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Abstract—Triangle counting and enumeration are important
kernels that are used to characterize graphs. They are also used
to compute important statistics such as clustering coefficients. We
provide a simple exact algorithm that is based on operations on
sparse adjacency matrices. By parallelizing the individual sparse
matrix operations, we achieve a parallel algorithm for triangle
counting. The algorithm is generalizable to triangle enumeration
by modifying the semiring that underlies the matrix algebra.
We present a new primitive, masked matrix multiplication, that
can be beneficial especially for the enumeration case. We provide
results from an initial implementation for the counting case along
with various optimizations for communication reduction and load
balance.

I. INTRODUCTION

A triangle is a special type of a subgraph that is com-
monly used for computing important measures in a graph.
The examples include clustering coefficients and transitivity.
Finding all triangles is a computationally expensive task,
especially for large graphs. The simpler version of the problem
reports the counts of triangles (triangle counting). Various
specialized algorithms, that are either based on the MapReduce
framework [1], or based on the wedge (a path of length two)
sampling idea [2], has been proposed for triangle counting.

In addition to counting, triangle enumeration (sometimes
called triangle listing) also outputs the actual triangles. Once
triangles are enumerated, the output can be used to calculate
local (per-vertex) clustering coefficients. The state-of-the-art
algorithm for dense neighborhood discovery uses triangles
enumeration as a subroutine [3]. Ortmann and Brandes [4]
presented a framework unifying all triangle enumeration algo-
rithms published to date. According to them, all subsequently
published algorithms are variations of the algorithm presented
by Chiba and Nishizeki [5], which, in our view, can be seen
as a special case of the row-by-row implementation of sparse
matrix-matrix multiplication itself.

In this work, we present algorithms for exact triangle
counting and enumeration, which are based on matrix algebra.
Many graph algorithms have been previously presented in
the language of linear algebra [6]. Many others such as
network alignment [7] and maximal independent set [8], are
constantly being discovered. Avron [9] previously described
a matrix-based approximation algorithm for triangle counting
that uses Monte-Carlo simulation and the trace of the cube
of the adjacency matrix. Satish et al. [10] counted triangles
by explicitly computing the cube of the adjacency matrix in

their evaluation of graph frameworks, which is unnecessarily
expensive compared to the algorithm we present in this paper.

The complexity of our algorithm is bounded by the time
to compute the product of the lower triangular and upper
triangular parts of the sparse adjacency matrix. We parallelize
our algorithm using a 1D decomposition of sparse matrices,
due to its ease of analysis. To minimize communication, we
introduce a new primitive, masked matrix multiplication on
sparse matrices (MASKEDSPGEMM), that can avoid com-
municating edges of a triad (an open wedge) that is known
not to form a triangle (a closed wedge), at the expense of
communicating information about the output structure. While
MASKEDSPGEMM is a general operation, in our restricted
context of triangle counting and enumeration, the nonzero
structure of the adjacency matrix provides the output mask.
We use Bloom filters [11] to minimize the overhead of
communicating this output mask with other processors.

II. SERIAL ALGORITHM FOR TRIANGLE COUNTING

A. The Baseline Algorithm

The serial matrix-based algorithm is based on Cohen’s
MapReduce algorithm for counting triangles [12]. Given an
adjacency matrix A, the algorithm first orders rows with
increasing number of non zeros they contain. It then splits the
matrix into a lower triangular and an upper triangular pieces
via A = L+U. The lower triangular piece holds edges (i, j)
where i > j, and the upper triangular piece holds edges (i, j)
where i < j. In graph terms, the multiplication of L by U
counts all the wedges of (i, j, k) form where j is the smallest
numbered vertex (in our case, is the vertex with lowest degree).
More precisely, B(i, k) captures the count for (i, j, k) wedges
where B = L ·U. The final step is to find if the wedges close
by doing element-wise multiplication with the original matrix,
i.e. C = A. ∗B.

The A = L+U splitting need not be into lower triangular
L and upper triangular U. An alternative is to not order rows
of A by vertex degree, but rather to identify a total ordering
perm of the vertices that is consistent with vertex degree. For
each symmetric nonzero pair A(i, j) = A(j, i) = 1 one can
put one of them into L and the other into U depending on the
ordering of perm(i) and perm(j). In this paper, we do not
explore this alternative formulation.



B. Complexity

For an undirected graph with m edges and n vertices,
nnz (L) = nnz (U) = m. We analyze the complexity of our
algorithm for an Erdős-Rényi graph with average degree d.
The multiplication B = L ·U costs d2n operations. However,
the ultimate matrix C has at most 2dn nonzeros. There is
a factor of O(n/d) redundancy in the number of arithmetic
operations because not all wedges computed end up being
closed by an edge. For operations on sparse graphs, it is typical
that arithmetic operations are free and the time is dominated
by memory references. Consequently, the naı̈ve approach to
eliminate flops by skipping scalar multiplications that can not
contribute to C is ineffective because the moment L(i, j) and
U(j, k) is accessed, the penalty has been paid in terms of
memory bandwidth costs.

C. Algorithm using Masked Multiplication

The sparse matrix-matrix multiplication, SPGEMM(L,U),
has a special structure that we can exploit. In particular, the
nonzero structure of the output has to be contained in another
matrix A. To take full advantage of this property and avoid
communicating data for nonzeros that fall outside this nonzero
structure, we introduce the “masked” SPGEMM of the form
C = MASKEDSPGEMM(L,U,A). Here, the operands of the
multiplication are L and U, whereas A serves as the output
mask. Mathematically, C = MASKEDSPGEMM(L,U,A) is
equivalent to performing B = L ·U followed by C = A.∗B.
Computationally, it can be made faster, by avoiding commu-
nication.

Using existing terminology, we say that A
provides a “one-at-a-time” structure prediction on
C = MASKEDSPGEMM(L,U,A) because each position in
C can be made nonzero but there is no guarantee that all can
be made nonzero at the same time (which would depend on
the exact nonzero structures of the operands) [13].

III. PARALLEL ALGORITHM FOR TRIANGLE COUNTING

Our parallel algorithm is based on the 1D decomposition
of matrices. Here, we describe the algorithm column-wise
but the row-wise version is symmetrical. The algorithm is an
extension of the so-called “Improved 1D Algorithm” described
previously [14], [15]. For SPGEMM of the form B = L ·U,
where matrices are distributed in block columns, the local
computation performed by processor Pi is Bi = L·Ui. Hence,
each processor needs only its own piece of U to compute its
piece of the output B, but it might need all of L in the worst
(dense) case.

More precisely, the basic algorithm is provided in Figure 1.
Each processor stores a block of n/p columns. Ai denotes
the n×n/p slice of A owned by processor Pi. Given vectors
I and J of row and column indices, SPREF extracts the
submatrix A(I, J). We use the MATLAB colon notation to
describe whole rows or columns. For example, SPREF(A, i, :)
extract the whole ith row of A

BASICTRIANGLECOUNT(A)

1 (L,U)← SPLIT(A)
2 for all processors Pi in parallel
3 do Urowsum ← SUM(Ui, rows) . Sum along rows
4 J ← NZINDICES(Urowsum)
5 JS ← MPI ALLGATHERV(J)
6 for j ← 1 to p
7 do LSpack(j)← SPREF(Li, :, JS(j))
8 LSrecv ← MPI ALLTOALL(LSpack)
9 Lrecv ← CONCATENATE(LSrecv)

10 Bi ← SPGEMM(Lrecv,Ui)
11 Ci ← MASK(Ai,Bi) . C = A. ∗B
12 localcnt ← SUM(SUM(Ci, cols), rows)
13 return MPI REDUCE(localcnt) . Return global sum

Fig. 1. The basic parallel algorithm for the exact triangle counting problem
using improved 1D SpGEMM on p processors. The input A is a sparse
boolean adjacency matrix that represents an undirected graph without self
loops. The set of indices J computed in line 4 is the list of nonzero rows in
Ui. All functions that require communication are prefixed with MPI .

A. Communication Complexity of the Parallel Algorithm

For our parallel complexity analysis, we assume that edges
are independently and identically distributed, meaning that the
subrow’s adjacencies can be accurately modeled as a sequence
of Bernoulli trials. This assumption is only for ease of analysis
and does not limit the applicability of our algorithm to other
graphs with more skewed degree distributions.

The main observation behind the improved algorithm was
that not all of L is needed for the sparse case. Specifically,
whether or not L(:, k) (the kth column of L) is needed by
processor Pi depends on whether Ui(k, :) (the kth subrow
owned by Pi) has at least one nonzero. The probability of
such a subrow being empty is

Pr{nnz (Ui(k, :)) = 0} = (1− d

n
)n/p,

as already analyzed before [14]. The Binomial expansion
is:

(1− d

n
)P/n = 1− n

p

d

n
+

O((n/p)2(d/n)2)

2!
−O((d/p)3)

As long as d < p, the linear approximation is accurate and
yields

Pr{nnz (Ui(k, :)) = 0} = 1− d

p
.

Hence the number of columns of L needed by Pi is

n · Pr{nnz (Ui(k, :)) 6= 0} =
nd

p
.

MASKEDSPGEMM provides further opportunities to re-
duce this communication volume. In our case, the mask has
the same structure as the union of two operands, so it has
expected O(dn) nonzeros as well. Since semantically
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Fig. 2. The effect of one-at-a-time structure prediction on communication
costs of SPGEMM. A ⊇ L ·U notation means that the nonzero structure of
L ·U has to be contained within the nonzero structure of A. In this example,
the nonzeros in the fifth row of L (marked with red color) are not needed by
the first processor (who owns the first two columns) because the fifth subrow
of the output is not allowed to contain any nonzeros.

C(i, j) = A(i, j). ∗
(∑

k

L(i, k)U(k, j)
)
,

an empty subrow in the mask (i.e. nnz (Ai(l, :)) = 0) means
the corresponding (full) row in the first operand, L(l, :), is also
not needed by Pi. This is illustrated in Figure 2. Exploiting
this observation, we achieve the first version of our “masked”
algorithm, shown in Figure 3.

Following a similar probabilistic analysis, the number of
rows of L needed by Pi also turns out to be nd/p. Put together,
each processor needs an nd/p-by-nd/p submatrix of L to
compute its own piece of the output. In expectation, this would
mean a communication volume of

Vol(Pi) =
nd

p
· nd
p
· d
n

=
nd3

p2

nonzeros. Since each processor is assumed to have enough
memory to hold its piece of inputs, which contains nd/p
nonzeros, this data volume is small enough to gather all at
once at the target processor (assuming d < p). Furthermore,
MASKEDSPGEMM provides a communication volume re-
duction of a factor of p/d over the general improved 1D
SPGEMM algorithm, which is significant for large p.

Unfortunately, this reduction in the cost of communicating
submatrices Li comes at the expense of index traffic for
requesting a specific subset of rows. In particular, len(I) =
nd/p. The version of the algorithm that uses Bloom filters
to reduce this communication cost is identical to the masked
algorithm listed in Figure 3, except the set of row indices I
computed in line 6 is further compressed into a Bloom filter
before communication. Instead of sending explicit indices,
which are typically 64-bit integers each, the Bloom filter
only sends a lossy sketch, which is approximately 4 bits per
entry in our case. The loss in a Bloom filter is one sided,
in the sense that it only has false positives but no false
negatives. Consequently, no entry of L that would be needed in
SPGEMM in line 13 can be missing, only a small percentage
of redundant entries can be potentially sent (up to the Bloom
filter error rate).

B. Computational Costs
The challenging part of making the parallel algorithm scal-

able is to design the data structures and primitives accordingly

MASKEDTRIANGLECOUNT(A)

1 (L,U)← SPLIT(A)
2 for all processors Pi in parallel
3 do Urowsum ← SUM(Ui, rows) . Sum along rows
4 Arowsum ← SUM(Ai, rows) . Sum along rows
5 J ← NZINDICES(Urowsum)
6 I ← NZINDICES(Arowsum)
7 IS ← MPI ALLGATHERV(I)
8 JS ← MPI ALLGATHERV(J)
9 for j ← 1 to p

10 do LSpack(j)← SPREF(Li, JS(j), IS(j))
11 LSrecv ← MPI ALLTOALL(LSpack)
12 Lrecv ← CONCATENATE(LSrecv)
13 Bi ← SPGEMM(Lrecv,Ui)
14 Ci ← MASK(Ai,Bi) . C = A. ∗B
15 localcnt ← SUM(SUM(Ci, cols), rows)
16 return MPI REDUCE(localcnt) . Return global sum

Fig. 3. The masked parallel algorithm for the exact triangle counting problem
using improved 1D SpGEMM on p processors. The input A is a sparse
boolean adjacency matrix that represents an undirected graph without self
loops. All functions that require communication are prefixed with MPI . The
code in lines 2–14 is a special case of MASKEDSPGEMM. The MASK is
still necessary as the communication reduction is only an upper bound.

so that sparse matrix indexing does not become a bottleneck.
Each processor on average has to send a nd/p-by-nd/p2

submatrix to every other processor. Packaging these subma-
trices for their destinations require p SPREF computations per
processor. A naı̈ve implementation of SPREF(A, I, J) takes
time O(nnz (A)) [16] so that would cost

nd

p
· p = nd

per processor, which is clearly unscalable. Instead, we take
advantage of the data structures used to store sparse matrices.

We use Compressed Sparse Columns (CSC) to hold sub-
matrices assigned to each processor, a clear choice given the
column-wise partitioning of our data. Extracting k columns
from a CSC matrix requires touching only those columns.
This statement also holds asymptotically for cache complexity,
assuming each column has more than a cache line’s worth of
data (i.e., d ≥ B/8 where integers are assumed to be 64-bits)
on average.

Consequently, we implement our SPREF by first fetching
the relevant columns then choosing the appropriate nonzeros
with matching row entries within that subset. Fetching nd/p2

columns of Li creates an implicit (because it is not necessarily
instantiated) matrix with

nnz (Li(:, J)) = n · nd
p2
· d
n

=
nd2

p2

nonzeros. Serving all other processors by scanning a matrix
of this size each take∑

J

nnz (Li(:, J)) = p
nd2

p2
=

nd2

p



time, which follows the ideal scaling of general SPGEMM.
Similar to the communication analysis, the index vector I

could potentially become the bottleneck here. Since len(I) =
nd/p, we can not afford to touch every entry of IS (the set
of I that are received), or the parallel algorithm would run
in time Ω(n) due to scanning all of IS (line 7 in Figure 3).
Hence, each IS(i) is represented locally either as a Bloom
filter or as a hash table, both of which has O(1) amortized
cost for accessing an element.

IV. EXTENSION TO TRIANGLE ENUMERATION

Extending our algorithm to enumerate, as opposed to merely
count, triangles is accomplished by changing the underlying
semiring. SPGEMM(L,U) now maps sets of edges to the
set of central vertices of wedges. We redefine the binary
multiplication, SCALARMULT as follows:

k ← SCALARMULT(L(i, k),U(k, j))

In this formulation, SCALARMULT either needs to be able
to access the indices of its operands, or we simply cast the
inputs L,U to be of type “pairs of integer indices” as opposed
to just booleans. The binary addition, SCALARADD, is simply
defined as list concatenation, creating an output matrix B
whose entries are of type list

The masking operator, regardless of it being performed after
SPGEMM or being fused into MASKEDSPGEMM, is simply
defined as:

SCALARMASK(A(i, j),B(i, j))

1 triangles = {} . Empty list
2 for all entries k in B(i, j)
3 do if A(i, j) 6= 0
4 do APPEND(triangles , tuple(i, j, k))
5 return triangles

V. EXPERIMENTAL SETUP

A. Platform

We evaluate the performance of parallel triangle counting
algorithms on Edison, a Cray XC30 supercomputer at NERSC.
In Edison, nodes are interconnected with the Cray Aries
network using a Dragonfly topology. Each compute node is
equipped with 64 GB RAM and two 12-core 2.4 GHz Intel Ivy
Bridge processors, each with 30 MB L3 cache. We used Intel
C++ Compiler (icc 15.0.1) to compile the code, and Cray’s
MPI implementation on Edison is based on MPICH2.

B. Implementations

We briefly discuss the implementations of three major
functions NZINDICES, SPREF, and SPGEMM used by both
BASICTRIANGLECOUNT (Fig. 1) and MASKEDTRIANGLE-
COUNT (Fig. 3).

Given a matrix A, NZINDICES identifies row indices I
such that A(I, :) has at least one nonzero in each row. We
implement this function by using a boolean vector v of size
n, which is reset to 0 initially. The function scans each nonzero

entry of A, and if a nonzero entry is found at row r for the
first time, it sets v(r) to 1 and inserts r into I . For efficiency,
we created another version of NZINDICES that stores I in
a Bloom filter. Hence, we have three versions of triangle
counting algorithms: (a) Triangle-basic (b) Triangle-masked-
bloom and (c) Triangle-masked-list, where the first algorithm
is described in Fig. 1 and the second and third algorithms are
described in Fig. 3. The differences between Triangle-masked-
bloom and Triangle-masked-list lie in the representation of
row indices I and the implementation of the SPREF function
discussed next.

Assume that the ith processor Pi received the row and
column indices I and J of Li from another processor. Pi then
uses the SPREF function to extract the submatrix Li(I, J) and
sends it back to the requesting processor. We implemented
three different versions of SPREF for three triangle counting
algorithms. In Triangle-basic, Pi only receives J and sends
back Li(:, J). Since we stores Li in CSC format, it is trivial
to combine the columns indexed by J and create Li(:, J). In
Triangle-masked-bloom, Pi receives J as an array of indices
and I as a Bloom filter. Then, SPREF creates Li(I, J) from
nonzero row indices of Li(:, J) if the indices are present in the
received Bloom filter. Hence, the complexity of SPREF used
by Triangle-masked-bloom is O(nnz(Li(:, J))). Finally, Pi

receives both I and J as arrays of indices in Triangle-masked-
list algorithm. In this case, each nonzero entry of Li(:, J)
is searched in I by binary search, hence the complexity
O(nnz(Li(:, J)) log(len(I))).

Consider that Pi received necessary submatrices of L from
all other processors and merged the pieces into Lrecv. Then,
SPGEMM performs Lrecv ·Ui. We implemented SPGEMM
by using a sparse accumulator (SPA) -based algorithm [17].

C. Dataset

Table I describes a representative set of graphs from the
University of Florida sparse matrix collection [18]. In the
preprocessing step, we symmetrize each input matrix and
remove diagonal entries (self loops) from them. We also
randomly permute rows and columns of the matrices for load
balancing. The preprocessed matrix A is considered as the
adjacency matrix of an undirected graph and passed to triangle
counting algorithm as input. Table II shows the number of
nonzeros in matrices generated in different steps of algorithms
along with the number of triads and triangles present in the
input graph.

VI. RESULTS

A. Relative performance of algorithms

We compare the performance of three parallel algorithms
for counting triangles on graphs. The Triangle-basic algorithm
performs a distributed SpGEMM to compute L ·U, where the
ith processor sends all rows of the requested columns of Li

to the requesting processors. Both Triangle-masked-bloom and
Triangle-masked-list algorithms perform a distributed masked
SpGEMM, where the ith processor sends requested rows and
columns of Li to the requesting processors. In the former



Graph #Vertices #Edges Clustering Coeff. Description

mouse gene 45,101 28,967,291 0.4207 Mouse gene regulatory network
coPaperDBLP 540,486 30,491,458 0.6562 Citation networks in DBLP
soc-LiveJournal1 4,847,571 68,993,773 0.1179 LiveJournal online social network
wb-edu 9,845,725 57,156,537 0.0626 Web crawl on .edu domain
cage15 5,154,859 99,199,551 0.1209 DNA electrophoresis, 15 monomers in polymer
europe osm 50,912,018 108,109,320 0.0028 Europe street networks
hollywood-2009 1,139,905 113,891,327 0.3096 Hollywood movie actor network

TABLE I
TEST PROBLEMS FOR EVALUATING THE TRIANGLE COUNTING ALGORITHMS.

Graph nnz(A) nnz(B = L ·U) nnz(A. ∗B) Triads Triangles

mouse gene 28,967,291 138,568,561 26,959,674 25,808,000,000 3,619,100,000
coPaperDBLP 30,491,458 48,778,658 28,719,580 2,030,500,000 444,095,058
soc-LiveJournal1 68,993,773 480,215,359 40,229,140 7,269,500,000 285,730,264
wb-edu 57,156,537 57,151,007 32,441,494 12,204,000,000 254,718,147
cage15 99,199,551 405,169,608 48,315,646 895,671,340 36,106,416
europe osm 108,109,320 57,983,978 121,816 66,584,124 61,710
hollywood-2009 113,891,327 1,010,100,000 104,151,320 47,645,000,000 4,916,400,000

TABLE II
STATISTICS OF TRIANGLE COUNTING ALGORITHM FOR DIFFERENT INPUT GRAPHS.
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Fig. 4. Runtimes of three triangle counting algorithms for six input graphs on (a) 64 and (b) 256 cores of Edison.

algorithm, a processor sends the indices of necessary rows
in a Bloom filter. By contrast, a processor sends an array of
necessary row indices in the latter algorithm.

Fig. 4 shows runtimes of three triangle counting algorithms
for six input graphs on (a) 64 and (b) 256 cores of Edison. In
both subfigures, Triangle-masked-list is the slowest algorithm
for all problem instances. On average, over all problem in-
stances, Triangle-masked-bloom runs 2.3x (stdev=0.86) faster
on 64 cores and 3.4x (stdev=1.9) faster on 256 cores than
Triangle-masked-list. This is due to the fact that sending row

indices by Bloom filters saves communication, and SpRef
runs faster with the Bloom filter. Since Triangle-masked-list
is always slower than Triangle-masked-bloom, we will not
discuss the former algorithm in the rest of the paper.

For all graphs except wb-edu, Triangle-basic runs faster
than the Triangle-masked-bloom algorithm. On average, over
all problem instances, Triangle-basic runs 1.6x (stdev=0.7)
faster on 64 cores and 1.5x (stdev=0.6) faster on 256 cores
than Triangle-masked-bloom. We noticed that the performance
difference between these two algorithms is reduced as we



increase p because the communication time to transfer sub-
matrices of L is expected to increase as we increase p.

B. Scalability

Fig. 5 shows the strong scaling of (a) Triangle-basic and
(b) Triangle-masked-bloom algorithms on Edison for dif-
ferent graphs. On 512 cores, the average speedup of par-
allel Triangle-masked-bloom algorithm is 40.2 (stdev=31.4,
min=12.4, max=81.5) relative to the same algorithm on single
core. By contrast, the average speedup attained by the par-
allel Triangle-basic algorithm is 56.5 (stdev=51.4, min=12.5,
max=130.2). For both algorithms, the high standard deviations
of the speedups reflect huge performance differences across
different graphs. Such performance variability is originated
from the properties of the graph shown in Tables II and I. The
impact of different properties of the input graph is discussed
in Section VI-D.

C. Breakdown of runtime

Fig. 6 shows the breakdown of runtimes of (a) Triangle-
basic and (b) Triangle-masked-bloom algorithms for different
input graphs on 512 cores of Edison. Here, the “Comp-
Indices” denotes the time to compute the row and column in-
dices of L needed by a processor, “Comm-Indices” denotes the
communication time to distribute the indices, “SpRef” denotes
the computation time to create submatrices of L requested
by other processors, “Comm-L” denotes the communication
time to distributed submatrices of L, and “SpGEMM” denotes
the computation time to multiply the received submatrices of
L by local submatrix of U. Other steps in the algorithm,
such as combining received submatrices of L into a single
matrix, take insignificant amount of time and are not shown
here. For all graphs, Triangle-basic spends at least 80% of the
time on “Comm-L” and local “SpGEMM”. The high fraction
of time spent on these two steps takes place because this
algorithm does not send row indices when requesting columns
of L. Therefore, the serving processor has to send all rows of
the requesting columns, which increases the communication
volume and the time to perform local SpGEMM. By con-
trast, Triangle-masked-bloom spends more time on “Comm-
Indices” and “SpRef”. Distributing indices is more expensive
in the Triangle-masked-bloom algorithm because it sends row
indices of the necessary columns of L in a Bloom filter. To
serve p processors, the ith processor needs to run p SpRefs
with different sets of row and column indices received from
different processors. Hence, “Comm-Indices” and “SpRef”
become the most expensive steps in the Triangle-masked-
bloom algorithm. Since the expected number of nonzeros of
Li sent from ith processor to every other processor reduces
significantly, “Comm-L” and local “SpGEMM” steps become
relatively cheap in Triangle-masked-bloom.

We now show how different steps of Triangle-basic and
Triangle-masked-bloom scale as we increase the number of
processors. Fig. 7 shows the breakdown of time spent by
(a) Triangle-basic and (b) Triangle-masked-bloom algorithms
on different number of cores for the coPaperDBLP graph.

As expected, SpGEMM dominates the total runtime on small
number of cores for both algorithms. As we increase p,
communication time to distribute submatrices of L becomes
dominant in the Triangle-basic algorithm. In fact, this is
the primary motivation of designing masked SpGEMM al-
gorithm because the communication time is expected to be
the performance bottleneck on large number of processors.
By contrast, SpRef becomes the most dominating term on
large number of processors for the Triangle-masked-bloom
algorithm. Therefore, we reduce the communication time of
“Comm-L” at the cost of increasing the computation time of
“SpRef”. Implementing an efficient SpRef remains a future
work.

D. Effect of the clustering coefficient

The clustering coefficient of a graph significantly affects
the performance of the Triangle-basic and Triangle-masked-
bloom algorithms. Table I shows the clustering coefficient of
different input graphs. europe_osm has the lowest clustering
coefficient mostly because it has only a small number of
triangles. Therefore, we consider it an exception and will
not consider in the subsequent discussion. On graphs where
the clustering coefficient is relatively small, Triangle-masked-
bloom benefits from not distributing unnecessary parts of L
and not multiplying them with Ui. Hence, on these graphs,
Triangle-masked-bloom is expected to perform better. Indeed,
in Fig. 5, we observe that Triangle-masked-bloom outper-
forms Triangle-basic on web-edu graph with the second
smallest clustering coefficient (.0626) in our problem set.
On two other graphs that have small values of clustering
coefficient (soc-LiveJournal1 and cage15), Triangle-
masked-bloom performs closely to Triangle-basic. For these
two graphs, Triangle-masked-bloom is expected to outperform
Triangle-basic with the increased number of processors. By
similar argument, on graphs with large clustering coefficient
such as mouse-gene and coPaperDBLP, Triangle-basic
runs at least twice as fast as Triangle-masked-bloom.

VII. FUTURE WORK

Our implementation should be considered as preliminary
and can benefit from various optimizations. In particular, the
local data structures can be improved for SPREF. In-node
threading would have a quadratic positive effect on reducing
memory requirements. Since the requested index vectors I and
J are gathered in every process, multithreading would reduce
the number of such requests by a factor of t (the number of
threads used). Furthermore, each process would now have a
factor of t more shared memory. 2D decomposition of matrices
can also provide similar improvements. The requested index
vectors would be of shorter length (by up to a factor of

√
p)

and only
√
p such vectors (as opposed to p) would need to be

gathered in each process. A detailed complexity analysis using
the 2D decomposition and a high-performance implementation
using the CombBLAS [19] is part of our future work. We also
plan to report on comparisons with other parallel algorithms,



1	  

2	  

4	  

8	  

16	  

32	  

64	  

128	  

256	  

1	   4	   16	   64	   256	  

Sp
ee
du

p	  

Number	  of	  Cores	  

(a)	  Triangle-‐basic	  	  

coPapersDBLP	  

mouse-‐gene	  

cage15	  

europe_osm	  

1	  

2	  

4	  

8	  

16	  

32	  

64	  

128	  

1	   4	   16	   64	   256	  

Sp
ee
du

p	  

Number	  of	  Cores	  

(b)	  Triangle-‐masked-‐bloom	  

coPapersDBLP	  

mouse-‐gene	  

cage15	  

europe_osm	  

Fig. 5. Strong scaling of (a) Triangle-basic and (b) Triangle-masked-bloom algorithms for four input graphs.

0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

mou
se_g

ene
	  

coPa
pers

DBL
P	  

soc-‐
Live

Jour
nal1

	  
wb-‐

edu
	  

cage
15	  

euro
pe_

osm
	  

holl
ywo

od	  

(b)	  Triangle-‐masked-‐bloom	  

Comp-‐Indices	   Comm-‐Indices	   SpRef	   Comm-‐L	   SpGEMM	  

0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

mou
se_g

ene
	  

coPa
pers

DBL
P	  

soc-‐
Live

Jour
nal1

	  
wb-‐

edu
	  

cage
15	  

euro
pe_

osm
	  

holl
ywo

od	  

(a)	  Triangle-‐basic	  

Comp-‐Indices	   Comm-‐Indices	   SpRef	   Comm-‐L	   SpGEMM	  

Fig. 6. Breakdown of time spent by (a) Triangle-basic and (b) Triangle-masked-bloom algorithms for different input graphs on 512 cores of Edison.

such as PATRIC [20], which uses MPI, and the multicore
implementation of Shun and Tangwongsan [21].

We plan to implement the triangle elimination algorithm
presented here as well. For that, we need a high-performance
method to pack/unpacks/serialize lists of pairs of indices.
Several approaches exists [22] for efficient serialization.
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