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Abstract

A careful study of the behavior of a Godunov-projection method for the incom-
pressible Navier-Stokes equations as a function of the resolution of the computational
mesh is presented. By considering a representative example problem, it is demon-
strated that a Godunov-projection method performs as well as an accurate centered
finite difference method in cases where the smallest flow scales are well-resolved. In
under-resolved cases, however, where centered methods compute solutions badly pol-
luted with mesh-scale oscillations, the Godunov-projection method sometimes com-
putes smooth, apparently physical solutions. Closer examination indicates that these
under-resolved Godunov solutions, although convergent when the grid is refined, con-
tain spurious non-physical vortices that are artifacts of the under-resolution. These
artifacts are not unique to Godunov methods, however, and are observed with other
difference approximations as well. The implication of these results on the applicability
of difference approximations to engineering flow problems in the under-resolved case is

discussed.
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1 Introduction.

In 1989, Bell, Colella and Glaz [1] introduced a projection method for the incompress-
ible Navier-Stokes equations that combines the projection technique introduced by
Chorin [2] and Colella’s higher-order Godunov advection schemes [3] to give an overall
second-order finite difference method. This method has been demonstrated to have
very attractive properties for large scale modeling of incompressible or nearly incom-
pressible engineering flows. In the succeeding years, Bell, Colella and their coworkers
have introduced several variants of the original Bell-Colella-Glaz formulation, including
methods that use an “approximate” projection operator [4] , extensions to chemically
reacting flows [5] [6], and modifications for adaptive mesh refinement [7]. Because the
Godunov upwinding approach stabilizes the computed flows for cell Reynolds numbers
where a strictly centered finite difference scheme would produce spurious mesh-size
oscillations and often instability, these Godunov-projection methods would appear to
offer the hope to the design engineer of being able to make routine simulations in situ-
ations where it is not possible to carefully resolve the smallest scales everywhere in the
computed flows. With currently available computing machines, such under-resolution
is often unavoidable. An example is the solution of problems of any realistic complexity
in three space dimensions. In regions of the flow where the physical viscosity is too
small to be captured properly by the finite difference method, the Godunov upwinding
is expected to “do the right thing” by representing near-discontinuities with appro-
priately smoothed but sufficiently sharp features that maintain the basic appearance,
and hopefully the physical properties of the actual physical flow. It is the aim of the
present paper to address the issue of whether such under-resolved computations using
Godunov-based methods can be expected to faithfully represent the correct physical
behavior of the fluid flow. Although resolved computations using a higher-order accu-
rate central difference approximation to the incompressible Navier-Stokes equations are
used in this paper to provide reference solutions, this paper is not intended to provide
a comparison between Godunov methods and other methods, but mainly addresses the

issue of the reliability of Godunov methods. We note that a study with somewhat
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similar objectives was done by E and Shu for some ENO-type schemes [8].

Although not the main focus of that paper, the authors of [1] briefly discuss the
issue of whether under-resolved problems can be computed in some reasonable way
using Godunov-projection methods. As they also state, the justification typically given
for the physical correctness of such calculations is that if the structure of the computed
solutions is essentially correct (shear layer placement, etc.), then the numerical dissi-
pation mechanisms in the finite difference scheme will mimic the physical dissipation
mechanisms, leading to results with the correct large-scale dynamics. The computa-
tional examples presented in [1] for the evolution of an infinitely thin shear layer offer
“food for thought”, but no conclusive evidence for this proposition. In [9], Bell and
Marcus present a computational study of three—dimensional vortex evolution, in which
they are somewhat more cautious in the interpretation of their results at later times
as the dynamics of the solution become more complicated. Since the infinitely thin
shear layer problem is an extremely difficult one to attack both numerically and the-
oretically, we instead consider a related “thin” shear layer problem. As will become
apparent below, our computations cast doubt on the validity of the proposition that the
numerical dissipation mechanisms in Godunov-projection methods mimic the physical
dissipation.

With the idea in mind of improving the understanding of the numerical dissipation
mechanisms in Godunov-projection methods, we present a set of carefully controlled
numerical experiments designed to investigate situations where the smallest scales of
the flow are well-resolved, and situations where they are not. The test cases studied are
variations on the finitely-thick double shear layer problem in a doubly periodic domain
presented by Bell, Colella and Glaz in their introductory paper [1]. The version of the
projection method used in this paper is the one introduced by Bell, Colella and Howell
[10]. While the results presented in this study by no means represent an exhaustive
study, the thin shear layer is an important feature in practical engineering situations,
since as a basically unstable structure, it represents one of the important mechanisms

for fluid mixing. The reference solutions used for comparisons are computed with a cen-
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tered, finite-difference, vorticity stream-function method that is fourth-order accurate
in both space and time. The fourth-order Runge-Kutta time integrator adds a negligi-
ble amount of dissipation to the method, and no artificial spatial viscosity is used, so
the dominant dissipation mechanism in the method comes from the physical viscosity
terms. Carefully controlled convergence studies of the centered method demonstrate
that these are valid reference solutions.

The basic conclusions that can be drawn from the present study are the following:

e For problems in which the smallest physical scales are well-resolved, the solutions
produced by the Godunov-projection and fourth-order centered difference meth-
ods are virtually indistinguishable. The effective artificial viscosity introduced
by the Godunov upwinding appears to be negligible compared with the physical
viscosity terms, as evidenced by the plots of energy and enstrophy dissipation for
the methods. Visual inspection, convergence studies, and direct numerical com-
parison with the reference solutions indicate that the Godunov solutions faithfully

represent the true Navier-Stokes solutions.

e For problems in which the smallest physical scales are not well-resolved, the ap-
pearance of the Godunov solutions is often qualitatively different than that of the
reference solutions. While in the correct solution, each shear layer rolls up into a
single periodically-repeated vortex, the under-resolved solutions can also exhibit
additional vortex roll-ups between the main vortices. At first glance, these addi-
tional vortices might appear to be well-resolved features of the flow. However,
there are several important observations that demonstrate that these are actually
numerical artifacts. The additional vortices represent only small perturbations of
energy and enstrophy in the flow. Also, as the mesh size is refined, the amplitude
of the additional vortices decreases, although not at the second order rate that
might be expected of the method. Once the layers are sufficiently resolved by
the mesh, these artifacts disappear. We also present evidence to suggest that
these artifacts are not solely a property of Godunov type methods. Indeed, it

is possible to produce artifacts of similar appearance even with a centered dif-
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ference approximation. Thus we conclude that the artifacts are a function of
under-resolution rather than a defect in the fundamental design of the Godunov

difference approximation.

In section 2, the Godunov-projection method is introduced, as well as the the fourth-
order centered-difference method used to compute the reference solutions. Section 3
describes the computations and convergence studies. Speculations on the implications

of these artifacts to engineering simulations are presented in section 4.
2 The numerical methods.

In two space dimensions the incompressible Navier-Stokes equations can be written as
Ui+ (U-VYU +Vp=vAU (1)

Vv-U =0, (2)

where U = (u,v)! = U(z,y,t) is the fluid velocity vector with components u and v,
the horizontal and vertical velocity, respectively, p = p(z,y,t) is the fluid pressure, v
is the (assumed constant) fluid viscosity, and subscripts denote partial differentiation.
An equivalent formulation can be written using the Hodge decomposition theorem,
which states that any vector field W can be decomposed into two parts, one of which is

divergence-free and the other solenoidal. Moreover, these components are orthogonal

(see e.g. Chorin [2]).
W =U+V¢, U=PW, Vo =(1-P)W, (3)

where P is the implied projection operator that decomposes the field. Using P, the

momentum equation can be written as
Uy = P{-(U-V)U+vAU} (4)
Vp = (I-P){—(U-V)U+vAU}. (5)

Another formulation can be written by using the vorticity w and stream function

1 as dependent variables. The vorticity is defined as the curl of the velocity field,

w=VxU (6)
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which is a scalar, for the two space-dimensional case, and the stream function satisfies

the Cauchy-Riemann equations,
(u,v) =2 (Yy, —Pa). (7)
In these variables, the incompressible Navier-Stokes equations are given by
wi = —(uw)y — (vw)y + vAw (8)

A = —w. (9)

The Navier-Stokes equations require that boundary conditions be specified. The ex-
amples presented in this paper are for a doubly periodic domain and hence the only

boundary condition required is that the solutions be doubly periodic.
2.1 Computational Domain

Both of the numerical methods in this paper are implemented on the same computa-
tional grid. The physical domain in all problems is the periodic unit square. We use
a 2V by 2V square grid, with uniform cell size h = 1/2V for our spatial discretiza-
tion. Unless otherwise noted, all variables are cell centered, i.e. the grid location (¢, 7)

corresponds to the physical location ((i — 3)h, (j — 3)h).
2.2 The Godunov-projection method of Bell, Colella and Howell.

The projection method employed in the numerical studies in this paper is essentially
the same as the one introduced in [10]. For completeness, and also to correct some
typographical errors in the original publication, the details of the method are presented
here. In this projection method, the velocities and pressure are computed in several

steps. In the first step, a non-divergence free prediction of the velocity U* is computed:

U* _ LTTL

- gAh(U” + U = [(U- W)U H? — wpn1/2, (10)

where Ay is the standard five-point central difference approximation to the Laplacian

n—1/2

operator, and Vp is the time-centered pressure gradient which we assume is avail-

n+1/2 .

able from the previous time step. The advection term [(U - V)U] is approximated
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by a Godunov procedure, also described in detail below. For v # 0, the numerical solu-
tion of (10) involves the solution of a heat-like equation; this is done using a multigrid
iteration.

Next, in the “projection” step of the method, the value of U* is decomposed into
the sum of a divergence free part U"*! and the gradient of a scalar field ¢, that are

then used to update the velocity and the pressure gradient.

U = U4 ve (11)
L 1 Vo
Vprts = vprms 4 22 12
prte PR (12)

where ¢ is determined by solving the Poisson equation
Ap=V . -U~". (13)

The form of the projection operator P can be completely specified by the choice
of the discrete divergence operator D. Given a choice for D, the discrete gradient
operator can be defined as the adjoint of D which insures that P is well-posed and

norm reducing. (see e.g. Chorin [11]). The centered-difference approximation to the

divergence
D(U):; = (wig1,j = i) + (Vi1 = vijo1) (14)
’ 2h
is used, which has as its adjoint the centered-difference gradient
Giv1,; — Pic1j Pij+1 — Pij—1
oo (G, g % g1y 1
G(g)y = (P —hant, (15)
This gives for the discrete form of equation (13),
L(¢) = D(U), (16)
where
—4¢i; + iy, i + Gi—2j + iz + Gij-
L(6)i = DGl6);; = Lt Gwra ¥ Ooa ¥ Ga ¥ 0uma gy

Because the stencil of the operator L decouples into four distinct substencils, the
null-space of L contains any vector that is constant on each of the stencils. An adapta-

tion of the standard multigrid method that respects the decoupling in the interpolation,
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n+1/2,B
i j+1/2
n+1/2,R n+1/2,L
UiZi )2, Uiti/2,
® p
(i9)

n+1/2,T

Ui 21/

Figure 1: Location of Cell variables. The cell center is located at (7, j). Cell edge values
are denoted using half-integer indices. For example, a cell edge value extrapolated from

the left to the right cell face at time level n + % is denoted by UZ_?/;}L

averaging, and relaxation operators is used to solve equation (16). This insures that
high frequency errors on each decoupled stencil are adequately reduced during each
multigrid sweep. Details of this technique are found in [10].

The approximation of the time centered advective term [(U - V)L’]n+1/2 uses a
second-order Godunov procedure. The basic idea of the procedure is to use a Tay-
lor series expansion to calculate time-centered cell edge values of the velocities that can
then be differenced to yield the advective term. As an example, we consider how the
value on the left side of the cell face centered at (i + %,j, n+ %), UZE_%]’.L, is computed;
the values on each side of the other faces are computed analogously.

The leading terms of the Taylor series are used to extrapolate the velocities to cell

edges (see figure 1 for location of cell edge variables).

m+1/2,L n n (T
UL = U 4 5(U2),; + 84U, - (18)

By using the Navier-Stokes equations, the temporal derivatives are replaced with spatial

derivatives yielding

+1/2,L
Ul = UE s = 3l (U0, = 30U},

- %VPZ]' (19)

This is approximated in three steps. First predicted edge values UL of the velocity

are computed which contain only the derivative terms from (19) normal to the cell
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edge.
Uzﬁ-l/Zj = Ui+ 3 — s 50w )(Uz)y (20)
1 ifu;; >0
sy, =
0 otherwise

The term (U); ;18 approximated using fourth order monotonicity preserving slopes (see

below). A similar procedure extrapolates from the right in the cell centered at ¢ 4 1,7

. pnts,R . Lo
to obtain UZZZ’], A method based on the Riemann problem for Burgers’ equation is
27

used to resolve this ambiguity:

1
ATTH—E’L . n n
1 Li—l{lj ifu; >0,u ;>0
st s _ rnt5,R )
Vicrjog = Vicaja, if uf'; < 0,ufy ;<0 (21)
~n+lL ~n+L1 R )
(Uz’—172,j + 2_1727]-)/2 otherwise

is chosen.
The fourth-order limited difference for approximating the normal derivative term

in equation (20) is given by the following. Define the difference operators

D@)ij = (Dit1,j — Pi-1,5)/2
Do)y = (bij— dio1)
D™ (¢)i; = (Pig1,; — ¥ij)

Using these, define

2,7 .
0 otherwise

sim (), . = {mm(2|Dl(¢)i7j|,2|DT(¢),-,]-|) it (DY(9)i;)(D™(#)ij) > 0

§(¢);; = min(|D(B)il, 8" (¢)i ;) xsign(D($): ;)
and

c . f Sl f Lo .
6(¢)i,j _ mm(|4(D g;b)%]) _ (6 (Gb)l-l-ld —g 4 (é)l_ld)|,612m(¢)i7j)XSign(Dc(¢)i7j)

Then, the derivative is approximated with

(sz)id‘ ~ 5(¢)Z7]/A$



Under-resolved Incompressible Flow Simulations 15

The second step is to add the viscous and the transverse derivative term in (20)
to yield edge values U. A standard five-point approximation to the Laplacian for the
viscous term is used and a difference of the computed value U is used to form the

transverse derivative term. Thus

Ohs, = UlLij =800, ) + 4v(A°(U7);, (22)
(oU,), . = (8172 + 8ijo172) (Uijpays = Uijoaga)
Y/4,3 2 Ay

ol
Edge values Ui++2

i*. are then determined from the left and right states using the analo-
2 9,

gous formula to (21). To complete the approximation of time centered cell edge values,

the pressure gradient term from equation (19) must be included. This is approximated

by performing a MAC-projection on the computed values ﬁm- [10]. We solve

~ (Wig1/2,; — Wic1y2,;) (D5 — B i_1/2)
A5(¢):DM(L)Z7]I +1/2,5 - 1/2,j 1+ ]+1/2h Jj—1/2 (23)

where A’ is the standard five-point Laplacian approximation, and then subtract the

. mnt s +5 +3
radient of ¢ from U, 2 to form U 2. and U’ 4
g
27] T 57‘7 Z7]+5
Y2 /2 Giv1,; — Pij
i+1/2,5 Y12, A
otz onkiyz (G + Girnin)/2 = (o1 + divj-1)/2
i+1/2; = Vit1/2, oh .

Finally, the values U"t1/2 are differenced to get the advection term:

wh b et e
+1/2,5 1—1/2,5 +1/2,5 1—1/2,5
(wlz + 0Uy)ij = 5 -
n—|—;— n-}—;— 7n+15 7n+%
(012 + 0272 Wi = Uiy )
2 h

2.3 The fourth-order centered difference approximation.

The reference solutions used for this study were computed using a fourth-order ac-
curate hybrid finite-difference/spectral approximation of the vorticity stream-function
formulation of the Navier-Stokes equations (8,9). For the approximation of the hybrid

method, the same computational grid is used as in the previous section. Values of the
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vorticity, velocities, and stream function are given at each cell center. The right hand

side of equation (8) is approximated with fourth order finite differences. Specifically,
(wi)ij = —Dp(uw)i; = Dy(vw)ij + vAY(w)i; (24)

where the difference operators D;y are defined by

Gi—2j — 8(Pi—1,j — Bit1,j) — Pit2,

Di(ﬁﬁ)m’ = oh
Gii—2 — 8(Pi i1 — Pij41) — Pijt2
4 L. _ sJ 3J 5] ¥
Dy(@)i = 12h

and the approximation to the Laplacian is given by

AYP)i; = D3 (0)i,j+ Dy (6)ij
—30¢;; + 16(¢i—1,; + Pig1,5) — (diz2,; + Pit2,5)

4 il ’ ’ ’ ’
Dyy(qb)lhj : : ]2672 : s

A standard, fourth-order Runge-Kutta method is used to advance the solution in

time. Specifically, let
Flw,u,v); ;= —ng(uw)m — Dg(vw)m + I/A4(w)m, (25)

then the time-stepping procedure can be written as

wh = W AP (W e, ™)
w? o= W AR (W Ut )
W= W4 ALF (W u?, v?)
e i 5 wt ;— 2w? + w? N %F(w?’,u?’, %)

At each of the four Runge-Kutta substeps, the velocities must be recomputed from
the vorticity. The first step in doing so is to discretize the Poisson problem (9) and solve
the resulting problem for the stream function . Since the domain is doubly periodic,
it is convenient to solve (9) in Fourier space. The true inverse Laplacian operator is

used and no additional spectral filtering is employed. Hence

N

2

L‘C)‘yk iy
oz, y) = Z ﬁez (jz+ky) (26)
k=17
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where @; ;, are the discrete Fourier coefficients of the vorticity.

Since the spectral Laplacian involves only real numbers, a real to real FFT is used
in lieu of a complex FFT which reduces the computational cost of the FFT by approxi-
mately one half. Even with this savings, approximately 70% of the total computational
cost of the method involves solving equation (9) on a Cray YMP.

Once 9 has been computed, the difference operators from above are used to compute

the velocities.

uij = Dy(v)i;

vij = —Di(¢)i;
3 Computational Results.

The numerical example studied in this paper is of a doubly-periodic double shear layer.
The shear layers are perturbed slightly at the initial time, which causes the shear layers

to roll up in time into large vortical structures. The initial conditions are given by

tanh(p(y — 0.25)), for y < 0.5;
u =9 tanh(p(0.75 —y)), for y > 0.5. (27)

v = dsin(2mx), (28)

where p is the shear layer width parameter, and 4 is the size of the perturbation. In all
our examples, the perturbation size used is § = 0.05. The shear layer width is varied
to study the effect of the layer resolution on the computations. The time step At for

the Godunov-projection method is recomputed each step by setting
At = Ch/ max(|uij], [vij])

where C' is the CFL number whose value for each run is 0.9. The same procedure is
used for the centered difference method but with a CFL number of 0.7.

For the Godunov-projection computations, an initial pressure gradient field is re-
quired for time level n = —%. This is determined by an iteration procedure described

in [1].
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3.1 The reference solutions.

The reference solutions used for the studies discussed below were produced using the
vorticity stream-function method described in section 2.3. Convergence studies were
performed on a set of calculations using successively finer meshes. The error in these
calculations was estimated using Richardson extrapolation. Although the theoretical
asymptotic convergence rate of the method is not apparent until the finest meshes,
it is apparent from table II that the solution converges as the mesh is refined. The
consistency that is apparent in the vorticity contour plots, energy spectrum plots,
energy and enstrophy decay plots for all different resolutions indicates the validity of

the reference solutions as representations of the true solution of the continuous problem.
3.2 The “thick” shear layer problem.

In this section, we demonstrate that when the double shear layer problem is well-
resolved by the computational mesh, the results of the Godunov method are virtually
indistinguishable from those obtained with the centered finite-difference method. Fig-
ures 2 through 5 show vorticity contours for the smooth shear layer test problem. For
this example, a layer width parameter of p = 30 was used, as in [1]. Figures 2 and 3
show solutions computed using the Godunov-projection method at times 0.8 and 1.2,
respectively. Figures 4 and 5 show solutions at the same times, but computed with
the centered difference approximation. The oscillatory nature of the under-resolved
centered method is apparent in the 64 X 64 plots. The solutions obtained by the two
methods on the two finest grids are visually indistinguishable. The upper two graphs
in figures 6 and 7 show the energy and enstrophy decay of the solutions computed on
the 512 X 512 mesh as a function of time. Again, the plots for the two methods are
virtually indistinguishable. This illustrates the important point that in spite of the up-
wind nature of the Godunov advection step, the Godunov-projection method appears
no more dissipative than a high-order centered difference method. Figure 6 also shows
a graph of the fraction of the total number of cells at which the limiters in the Godunov

method are switched “on” as a function of the timestep. There are four curves in the
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latter plot corresponding to the four places in the algorithm where the limiters are used
at each timestep. The graph showing the incidence of limiter activation in the method
is provided to demonstrate that the limiters, which provide some nonlinear dissipation
in the method, are, in fact, switching on during these calculations (presumably in the
region around the shear layers). It is clear that the limiters are not adversely affecting
the quality of the computed solutions. Table I shows the convergence rate estimates
for the Godunov method in this calculation, obtained by Richardson extrapolation. As
expected, the the method converges at a second order rate on this example.

The energy spectrum plots in figures 6 and 7 show an approximation of the aver-
age value of the Fourier transform of the vorticity as a function of the norm of the

wavevector k. The approximation used is given by [12]
W(k) = [E)pj<r [0l £2)]]
[E|£—k|<;— 6]7

where € := |({1,03)|. It is significant that when the two graphs are superimposed,

(29)

the behavior of the lower wavenumbers is identical to within the resolution of the
graphs. The oscillations in the spectra for earlier times are remnants of the symmetry
of the initial data for this example. The differences for higher wavenumbers bear some
comment: One can safely assume that the spectral decay behavior demonstrated by the
fourth-order centered method (figure 7) is a good representation of the true continuous
solutions (see e.g. calculations in [13],[12]). Because the graphs are made on a log-log
scale, the deviations for the highest wavenumbers appear quite significant. The spectral
plot for the Godunov-projection method in figure 6 shows that there is more energy in
the high wave numbers for this method than for the centered method. However, the log-
log plot tends to overemphasize this effect, and in fact for the relatively short integration
times of these simulations, the difference is negligible. Since curves (C) and (D) in the
plots are quite similar, it also appears that the energy in these higher wavenumbers
saturates at a level four orders of magnitude below the level of the largest components.
One still might speculate that the high wavenumber deviation would become significant
for very long-time integrations, should one choose to use a Godunov method. We have

not investigated this conjecture in detail.
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3.3 Generation of spurious vortices in the “thin” shear layer problem.

This section studies a double shear layer problem where the shear layers are appar-
ently not well-resolved. As with the thick shear layer problem, the converged reference
solutions show that the correct solution consists of a double shear layer with a sin-
gle roll-up. (see figures 8 and 9) While the centered method performs badly on this
problem when the flow in not well-resolved, the Godunov method always gives smooth
solutions that appear to be well-resolved. Convergence studies of the Godunov calcula-
tions demonstrate, however, that on coarser grids, additional roll-ups in the shear layer
develop. While the energy in these vortices is relatively small compared to the total
energy of the solution, they might easily be interpreted to be physical features in the
solution, particularly if not studied in the context of more resolved calculations of the
same problem.

Figures 8 and 9 show vorticity contours at two different times for a test problem
with a thinner shear layer than the example in section 3.2. In this case, a layer width
parameter of p = 100 was used in the initial conditions. The figures show solutions
computed with the Godunov-projection method on grids of resolution 128 x 128 , 256
X 256 and 512 x 512 |, and also the reference solution computed using the centered-
difference method with resolution 512 x 512 . Figure 8 is for time 0.8; figure 9 is for
time 1.2. It is clear that for the coarser resolutions, the appearance of the Godunov
solutions is significantly different from the reference solution. In the 256 X 256 solution,
a spurious vortex has formed midway between the periodically repeating main vortex
on each shear layer. The 128 x 128 solution shows three spurious vortices along the
shear layer. Unlike a centered method with which it is visually apparent when the
method goes “bad” (see e.g. the oscillations in the 64 x 64 resolution plots of figures
4 and 5), visual inspection of, say, the resolution 256 x 256 plots in figures 8 and 9
without comparison with computations done at other resolutions, would not suggest an
unconverged solution. It is only apparent when comparing the solutions to finer grid
solutions that as the method converges with decreasing mesh-size, the spurious vortices

disappear. Richardson extrapolation estimates of the error also indicate convergence
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(see tables III and IV), although not at the second-order rate one might hope for. Tables
V and VI present localized convergence results for the thin shear layer problem. In these
tables, the error was estimated by comparing the solutions with a 1024 x 1024 reference
solution in a localized region that includes the spurious vortex. It is interesting that
until the problem is sufficiently resolved for the spurious vortex to disappear, there
is effectively no convergence in this part of the flow. Another somewhat alarming
property of the under-resolved solutions is illustrated by the plots of the kinetic energy
and enstrophy decay as a function of time for a resolved and an under-resolved solution
shown in figure 13. Despite the substantial difference between the the two solutions,
the energy and enstrophy plots are nearly indistinguishable which indicates that such
plots can not be used as a measure of the reliability of a particular solution.

The appearance of the spurious vortices is not an artifact unique to this particular
method. We made several tests of different versions of the Godunov-projection method
to verify that these artifacts were not a peculiarity of the particular method we used.
In one case, we disabled the limiters, resulting in a strictly upwind centered (Fromm’s)
method. We also changed the form of the projection operator from the “exact” pro-
jection of [10], to an “approximate” projection operator (cf. [4]). Neither variation
produced any noticeable difference in the results. Both Rider [14] and Henshaw [15]
report observing similar artifacts using a Lax-Wendroff method and a centered fourth-
order difference primitive variable-based method [16], respectively. The beginnings of a
spurious rollup are evident as well in some of the published calculations of E and Shu [8]
using an ENO method. In figure 10 we show a computation with the centered-difference
vorticity stream-function method of the present paper in which spurious vortices are
clearly formed in an under-resolved computation of the thin shear layer problem. The
method becomes unstable shortly after the time of the second plot in that figure. A
similar type of phenomena occurs with the point vortex method when not regularized
appropriately. In that method for incompressible flow simulation, computer roundoff
can cause spurious rollups to occur, again without any apparent serious breakdown of

the method (see [17, 18]).
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The appearance of the spurious vortices in these calculations is clearly an under-
resolution effect. This is somewhat surprising, since, for example, in figure 8, the shear
layer is represented with approximately seven cells across its width at the thinnest point
which might normally be considered suflicient resolution for an engineering calculation.
However, the following argument demonstrates the validity of this claim. It is well-
known that for similar flows, the smallest scale in a two-dimensional Navier-Stokes
flow scales with the square-root of the viscosity (see e.g. [12]). Thus, artifacts that
are due to an under-resolution effect should become more pronounced as the viscosity
is decreased, and less pronounced as it is increased. In fact, we would expect that
given the results shown in figures 9 and 10, the results of a 128 x 128 calculation
with v = 1/20,000 should be similar to a 256 x 256 calculation with » = 1/40,000.
Similarly, a 128 x 128 calculation with v = 1/10, 000, should be comparable to 256 x
256 calculation with v = 1/20,000. This is indeed the case, as shown in figures 11 and

12.

4 Discussion.

Whether or not under-resolved Godunov-projection computations are useful is certain
to be a controversial issue. Our objective in this paper was not to decide this issue, but
to present a careful study so that users of the method can make informed decisions on
the validity of their solutions. Indeed, in realistic engineering situations, the decision
of which method to use can often involve complex considerations that are certainly
beyond the scope of this paper. In this section we offer some suggestions on how the
results of section 3 can be interpreted. The examples presented in that section demon-
strate that the behavior of the Godunov-projection method (and indeed any method)
for incompressible flow simulations when the solutions are not well-resolved, can dif-
fer substantially from physical reality. If one is concerned with studying the detailed
behavior of the incompressible Navier-Stokes equations, for example, one must be sure
with this method, as with any method, that the solutions are well-resolved by the

computational mesh before drawing any conclusions. As we have demonstrated, it is
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not sufficient that the computed solutions appear smooth and well-resolved; considered
individually, the examples containing spurious vortices attest to this fact. In the cases
where the solutions are sufficiently resolved, the Godunov-projection method produces
results virtually identical to the reference solution method. We believe that the dif-
ferences in the energy spectrum plots support the preference of a centered method to
the Godunov-method for studies where detailed solution resolution is important. In
addition, since the centered methods fail rather badly in the under-resolved case, it
is somewhat easier to know when one is properly resolving the computed solutions
for those methods. Also, as is well-known, the operation count for a typical centered
method is significantly less than for Godunov methods since the calculation of the con-
vective derivatives is so much simpler, even for a spatially fourth-order method, than
for a Godunov method. However, as we argued above, the differences in the energy
spectra are really not that substantial, and in fact, the similarities between the two
types of methods as evidenced in those plots and in the plots of energy and enstro-
phy, are quite striking. These similarities attest to the fundamental integrity of the
Godunov-projection methods.

While the behavior of the Godunov-projection methods on well-resolved problems
is important to understand, one must realize that this was not the “design point”
for these methods. Godunov methods for approximating the advective terms in the
incompressible Navier-Stokes equations were developed with the hope of being able to
treat under-resolved problems in a robust and physically meaningful, if not entirely
accurate, way. Due to constraints imposed by the size of computers and the cost of
computing, the engineer might be forced to resolve only the parts of a flow with the most
engineering significance, leaving the less important regions in the flow under-resolved.
A significant example of this is with adaptive methods, where it is often routine to lower
the resolution in regions where such under-resolution has no influence on the quantities
of practical interest [19]. A warning here, however, is that adaptive mesh refinement
must be used carefully since abrupt changes in mesh spacing in an under-resolved flow

can also introduce perturbations that may cause unphysical features such as spurious
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vortices to form in the calculation. It is therefore desirable to have a method that
performs well in both regimes of the computation. Thus, while the correct details
may be simulated in the more resolved parts of the computation, simply capturing the
gross properties of the flow correctly in under-resolved regions may be sufficient. The
similarity of the energy, enstrophy and energy spectra of the various under-resolved
and resolved examples in the previous section indicate that the Godunov method is,
in a certain sense, representing the fluid behavior in a physically meaningful way, even
when under-resolving the flow. E and Shu [8] found in their ENO calculations that
total circulation was computed correctly in under-resolved situations, and we speculate
that this would be the case for the Godunov calculations as well.

It is tempting also to compare these under-resolved computations with the zero-
width shear layer computations presented in [1]. In that paper, computations are
presented with initial conditions (27) where p is effectively set to co. Comparisons for
pure Euler and various finite Reynolds numbers are presented. The Re = 5,000 case in
[1] is very similar in appearance to some of the thin shear layer examples in the present
paper. As Re — oo, however, the number of vortices in each layer increases. For the
Euler calculations, the authors of [1] observed also that as the mesh is refined, the
characteristic wavelength of the small scale structures appears to increase linearly with
the wavelength with no apparent convergence in the limit of infinitely small mesh-size.
One might speculate that such a breakup of the shear layer is somehow characteristic of
incompressible Fuler flow, however it would be inappropriate to draw such a conclusion
from the computations in [1]. In fact, it is difficult to conceive of how this question might
be conclusively addressed using finite difference methods. The present study addressed
a somewhat different question, that of the convergence of difference approximations
of a shear layer with fixed finite initial width. For each finite Reynolds number, as
the mesh-size is decreased, the solution converges to a single periodic vortex. We
speculate that the same convergence behavior would be observed for thinner initial
shear layers. If this speculation were true, it would suggest that the limiting behavior

as both Re — oo and p — oo is just a single vortex roll as with the finite-thickness,
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finite Reynolds number cases. Again, this would be difficult to verify numerically with
finite-difference methods. On the other hand, the problem of a shear layer perturbed by
a single long-wavelength mode might not have substantial physical relevance to begin
with. A thorough study of the Re — oo problem should also include the effect of more
complex perturbations. This is, of course, beyond the scope of the present paper.

In summary, from an engineer’s perspective, we have characterized a type of artifact
that may occur in under-resolved calculations with Godunov-projection methods. An
understanding of such potential artifacts is important for proper interpretation when
making routine simulations, as it would be with any tool in the engineer’s toolbox. The
evidence we have presented regarding behavior of the gross properties of under-resolved
flows might suggest that in certain cases these results might be adequate. Making that
judgement is not really the point of the present study, however. This paper simply
presents information that can be used along with other considerations to help make

reasonable decisions for the particular situation involved.
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Time | 32-64 | rate | 64-128 | rate | 128-256 | rate | 256-512
0.4 | 1.34E-2 | 2.43 | 2.49E-3 | 1.89 | 6.73E-4 | 1.88 | 1.82F-4
0.8 | 7.05E-2 | 2.62 | 1.14E-2 | 2.53 | 1.98E-3 | 2.08 | 4.67E-4
1.2 | 7.51E-2 | 2.12 | 1.72E-2 | 2.50 | 3.05E-3 | 2.20 | 6.61E-4

Table I: L2-errors and convergence rates for the projection method on the thick shear
layer problem. In each case, the error was estimated using Richardson extrapolation
between two meshes (columns labeled e.g. 32-64). The convergence rate exponent
was then estimated from these values by comparing adjacent error estimates (columns
labeled “rate”).

Time | 64-128 | rate | 128-256 | rate | 256-512 | rate | 512-1024
0.4 0.268 | 3.49 | 2.38E-2 | 3.86 | 1.64E-3 | 3.29 | 1.67E-4
0.8 1.83 3.72 0.277 3.03 | 2.41E-2 | 3.80 | 1.74E-3

Table II: L2-errors and convergence rates for the centered difference method on the
thick shear layer problem. In each case, the error was estimated using Richardson
extrapolation between two meshes (columns labeled e.g. 64-256). The convergence rate
exponent was then estimated from these values by comparing adjacent error estimates
(columns labeled “rate”).

Time | 32-64 rate | 64-128 | rate | 128-256 | rate | 256-512
0.4 | 1.07E-1 | 0.68 | 6.67E-2 | 1.70 | 2.04E-2 | 2.77 | 2.98E-3
0.8 | 2.39E-1 | 0.13 | 2.18E-1 | 0.51 | 1.53E-1 | 2.46 | 2.78E-2
1.2 | 1.91E-1 | -0.16 | 2.14E-1 | -0.22 | 2.50E-1 | 2.01 | 6.18E-2

Table III: L2-errors and convergence rates for the projection method on the thin shear
layer problem with p = 100 and » = 1/10,000 . In each case, the error was estimated
using Richardson extrapolation between two meshes (columns labeled e.g. 32-64). The
convergence rate exponent was then estimated from these values by comparing adjacent
error estimates (columns labeled “rate”).

Time | 32-64 rate | 64-128 | rate | 128-256 | rate | 256-512
0.4 | 1.15E-1 | 0.58 | 7.68E-2 | 1.15 | 3.45E-2 | 2.59 | 5.72E-3
0.8 | 2.45E-1 | -0.15 | 2.71E-1 | 0.52 | 1.89E-1 | 0.98 | 9.61E-2
1.2 | 2.01E-1 | -0.18 | 2.28E-1 | -0.29 | 2.78E-1 | 0.67 | 1.74E-1

Table IV: L2-errors and convergence rates for the projection method on the thin shear
layer problem with p = 100 and » = 1/20,000 . In each case, the error was estimated
using Richardson extrapolation between two meshes (columns labeled e.g. 32-64). The
convergence rate exponent was then estimated from these values by comparing adjacent
error estimates (columns labeled “rate”).
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Time | 32 | rate | 64 | rate 128 rate 256 rate 512
0.4 1292 0.29 | 239 | 1.66 | 7.57E-1 | 3.74 | 5.67E-2 | 1.66 | 1.80E-2
0.8 |3.57| 0.10 | 3.34 | 0.18 2.94 1.35 1.15 7.92 | 4.76E-2
1.2 | 3.18 | -0.07 | 3.34 | 0.26 2.78 1.01 1.38 9.71 | 1.65E-2

Table V: Local L2-errors and convergence rates for the projection method on the thin
shear layer problem in the region of the main spurious vortex. In this case, the errors
were estimated by comparing with a 1024 x 1024 reference solution. Problems with
p = 100 and v = 10, 000.

Time | 32 | rate | 64 | rate | 128 | rate 256 rate 512
04 |3.48 | 0.13 | 3.17 | 0.95 | 1.64 | 3.23 | 1.75E-1 | 2.54 | 3.01E-2
0.8 |3.83| 0.07 | 3.66 | 0.12 | 3.36 | 0.12 3.09 3.24 | 3.26E-1
1.2 | 3.27]-0.11 | 3.52 | 0.17 | 3.12 | 0.30 2.53 3.33 | 5.25E-1

Table VI: Local L2-errors and convergence rates for the projection method on the thin
shear layer problem in the region of the main spurious vortex. In this case, the errors
were estimated by comparing with a 1024 x 1024 reference solution. Problems with
p = 100 and v = 20, 000.



Under-resolved Incompressible Flow Simulations 28

64X 64 VORTICITY T= 0.80 NU=0.1000E—03 PROJ. CODE 126 X 128 VORTICITY T= 0.80 NU=0.1000E—03 PROJ. CODE
EETTTTTITT T T T T T T T T T T T T T Ty

EY

Lo NN )

CONTOUR FROM —36 TO 36 BY 6 CONTOUR FROM —36 TO 36 BY 6
256 X 256 VORTICITY T= 0.80 NU=0.1000E—03 PROJ. CODE 512X 512 VORTICITY T= 0.80 NU=0.1000E—03 PROJ. CODE
Loa L g

28.34

CONTOUR FROM -36 TO 36 BY 6 CONTOUR FROM -36 TO 36 BY 6

Figure 2: Vorticity contours for the “thick” shear layer at time 0.8 for resolutions
64 x 64 , 128 x 128, 256 X 256 and 512 x 512 . Godunov-projection method. Layer
width parameter p = 30, viscosity v = 1/10,000.
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Figure 3: Vorticity contours for the “thick” shear layer at time 1.2 for resolutions
64 x 64 , 128 x 128, 256 X 256 and 512 x 512 . Godunov-projection method. Layer
width parameter p = 30, viscosity v = 1/10,000.
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Figure 4: Vorticity contours of the “thick” shear layer problem at time 0.8 for resolu-
tions 64 x 64 , 128 X 128, 256 x 256 and 512 X 512 . Centered finite-difference method.
Layer width parameter p = 30, viscosity v = 1/10,000.
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Figure 5: Vorticity contours of the “thick” shear layer problem at time 1.2 for resolu-
tions 64 x 64 , 128 x 128, 256 x 256 and 512 X 512 . Centered finite-difference method.
Layer width parameter p = 30, viscosity v = 1/10,000.
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Figure 6: The top two figures show the Ly-norm of the velocity and the Ly-norm of
the vorticity as a function of time for the Godunov-projection method. The lower left
figure shows plots of the spectrum at times .4(A), .8(B), 1.2(C) and 1.6(D). The lower
right figure shows a plot of the fraction of mesh cells at which the limiters switch “on”
as a function of time. There are four curves corresponding to the four places in the
method at each timestep where the limiters are invoked. All plots are for an example
with 512 x 512 cells, layer width parameter p = 30, viscosity v = 1/10, 000.
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Figure 7: The top two figures show the Ly-norm of the velocity and the Ly-norm of the
vorticity as a function of time for the centered finite-difference method. The lower figure
shows plots of the spectrum at times .4(A), .8(B), 1.2(C) and 1.6(D). All plots are for
an example with 512 x 512 cells, layer width parameter p = 30, viscosity v = 1/10, 000.
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Figure 8: Appearance of spurious vortices for “thin” shear layer problem at time 0.8.
From left to right, top to bottom, vorticity contours obtained with the Godunov-
projection method with 128 x 128, 256 X 256 and 512 x 512 cells; Lower right: Centered
finite-difference method with 512 x 512 cells. Layer width parameter p = 100, viscosity
v = 1/20,000.
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Figure 9: Appearance of a spurious vortex for “thin” shear layer problem at time 1.2.
From left to right, top to bottom, Godunov-projection method with 128 x 128, 256 X 256
and 512 x 512 cells; Lower right: Centered finite-difference method with 512 x 512 cells.
Layer width parameter p = 100, viscosity v = 1/20, 000.
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Figure 10: Appearance of spurious vortices for “thin” shear layer problem using the
centered finite-difference method. Vorticity contours of the solution at times 0.8 and
1.0. Layer width parameter p = 100, viscosity v = 1/40, 000,256 x 256 cells. The high-
frequency oscillations result from the under-resolution of the centered finite difference
method and eventually drive the computation unstable.
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Figure 11: Appearance of a spurious vortex for “thin” shear layer problem at time 0.8.
From left to right, top to bottom, vorticity contours for the Godunov-projection method
with 128 x 128, 256 x 256 and 512 x 512 cells; Lower right: Centered finite-difference
method with 512 x 512 cells. Layer width parameter p = 100, viscosity v = 1/10,000.
Viscosity is larger than in figure 8, and so spurious vortices are not as prominent at

the corresponding resolution.
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Figure 12: Vorticity contours showing the appearance of a spurious vortex for “thin”
shear layer problem at times 0.8 and 1.2. Top: Godunov-projection method with
256 x 256 and 512 x 512 cells; time 0.8; Bottom: Godunov-projection method with
256 x 256 and 512 x 512 cells; time 1.2; Layer width parameter p = 100, viscosity
v = 1/40,000. Viscosity is smaller than in figure 8, and so spurious vortices are more
prominent at the corresponding resolution.
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Figure 13: Ly-norm of velocity (top) and Ly-norm of vorticity (bottom) on 256 x 256
(left) and 512 x 512 (right) meshes for the example shown in figures 8 and 9. Note that
while the 512 x 512 example appears resolved and the 256 X 256 example does not, the
kinetic energy and enstrophy for the two examples are nearly indistinguishable.
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