Itanium2
0.602.2GHz Opteron

17.273.2GHz Cell (16 SPEs)*

5.651.13GHz X1E
9.662.0GHz SX8
8.693.2GHz Cell (8 SPEs)*

GFlop/sArchitecture

25

Conclusions
• SPEs attain a high percentage of peak performance
• DMA lists allow significant utilization of memory bandwidth

(computation limits performance) with little work
• Memory performance issues for unaligned problems
• Vector style coding works well for this kernel’s style of

computation
• Abysmal PPE performance

26

Future Work
• Implement stream/MPI components
• Vary ratio of PPE threads (MPI tasks) to SPE threads

– 1 @ 1:16
– 2 @ 1:8
– 4 @ 1:4

• Strip mining (larger XDim)
• Better ghost zone exchange approaches

– Parallelized pack/unpack?
– Process in place
– Data structures?

• Determine what’s hurting the PPE

27

Acknowledgments
• Cell access provided by IBM under VLP
• spu/ppu code compiled with XLC & SDK 1.0
• non-cell LBMHD performance provided by

Jonathan Carter and Leonid Oliker

28

Questions?

