Computer Science Department
School of Sciences and Engineering
University of Crete

Approaching Ideal NoC Latency with Pre-Configured Routes

Master’s Thesis

George Michelogiannakis

June 2007
Heraklion, Greece

[avemothuo Kertne
Yyort Oetixwv xou Teyvoloyixwv Emotruomy
Tufua Eniotiung Trohoyiotov

Approaching Ideal NoC Latency with Pre-Configured Routes

Epyaoio ntou unoAfinxe and tov l'edpyio Miyehoylovvdxn
¢ UECIXT| EXTATLOOT] TWV ATUTAGEWY YL TNV ATOXTNOT)
Merantuytoxol Atmdopatog Ewixeuong

Yuyypagéag:

I'ewpytoc Miyehoytavvdxne, Turua Emiotiunc Troloyiotoyv

Ewnynuxd, Emtpon:

Mavorne Katefoivne, Koadnyntic, Endntng

Anéoroloc Teayavitne, Kadnyntric, Méhoc

Awovioiog Tlveupatixdrog, Avaminpwtric Konyntric, Méhog
Turua Hiextpovixwv Mrnyavixwy & Mryovixay Trohoyiotay, oluteyveio Kertne

Aexth:

Havaytwtng Teayavide, Kadnyntic
ITpbedpog Emtgonic Metantuytaxady Xmoudmy

Hpdokero, Toviog 2007

Approaching Ideal NoC Latency with Pre-Configured Routes

by

George Michelogiannakis
mihelog@csd.uoc.gr

Master’s Thesis

Department of Computer Science
University of Crete

Abstract

In multi-core ASICs, processors and other compute engines teecommunicate with mem-
ory blocks and other cores with latency as close as possillestideal of a direct buffered wire.
However, current state of the art networks-on-chip (NoC#esguat best, latency of one clock
cycle per hop.

We investigate the design of a NoC that offers close to thalildency in some preferred,
run-time configurable paths. Processors and other compgtees may perform network recon-
figuration to guarantee low latency over different sets dhpas needed. Flits in non-preferred
paths are given lower priority than flits in preferred pathshable the latter to provide low

latency.

To achieve our goal, we extend the “mad-postman” technifjliesiery incoming flit is ea-
gerly (.e. speculatively) forwarded to the input’s preferred outpiudny. This is accomplished
with the mere delay of a single pre-enabled tri-state driVeée later check if that decision was
correct, and if not, we forward the flit to the proper outpuatdrrectly forwarded flits are classi-

fied as dead, and are eliminated in later hops.

We use a 2D mesh topology tailored for processor-memory aomgation, and a modified

version of XY routing that remains deadlock-free. We alsgpoise an extension which enables

a switching node to switch to adaptive routing when its bémafie required.

Our evaluation shows that, for the preferred paths, ouraggtr offers typical latency around
500 ps versus 1500 ps for a full clock cycle at 667 MHz or up t6 8 for an 1 mm ideal
direct connect, in a 130 nm technology; non-preferred psiiffer a one clock cycle delay per
hop when there is no contention, similar to that of other apphes. Performance gains are

significant and can prove quite useful in other applicatiomdins as well.

Keywords: Network-on-chip, Pre-configured, Low-latency, Routes, CBy&tem-on-chip.

Thesis Advisor: Manolis Katevenis, Professor
Thesis Co-Advisor: Dionisios Pnevmatikatos, Associate Professor, Technitaversity of

Crete, Chania

[Tpooéyyion tne Ioavinnc Kobuotépnone oe Aixtua Evtoc Chip
uéow Ilpoxadopiouol Atadpouny

['ewpyloc MiyehoyLovvéxnc
mihelog@csd.uoc.gr

Metamtuytoo Egyoota

Tunua Emothunc Trohoylotody
Havemotiuo Kertneg

[Tepiindn

Y& molvenelepyaosTixd Chips ol enelepyaoTéC xat oL UTOAOLTEC UTOAOYIOTIXEC UNYAVES
YEELLOVTOL VO ETIXOVWVAGOUY UE TIC UVAUES X0 TA UTOAOLTAL GUVORAL XUXAWUATDY PE xordu-
oTépnon 000 YIVETOL TO XOVTA GTNV Wavixy, - auTr TV poxeidy xalwdiwy ye buffer cells
‘Ouwce, ta onuepvd e€elryuéva dixtua evtdc chip emBdrlouy xaduotépnon evog xUxhou po-
Aoylol avd petaywyéa 6T xahiTERT TEPITTWOT).

Atepeuvolue T oyedlact evoc Suxthou evioc Chip mou Tpoc@épet xovTd o TNy WaviXy xo-
VUG TéRNoT OF UERIXY TROTWWUEVA, ETOVATEOYpUUUATIoWo xatd 0 Aettovpyla Tou dxtlou,
wovordtia. Ot eme€epyao TEC Xl Ol UTOAOLTES UTOAOYLO TIXEC UNYAVES UTOLOUY VoL ETOVUTRO-
Yeauuaticouy ta yovormdtia Yo var eyyundoly younih xaductéenor o SlapopeTid cUVola
HOVOTOTI®Y, OTwg amonteiton avd ndoa otypr]. Haxéta o un-npotyumueva HovondTio £Youy
YAUNAOTERY, TEOTEPAUATNTA ATH TAXETA GE TROTWWHUEVA UOVOTITIY TO 0T0l0 ETMTEETEL OTd
OEUTEQO VO TPOCPEEOLY YaUNAH xaduoTépnon,.

[Mo va emtdyoupe 10 61HY0 YoC, ETEXTEVOUUE T TEYVIXY) TOU ‘Tpehol Toyudpduou’ [1].
Yougwva ye auth xdle ewoepyduevo toxéto npowleiton we TpdBAedn 6NV TEOTWOUEVT, E€0-
00 TNC CUYXEXQWEVNS €16G00U, av UTdpyet. Autd emTuyydvetar uovo Ue T xoduo Tépnom
EVOC TPOEVEQYOTONUEVOU TEXUTAG TATOU OONYNTH. 11N GUVEYELX EAEYYOUUE AV QUTY| 1) ATO-

14 14 14 7 / / /’ /
QAT HTAV OWO T, X oV OEV Ty TEowlolUE TO ToxéTo o1 Tpénouca €£0d0. Aaviacuéva

TEOWUNUEVOL TOXETO XUTTYOPLOTOLOUYTOL WS VEXEA XAt ECUAEIPOVTOL OE EMOUEVOUC UETAYWYELS.

Xprowonoolue Slodldo Tt ToTohoY a TAEYUUTOC TROTOTONUEVT] Yo ETXoVwVia enelep-
YAOTWV UE UVAUES, xou Eva elong Tpomonoinuévo ahydetiuo XT 5pouoldynong Tou Tapaué Ve
dveu mpoPAfuata adle&odwy. Ernione npoteivouue wa enéxtao yio Vo umopoUue Vo aAAGCoupE
o€ SUVAULIXT, OPOUOAOYTOT| OTAY ATOUTOUVTAL TO TAEOVEXTAUATA TNG.

Or yetprioeic Yog Oty vouy OTL, Yol Ta TEOTIMUEVA LOVOTATIA, 1) TROCEYYIOT) UAS TEOCHECEL
xauctépnon tne Téng Twv 500 Psoe alyxetor ue ta 1500 pSevag mAfen xOxAou pohoytol
Twv 667 MHZ 1 ta ew¢ 135 PS xohwdiwy 1 uy, oe wo Bhodfxn vhonoinone 130 nm. Mn
TEOTIUWUEVA JOVOTATIAL €Y 0LV XAJUC TEQNOT EVOC XUXAOU POAOYLOU avd UETAYWYEA OTAY OEV
UTIBRYEL GUVIYWVIGHOG UE Shhar Ta€Tal, Tapbuola Ue auth) IAwY tpoceyyioewy. Ta xépdn o

enidoor ebvon altohoya xar umogel va amoderyVolv WLaltepa yEHoWa xatl O JALES EQARUOYEC.

AéCeic hewnd: Aixtua Evtag Chip, [podwpopgwpéva, Xouniic Kauvotépnone, Awdpop,
[Tohuene€epyaotixd Chip, Lootnua Evtac Chip.

Enéntne Metantuytoic Epyaotac: Mavoine KateBaivng, Kodnyntic
YuvemfPAénwy Metantuylaxrc Epyacioc: Atwoviotog Ilveuyatindtog, Avaninpwtrc Kodn-

ynthc, Mohuteyveio Keprtneg, Xavid

Acknowledgments

| am grateful for my family’s continuing support, which hdaed me to achieve this work.

| would like to recognize the contribution of my supervisBrpf. Manolis Katevenis, and
Prof. Dionisios Pnevmatikatos for the completion of thisrkvol thank each of them for the
guidance, support, constructive remarks, devoted timeegdss the opportunites and challenges
they presented me.

This work was conducted as part of a FORTH-ICS graduate stddibowship, supported
by the European Commission in the context of the SARC (Scal@blaputer Architecture)
integrated project #27648 (FP6), and the HIPEAC networkkoékence.

| wish to thank my colleagues and the people who helped mé, Ibotlly and throughout
HIPEAC and SARC, for their assistance: Christos Sotiriou, 8gYyyberis, Pavlos Mattheakis,
Stamatis Kavvadias, Nikolaos Andrikos, Vasilis Papadista, Michalis Papamichail, Kees
Goossens, Giuseppe Desoli, Krisztian Flautner, Chris desshlose Duato, and Georgi Gay-

dadijiev.

Vi

It's hard to work fast without sweating.

vii

viii

Contents

1 Introduction 1
1.1 RelatedWork 6
2 Preferred Paths & Routing 9
2.1 Mad-Postman 9
2.2 PreferredPaths 11
23 Routing e 12
2.3.1 PacketFormat 12
2.3.2 RoutinglLogiC 13
2.3.3 DuplicateFlits e 41
2.3.4 Adaptive Routing Extension 15
2.4 Deadlock-Freedom 18
2.5 Preferred Path Reconfiguration 20
2.6 Backpressure e e 2 2
3 Switch Architecture & Topology 25
3.1 Switch Architecture 25
3.1.1 Routing Logic Implementation 29
3.1.2 VirtualChannels 33
3.2 Network Topology 33

3.2.1 Network Interfaces

4 Layout Results
4.1 PreliminaryResults e
42 RAMBIlocks
4.3 SwitchP&RResults

5 Conclusions
5.1 Future Work

5.2 Conclusion

References

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2

3.3
3.4
3.5
3.6
3.7

List of Figures

Substituting inverter cells to createanetwork. 2
Preliminary simulation circuits. ae 3

Example of a reconfiguration to an uneven distributio®RAM blocks to pro-

cessors’ low-latency regions, to cover run-time demands.. 4
Original mad-postman network routing. 10
Flit format. 39 Bits total - 7 control, 32 payload 13
Correct eager forwarding scenario that does not complystiict XY routing. . 14
Duplicate flitscenario. 15
Circle formed by four preferred paths with exatlyoneturn. 19
Out-of-order delivery scenario. o .. 21
Switch architecture. e 26

A macroscopic illustration of a 4x4 switch input quewgeapproach, without

preferred pathsand VCs. 7
5-1 multiplexer with 3-1cells. cu.... 28
Preferred pathbus. 29
The simple 2D mesh topology. 34
2D mesh topology with two subnetworks. 35
2D mesh topology with two subnetworks - one for each axis.. 36

Xi

3.8 RAM blocks rotated to place switches every two X axes. 37

3.9 Rectangular-shaped floorplan., 38
3.10 2x1 switchinglogic. L e 39
3.11 Cross-shapedfloorplan. 40
4.1 RAMblock pinplacement. 46

Xii

4.1
4.2
4.3
4.4
4.5
4.6

List of Tables

Multiplexer simulationresults. 45
Single-port RAM attributes. a7
Two-port RAM attributes. e 48
Dual-port RAM attributes. 48
Switch p&rresults (typical). e 50

Switch area results for the bar and cross floorplans.”tétefer to Figures 3.9

and 3.11.

Xiii

Xiv

Introduction

System-on-Chip (SoC) technology is the ability to place rptdtfunction "systems” -Intellectual
property (IP) blocks- in a single silicon chip [2]. As SoCs\rio area, complexity and function-
ality, so do their communication requirements in terms aofgrenance (latency and throughput)
and number of interconnected components. These commiamckgmands as well as the hetero-
geneity of IP block network interface logic necessitatedbeelopment of a structured on-chip
communication infrastructure. Networks-on-Chip (NoCs){8ye by now proven themselves to
be key components of the emerging SoCs. Specialized NoCs ederusther applications as
well, such as large processor chips or chip multiproceq&MPs) [4, 5].

NoCs significantly affect performance, latency and area@tttip. Reducing NoC latency is
crucial for SoC performance since it is introduced to eveamymunication pair within the SoC.

Latency may become vital in the case of SoCs with criticalrignilemands (real-time SoCs).

1

2 CHAPTER 1. INTRODUCTION

2.1lmm 2.1mm
150ps 150ps

2.1mm Memory | 2.1mm cPU 2.1mm Memory
150ps Block 150ps 150ps Block

2.1mm 2.1mm

*4[:>m E:>m [::>%7 2.1mm 2.1mm

140ps 150ps 140ps 150ps 140ps 150ps 150ps

(a) Long wire with inverter cells. (b) Primitive multiplexer cell network infrastructure.

Figure 1.1: Substituting inverter cells to create a network

It may also play an especially important role in the case otessor units communicating with

other processor units, local memory, shared memory or dalcioks.

In this master’s thesis we propose a NoC with latency closeadeal,i.e. that of long
buffered wires which are the simplest and fastest intereotion method. Our approach is fun-
damentally based on the simple observation that buffervariar cells in those long wires can
be replaced with tri-state drivers or multiplexer cells topde a basic network infrastructure,
as shown in Figure 1.1. We would like to design a network taptaces long wire inverter cells
and achieves latency close to that of those inverter celeime optimistic scenarios€. when
speculation succeeds). Indeed, we are able to achieveyabémpproximately 400 ps per hop
in those good scenarios and a single clock cycle -similanabdf other approaches as explained

in section 1.1- otherwise.

To be able to achieve the above, we extend speculation tmgodecisions. We predict each
flit's output and forward it via only a single pre-enableddtate driver. Pre-enabling is an im-
portant factor of our achieved performance, since switdputs have a substantial fanout of 11
in our implementation, and also because examining a flit loyimg logic is time consuming.
Preliminary simulation results to research the validityttog approach were conducted in our
130 nm implementation library under worst case conditidreey showed that a pre-configured
multiplexer cell as shown in Figure 1.2(a), imposed a 350qdayd Inverter cells were placed
approximately every 2.1 mm, wires between them imposed ub@ps latency and the cells

themselves imposed an 140 ps latency. Finally, a multipleg# which computes it's control

32 32
350ps 900ps
> 32 - / »
- » 32 » 32
32 32
/l /\
Routing » Routing
—> Comb. »D Q ° Comb.
Logic 5 Logic
(a) Pre-configured multiplexer cell. (b) Multiplexer cell with no control input register.

Figure 1.2: Preliminary simulation circuits.

input according to it's current inputs with a very simple dmnational logic, as shown in Fig-
ure 1.2(b), imposes a delay of 900 ps. We therefore confirtptfeaenabling control signals is

crucial to approach the latency of an inverter cell.

To apply this concept in a fully-featured NoC, we resurreet‘tmad-postman” [1, 6] tech-
nique proposed two decades ago for inter-chip communicagdwvorks. Mad-postman networks
were the first to introduce the concept of eage. Epeculative) flit forwarding. We extend this
technique to define run-time reconfigurable preferred petlmir network. They are formed
by pre-driving tri-state select signals within a switch ¢éorh a connection between input/output
pairs. Therefore, flits will be eagerly forwarded to thepun's preferred outputs. Preferred path
delay per hop is solely that of a pre-enabled tri-state drives-enabling is even more beneficial
in a fully-featured NoC because these control signals fant@wmany bits, thus driving them
incurs considerable delay. We examine our proposal in acdngisting of many processor units

and RAM blocks. However, our ideas are general and can b @asipted to other NoC styles.

Packets in our NoC may consist of a single or multiple flits. [Hlits that are eagerly
forwarded to a wrong switch output are terminated later annltwork as “dead”. They are
forwarded by the switch they were misrouted at to their adrssvitch output through a non-

preferred path at a lower priority than flits which origin&tem the input having that output as

4 CHAPTER 1. INTRODUCTION

preferred (if any), and suffer a latency of one clock cycleewkhere is no contention.

In order to provide preferred paths with flexibility and to &kle to distinguish incorrect
eager forwarding, we utilize a modified version of XY routindpich remains deadlock-free.
According to it, a flitis considered to have been correctlyezly forwarded if it moves closer to
its destination in any of the two axes. A flit is considereddliéshe distance between it and the
destination increased in any of the two axes with its last Adys way, we can easily distinguish
an incorrect eager flit forwarding as well as a dead flit in tework. We also propose a routing
logic design which can dynamically switch to adaptive mogti Thus, our NoC is able to be
assisted from adaptive routing’s benefits when they arenedyu

Network reconfiguration is possible at any time by any preiceselement (PE) or other user
block in the network. It serves the purpose of enabling PE$ytamically setup low-latency
paths to cover run-time demands. As the example illustratdeigure 1.3 shows, processors
may dynamically allocate RAM blocks to their low-latency its to cover program needs. Re-
configuration is accomplished by sending specially forethtingle-flit packets to the switching
nodes that need to be reconfigured. Reconfiguration can begstglat any time, but is care-
fully applied to the switching node to prevent out-of-ordetivery of flits belonging to the same
packet. Dealing with out-of-order flit delivery complicatdoC - PE interface logic and is rarely

allowed in NoCs.

Figure 1.3: Example of a reconfiguration to an uneven digtion of RAM blocks to processors’

low-latency regions, to cover run-time demands.

To fully exploit the mad-postman technique and ensure dap@roperation, we take a slightly
different approach for switching node architecture thasstpast research. Our switch resembles
a buffered crossbar [8], having one FIFO at each crosspathsahedulers at each output. The
scheduler monitors the FIFOs and the preferred path, amtrdetes which FIFO it can serve
next, if any. At each input a combinational routing logiceteatines if the incoming flit needs to
be forwarded to a non-preferred output. If so, it enqueuedlihin the appropriate crosspoint
FIFO.

We evaluate our proposed approach on a 2D mesh topologyil@jet for our target appli-
cation,i.e. processors communicating with RAM blocks. We attempt to miné the number
of switching nodes by placing one switch per 4 RAM blocks. Tgnsvides significant savings
in area, power, and latency by reducing the number of hopsgdegt two endpoints. The RAM
blocks are placed without any free space between them,tedeforming a bigger block. We
also investigate floorplan options for our switching nodgselsaluating two different shapes
(rectangular and cross-shaped), and outline some modbfisatio our switch to further reduce
occupied area. Topology and floorplan choices, howeverptlaffect our low-latency contribu-
tion and are made according to application and optimizateeds.

Simulation results show that, in a 130 nm technology, ouigtesunctions at 667 MHz
under typical case conditions. It offers preferred patberiay of approximately 360 ps per hop
that increases to approximately 500 ps per hop when takiogaiccount an 1 mm long wire at
each output. This is compared to up to 135 ps latency forgtttavires of a similar length that
offer no configuration or routing capability. Non preferneath latency is one clock cycle when
there is no contention. Our base switching node design,deniBwide datapaths, occupies an
area of 637um x 310um in a rectangular floorplan. We believe that our proposed Blmicept
is the means to approach the ideal latency as closely asopmsKimay also be combined with
orthogonal past NoC research to further improve perforraascwell as other aspects.

The rest of this master’s thesis is organized as followsti@ed.1 provides a summary of
past NoC research. Chapter 2 explains the mechanism foropifezared low latency paths and
our network’s routing logic. Chapter 3 presents our propasettch architecture and describes

our NoC'’s topology. Chapter 4 presents our placement andnigpuéisults. Finally, chapter 5

6 CHAPTER 1. INTRODUCTION

provides our conclusions and identifies room for future work

1.1 Related Work

Most of past research assumes switch-based, packet-sditzlshitectures. Regular topologies
such as 2D meshes [9] are utilized and are becoming standastige in general-purpose NoCs.
They provide the basis for NoC development for the vast ntgjof applications and environ-
ments. Run-time reconfigurable interconnects have beerdapedto meet specific application
demands or provide an optimized network for specific appboaenvironments. FLUX net-
work [10] and CoNoChi [11] assume an FPGA infrastructure, & BIYNOC [12] is designed
for ASIC flow. Additional topologies [13, 14, 15] have beemposed to reduce hop count and
therefore network latency. They implement extra links temwnodes for this purpose, resulting
in various network topologies such as torus or even 3D mested&eh in this area can be applied
to our proposed NoC according to the desired aspect for ggatian or application domain.

Research has also examined performance-enhancemeniieehiil6, 17, 18]. These ap-
proaches are based on pre-computing routing, virtual alaiMC) allocation, and arbitration
decisions, as well as speculative pipelines to minimizemeiistic routing latency. Implemen-
tations of these approaches with VCs and various datapatisvate able to function with a
clock frequency of around 500 MHz in technologies rangirggrr0.07 um to 0.13 um. While
these approaches can yield per hop latency of one clock,dyttelatency is not guaranteed.
These designs suffer high penalties from contention anckiyig delays, that significantly in-
crease latency. Moreover, one clock cycle per hop is thaiimmim possible latency, while our
proposed NoC provides constant minimum per-hop latenacgpendent of the clock period.
Latest research in this area achieves the same networkiperfice with half the required buffer
size or a 25% performance increase and lesser performagcaddd¢ion as traffic increases with
the same buffer size, by dynamically allocating VC buffergyput/output ports [19]. Minimum
latency remains, however, 1 clock cycle per node. Asynatusrapproaches achieve 2 ns per
hop [20] for highest-priority flits.

Power-efficient and thermal-aware systems [21, 22], fenlétrant mechanisms [23, 24], and

area-constrained designs [25, 26] have also been exandiheg.can be applied to our NoC de-

1.1. RELATED WORK 7

pending on each application’s needs. Some of these conoepytitroduce significant changes
to our NoC design or switching node architecture. Howeuwachschanges will not affect our
low-latency contribution.

Another important issue in NoCs is routing for which many aipons [27] have been pro-
posed. Many recent NoCs utilize adaptive routing algorith2& 29, 30, 31] to route around
congested or other problematic areas according to sonegiariAs explained in section 2.3, our
NoC utilizes deterministic routing algorithm under normgkeration conditions but can switch
to adaptive routing when it's benefits are required. Fléitybin preferred paths is provided at

all times.

CHAPTER 1. INTRODUCTION

Preferred Paths & Routing

In this chapter we present our design for low-latency preteépaths and our network’s routing
logic. In section 2.1 we begin by explaining mad-postmar6]land it's operation as originally
designed. We move on to present preferred paths in our netwaection 2.2. In section 2.3
we present our packet’s format and our network’s routingcloyVe then move on to discuss
our NoC's deadlock-freedom in section 2.4. After that we pné®ur run-time reconfiguration

mechanism in section 2.5. Finally, in section 2.6 we outiinebackpressure mechanism.

2.1 Mad-Postman

Mad-postman [1, 6] was introduced in inter-chip packettsiéd communication networks. It
offered minimal per-hop latency by eagerly forwarding acoiming flit to the same direction in

the same axis that it entered the switch from. For instameeflit was moving along the X axis

9

10 CHAPTER 2. PREFERRED PATHS & ROUTING

from right to left, it would enter the switch from the rightstanput and be eagerly forwarded
to the leftmost output. There was no logic or delay during forwarding more than that of
simple multiplexor or tri-state cell. Incoming flits weresalstored in the switch for checking
that they were correctly eagerly forwarded. The networiktbgrfollowed XY routing algorithm.
According to it, a flit must complete its traversal in the X skiefore switching to the Y. A flit
was regarded as correctly eagerly forwarded if it followed duting. Incorrectly forwarded
flits remained in storage in the switch and were later serttg@ppropriate output. We find that

this concept can be applied to NoCs.

D
A
4
ST
1 2 | Dead
S P> —» A |- B

Figure 2.1: Original mad-postman network routing.

The original mad-postman strictly followed XY routing. Treéore, a flit would suffer a
routing logic and buffering penalty once at its final hop (nd@r to be ejected to the local PE
output), and possibly once more when it changed axes wheersiag the network. Consider
the example of Figure 2.1. Source S transmits a packet tondéen D. The packet follows XY
routing, illustrated with solid lines. The packet is cotig@agerly forwarded in all hops of this
path, apart from switches A and D. The packet must changeiasggtch A, while in switch D
the packet must be forwarded to the switch’s local PE outptithose points the packet suffers
a routing logic and buffering penalty since it must be starethe switch, wait for it's proper
output be determined and content for that output. Howeusreseager forwards are completed

before the switch knows the packet’s proper output, swgchend D will incorrectly eagerly

2.2. PREFERRED PATHS 11

forward the flit. This dead flit will continue to traverse thetwork through incorrect eager
forwards (illustrated with dashed lines) until it reaches\gtch (in our example switch B) which
cannot eagerly forward the flit in the same manner since @dated at a network’s edge.

We would like our NoC to be able to provide complete paths wlign minimum per-hop
latency. Moreover, we would like to provide the flexibility thange those paths at run-time to
meet various application demands, such as a processor in agldtating more RAM blocks
to it's low-latency region, as illustrated in Figure 1.3. meet these goals we introduce preferred

paths.

2.2 Preferred Paths

In our switches each input is directly connected to a trieshaffer at each other port’s output.
We do not connect an output to its own port’s input, as we darghat flits will not desire to
leave the switch from where they entered it. Each output hasoat one preferred input. That
input’s tri-state driver is pre-enabled. Therefore, aromang flit to that input would be eagerly
forwarded to each output having this input as preferreds Thachieved solely with the delay
of a pre-enabled tri-state driver. Thus, preferred patad@med. Note that an input may have
multiple preferred outputs. Therefore, preferred patimsspdit and simulate a broadcast network
if so desired at run-time. However, preferred paths may onotverge as only one tri-state may
safely drive a wire at any time.

Each input also features a combinational routing logic Wiekamines each incoming flit and
determines whether it must be forwarded to an output otlzerttne preferred. If so, it enqueues it
in the appropriate crosspoint FIFO to be later forwardedly dutput’s arbitration logic. Switch
architecture is discussed in section 3.1. If fair arbitnatis desired without demands for very
low latency at some part of the network, that part can be rfegared to remove any preferred
outputs from switch inputs. A flit needs to be forwarded to atpat if the eager forwarding was
incorrect. Later hops regard that flit as dead.

Dead flits are not forwarded to any output by routing logicey propagate through the net-
work in preferred paths until they reach an input with no erefd outputs. Then, they are either

terminated or forwarded to an output by routing logic andsfig enter a circle, as discussed

12 CHAPTER 2. PREFERRED PATHS & ROUTING

in section 2.4. Dead flits occupy preferred paths and thezeftay be a nuisance. However,
mad-postman networks indicate that this effect does nataethe performance of the network
beyond that of virtual cut-through or wormhole networks. [Hince flits in mad-postman net-
works are misrouted almost twice by average, we therefopeaxthe dead flit effect in our
network to be similar if flits have the same mis-routing rareover, in our network we have
the flexibility to configure preferred paths such as deaduiliisoccupy parts of the network that
we know do not carry any, or at least any critical, traffic. STiiay make dead flits have a mini-
mal effect. However, dead flits still consume power with gueop. As of the time of writing of
this master’s thesis, a cycle-accurate network simulatetiil under development and therefore

exact experimental confirmation of this issue is left asreiiork.

2.3 Routing

2.3.1 Packet Format

Packets may consist of a single or multiple flits, in the mardescribed in [7]. Single-flit
packets are used for reconfiguration and read requestsi-fitypackets are used for transferring
multiple words of data to write to a RAM, or from a RAM as a replyawsead request. Flits
feature 6 packet ID and 1 flit type control bits marking thdiahiflit of a packet as request
(single-flit packet) or address, and thereafter data flite Wie same packet ID as body or tail.
The 32 payload bits contain data in the case of data flits agtindéion address, byte enables
and packet type in the case of address or request flits. Hmslates into an 18% overhead since
each flit has 7 control and 32 payload bits. Data bits may beased if less overhead is desired
with an increased switch area and power demand. This wdlr@duce multi-flit packet latency
since fewer flits will be needed, at the cost of higher fanduhe MUX control signals. In our
implementation, 32 payload bits were chosen to match RAMKottada width.

Each switch is identified by unique X,Y coordinates. Thedflithal destination is determined
by two extra bits specifying the user block (PE) among theedsvitch is connected to. Flit
format is illustrated in Figure 2.2.

The initial flit of a packet is an address or request flit. Daita th the same packet have

2.3. ROUTING 13

Packet ID | Flit Type | Packet Type | Byte Enables | Destination Address | PE Output
(6) (1) (4) (4) (22) (2)

(a) Address flit.

Packet ID | Flit Type Flit Data
(6) (1) (32)

(b) Data flit.

Figure 2.2: Flit format. 39 Bits total - 7 control, 32 payload

the same ID and will be treated by each switch as the correlspgraddress flit was. Since
flits are eagerly forwarded without being able to process teaders, all flits in a packet will

be incorrectly eagerly forwarded in the same way throughimeinetwork. The same applies to
the duplicate flit complication, explained in subsectiod. 2. Attempting to do otherwise would
require combinational logic in preferred path hops and thosld dramatically increase per-hop

latency.

2.3.2 Routing Logic

Based on our need to accurately classify flits as dead, we eltodsmplement a deterministic
routing algorithm for normal network operation. Non-detéristic (adaptive) routing algorithms
introduce uncertainty in dead flit classification. This utaty is due to the fact that conditions,
and therefore adaptive routing decisions, are subjectdagdat any time. Therefore, the switch
currently examining a flit is unsure if the flit's previous h@garded this switch as the best next
hop at the time, or if the flit was incorrectly eagerly forwadd Since making switches aware
of neighbouring network configuration is too costly, we adpeterministic routing algorithm.
However, in subsection 2.3.4 we propose a design extensairswitches to adaptive routing

algorithm when its benefits are needed.

As a result we chose a slightly modified version of XY routingY routing instructs a
flit to first complete its movement in the X axis, and then shvito the Y axis to reach its
destination. Our NoC follows this routing algorithm, butn®ore flexible in allowing eager

forwards that do not adhere to strict XY routing. Specifigadl flit is considered to have been

14 CHAPTER 2. PREFERRED PATHS & ROUTING

correctly eagerly forwarded, and therefore is not forwdrtle another output by the switch,
simply if it is approaching its destination in any of the twaa. This may result in a flit reaching
its destination via a route that does not comply with strigtduting.

In the example Figure 2.3 illustrates, the flit arrives froourge S to destination D solely
through preferred paths (solid lines). Switch A sees thaflihapproached destination D in the
Y axis, and therefore regards this eager forwarding as cordY routing would have the flit
pass through non-preferred paths (dashed lines) and sdiiteénsions at node B, after having
fully completed its traversal in the X axis. Because we wolkdel fo provide preferred paths with
full flexibility, and also because disallowing these path&dswarding flits again in non-preferred
paths introduces an unnecessary overhead, we chose toyrnadXY routing algorithm accord-
ingly. Similarly, a flit is considered dead simply if it movasay from its destination in any of

the two axes

Figure 2.3: Correct eager forwarding scenario that doesamapty with strict XY routing.

2.3.3 Duplicate Flits

Due to the above mechanisms, our NoC faces the complicatimltiple copies of the same flit
reaching their destination via different routes. An exaamgdlsuch an occurrence is illustrated in
Figure 2.4. In that example, the flit leaving source S will bgerly forwarded via the preferred
path (solid lines) until it reaches destination D. Howes®ritch A will regard this eager forward-
ing as mistaken since it has no preferred path knowledgedorighbours and the flit's distance
from destination D increases in the Y axis. Supplying nemhring preferred path knowledge to

switches would lessen this problem, but is too costly. Tioeeg it will forward another copy of

2.3. ROUTING 15

the flit to destination D via non-preferred paths (dashegslinDuplicate flits must be handled at

the network interface logic. Network interface issues adrassed in subsection 3.2.1.

I 1

Figure 2.4: Duplicate flit scenario.

2.3.4 Adaptive Routing Extension

Adaptive routing is the ability to dynamically decide thesbswitch output for flits according to
some criteria [27]. For instance, a switch might desire tmicheongested areas in the network
and therefore route flits around those areas until congesti@solved. Similarly, a switch might
want to avoid heated areas in thermal-aware applicatiadhs2?).

Implementation of an adaptive routing algorithm in our No@aduces uncertainty in dead
flit classification. Since adaptive routing decisions depen conditionsi(e. factors external
from the switch), they are subject to change at any time. &fbeg, a switch examining a flit to
determine if it's dead is unsure whether that flit's previbep regarded this switch as the best
choice at the time, or if the flit was incorrectly eagerly fanded. Neighbouring preferred path
knowledge would enable a switch to distinguish betweenrdis cases, but is not implemented
due to the high cost it would impose.

On the other hand, adaptive routing has benefits to offer. ddyt can it route flits around
congestion points thus allowing them to resolve quickeraraid flit delays, but it can also as-

sist with any design priority such as the whole chip maintejriow temperature. Moreover, it

16 CHAPTER 2. PREFERRED PATHS & ROUTING

can route around faulty NoC areas which become unusableockante silicon defect - a factor
which is becoming more important as technologies beconmrewar. For this reason we propose
an extension in this section that allows parts of our NoC teqtire assistance from adaptive
routing to operate under it. This operation mode changedceither trigger from heavy con-
gestion nearby a switch, silicon fault or any other priotitg target application domain dictates.
Implementation details of adaptive routing (routing fastaonditions it takes into account and
priorities, decision thresholds) depend on applicatiomaleds. This operation mode lasts only
for as long as required according to some threshold set ardgsie. Our NoC operates under
normal conditions with the deterministic modified XY rowgialgorithm explained in subsec-
tion 2.3.2.

The decision to change to adaptive routing operation modeaite by each output individ-
ually since we would like to be able to apply adaptive routaxgctly where needed, and also
because each output features independent logic as exglaisection 3.1. When this decision is
made, combinational routing logic blocks located in inpares alerted. After that time and until
that output alerts the routing logic blocks that it has lefaptive routing operation mode, if an
input would forward the initial flit of a packet to that outpatcording to the modified XY rout-
ing described in subsection 2.3.2, the flit is examined by#darouting. It is then forwarded to
a switch output according to adaptive routing instead.

As outlined in subsection 2.3.1, a packet is formed by pbssitany flits. The initial flit of
a packet contains the destination address. Routing logitileaés the switch output this packet
should be forwarded to and stores that output and the padketh an array. Since subsequent
data flits do not contain the destination address, they canbenforwarded according to that
array entry. That array entry is removed when the tail flinsauntered.

While this prevents out-of-order delivery of flits belongitagghe same packet from occurring
due to operation mode changes, it introduces the comgicétiat if an output’s operation mode
changes, later flits of a packet, including flits in the oup&IFOs at the time the operation
mode changes, will have to be forwarded according to previnade routing decisions. In
case of adaptive routing operation mode being triggeredaloengestion or thermal awareness,

forwarding a few more flits to those areas is not an issue andeaompensated by lowering

2.3. ROUTING 17

the decision threshold to change to adaptive routing. I cdsan area of the NoC turning
faulty, the first flits of the packet which have already beamnvéyded there would have already
been lost if the error affected the packet’s path. Thereffmevarding and possibly loosing
the subsequent flits makes no difference. There are cases wieefirst flits of a packet were
forwarded safely before the fault which will affect subseqtflits occurs. However, the rarity of
silicon defects combined with the low chance of these casasrong does not justify modifying
our implementation to cover these scenarios.

When a switch output decides to change to adaptive routingatotes (breaks) it's current
preferred path by disabling the appropriate tri-stateaidrizeaving any preferred paths enabled
would mean that a substantial number of traffic may pass ¢treo NoC areas we would like
to protect through adaptive routing. Flits travelling imtlpreferred path will be handled as flits
in all other paths. Later flits of a packet that had its firss flarwarded by a preferred path will
have its later flits forwarded according to that preferretth ge well, for the reasons explained in
the previous paragraph and to prevent out-of-order deliv@ut-of-order delivery is discussed
in section 2.5.

In case of congestion, preferred path performance maydirea lost as described in sec-
tion 2.4. Therefore, breaking preferred paths while opegath adaptive routing mode due to
congestion does not introduce any performance degradatidiits travelling in preferred paths
that would not already occur. In case of other factors, ssdaalty areas, we might not want to
forward flits there under any circumstances. In any case, &aplication does not mind leaving
preferred paths intact for some conditioesy temperature), such an implementation is feasible.

Finally, since adaptive routing may forward flits to outptitat would make next hops con-
sider them as dead, we need to label them accordingly. Tareref a a flit would be forwarded
to an output due to adaptive routing, a bit in the packet tygld fas illustrated in Figure 2.2(a),
is asserted. Switches examining a flit with this bit assen¢ker regard it as dead. They also
clear it before forwarding it to the next hop. If a flit labelléhis way enters a preferred path, this
bit will only be cleared when the preferred path ends and ynaher intermediate switches that
decide to forward it again in between. This may result in thapé flits reaching their destination,

but this issue is already accounted for and handled as esolan subsection 2.3.3.

18 CHAPTER 2. PREFERRED PATHS & ROUTING

Design and implementation of the exact adaptive routingréttyn depends on application
needs and priorities. The techniques presented in thestidrsprovide the mechanisms to allow

operation of parts of the NoC under adaptive routing.

2.4 Deadlock-Freedom

XY routing is deadlock-free [32]. Therefore, network desd hazards in our NoC are intro-
duced by adaptive routing and preferred paths since theyotlonatessarily follow XY routing
and flits propagate in them without any control. End-to-eaddlocks are discussed in subsec-
tion 3.2.1. To guarantee that a flit will never wait indefityte be served, a switch needs to be
able to serve FIFOs, and therefore resolve contentioneiptbferred path has been continuously
active for an unreasonably long period of time with a FIFO-eompty. The adaptive routing ex-
tension presented in subsection 2.3.4 also provides thenopitutilizing adaptive routing in this
or nearby switches. FIFOs are then served until all are enfijpdying this time, flits arriving in
the broken preferred path will be enqueued in the apprepFRHEEO behind previous flits follow-
ing the same path. However, we need to investigate the plitysih a flit traversing the network
indefinitely. We combat this issue in two ways.

First, we provide constraints which, if followed, guarantbat no flit will indefinitely travel
through the network under normal conditions (without adk@ptouting). If all preferred paths
in the NoC are straight lines, flit propagation follows gty routing. Therefore, every turn
is handled by routing logic and flits cannot enter a circleisTid the case with original mad-
postman networks [1, 6].

Flits cannot enter a circle also in the case of preferredsadiving exactly one turn. In this
case, circles are formed by four different preferred pathdlastrated in Figure 2.5. Therefore,
a flit would be examined by routing logic four times before gbating a single loop. At these
times, the flit will either be considered dead and therefereebminated, or it will be propagated
according to XY routing. In the second case, in two out of i fcheckpoints the flit will be
forwarded according to the circle. However, in at least dnte other two it will be forwarded
in the other axis and leave the circle.

Preferred paths with two turns may form a circle if the twotnogi logic checkpoints forward

2.4. DEADLOCK-FREEDOM 19

P A

Figure 2.5: Circle formed by four preferred paths with exaihe turn.

the flit according to the circle. Therefore, if preferredhgain our network contain up to one
turn, no flits will indefinitely propagate in circle. This testion does not take into account turns

with switch data ports as they cannot be part of a circle.

Adaptive routing may construct scenarios that have a flpagating in circles, depending on
the implemented algorithm. For instance, even under thectisn that preferred paths cannot
feature more than one turn, adaptive routing may forwardlthaccording to the circle in all
four points of the circle that the flit is examined by routimgiic and would otherwise leave the
circle by XY routing. Also, some adaptive routing algorithfiace deadlock issues regardless of
preferred paths. Thus, the guarantee, as well as the exuaed restrictions if any, that such a

problem will not occur depends on the implemented adaptivéing algorithm.

Second, we investigate the consequences of a formed ditslalready described in subsec-
tion 2.3.2, each switch in the circle will examine if the metd path forwarding was correct and
forward a copy as necessary. This guarantees that a copyg Bittin the circle will be delivered
to its destination. The flit will continue to propagate iresithe circle. Other flits contenting for
occupied resources will be forced to wait. If the flit in thecte propagates such as the preferred
path is not idle at any clock cycle, contenting flits will fage increased queueing delay. How-
ever, as already described in the beginning of this sulmseatontenting flits will eventually be

served. This poses a performance issue, but no deadlockamillr. When FIFOs are served, the

20 CHAPTER 2. PREFERRED PATHS & ROUTING
flit in the circle will be examined by routing logic and theved¢ may be terminated as dead.

2.5 Preferred Path Reconfiguration

Reconfiguration of our network’s preferred paths consistshahging outputs’ preferred inputs
in the appropriate switches. Any PE or other user logic blcgk request reconfiguration by
sending properly formatted single-flit configuration paskeThese packets contain the desti-
nation node, the output to be reconfigured and the new peef@nput. Configuration flits are
enqueued in the appropriate crosspoint FIFO of their datstin even if they follow a preferred
path. When a configuration flit is selected by the output'starbit is stored in the output’s con-
figuration register which stores the active configuratiosfead of being forwarded to the next
hop.

If we were to immediately alter the tri-state enable signatkswould risk out-of-order deliv-
ery of flits belonging to the same packet. Consider the exaoffteggure 2.6. Switch S transmits
a packet to destination D. The initial flit (flit) is constanin non-preferred paths (dashed lines)
and therefore is forwarded at every hop by XY routing logf@ user block in the network was
to reconfigure switch A to select input 1 as preferred for aufort 2, later flits (flit 11) would
now reach destination node D via a preferred path (solig)inEherefore, if flit I is in transit and
switch A is reconfigured before the last flits of that packeicteit, those last flits could reach
destination D before the first flits.

Because out-of-order delivery of flits belonging to the saraekpt can be a nuisance for
destinations and also because address flits must alwaysderéice corresponding data flits, it
must be prevented by our NoC. This can be accomplished byidglthe application of the new
configuration for each output until it is safe. Specificatijce a new configuration is received
at an output, it is only applied when the old preferred patb been idle for 1 clock cycle,
the new preferred path’s FIFO is empty and no more flits fronaekpt are expected in those
paths. As explained in subsection 2.3.1, flits forming a paeke labelled. Therefore, after
receiving the packet’s address flit and until receiving thé ftit, the arbitration logic knows
that more flits are expected in this specific path and thezedetays the application of the new

configuration. Blocks requesting reconfiguration are ungxeetly when it is applied, unless

2.5. PREFERRED PATH RECONFIGURATION 21

r
of, %

S f----- SIS =

Figure 2.6: Out-of-order delivery scenario.

application demands dictate the implementation of a regardtion acknowledgment or polling
mechanism. Due to this technique, no preferred path wilhgkaat each used switch from
the time it receives the first flit of a packet until it forwartte last. This ensures that all flits
of the same packet follow the same path and that a switch willwait indefinitely for tail
flits. Thus, all flits belonging to the same packet will be deled in-order. As explained in
subsection 2.3.4, adaptive routing does not challengeayttasantee since all flits of a packet are
forwarded according to the decision made for the addressifliter the active routing algorithm

at the time.

Different packets from the same source to the same destmatay be delivered out-of-
order. Since switches have no information regarding mopeebed packets in the same path,
they may apply their new configuration if the preferred patiodmes idle for one clock cycle.
Even if the source transmits back-to-back, the preferreéd pay become idle for one clock
cycle due to broken preferred paths to avoid starvatiorceffeaused by contention, as explained
in section 2.4. Therefore, this issue must be handled byeheark interface logic as explained
in subsection 3.2.1. Alternatively, the application magtriet network reconfiguration to be
performed and applied only when the whole NoC or the part eNbC to be reconfigured is

idle. Implementation of this restriction may require saite synchronization primitives.

Arbitration logic serves flits stored in FIFOs until all ammgty, as described in section 3.1.

22 CHAPTER 2. PREFERRED PATHS & ROUTING

If any flits arrive through the preferred path during thiseithey are enqueued in their preferred
output’'s FIFO. Arbitration logic can then serve them in ptypaccording to the implemented
algorithm. This imposes a single clock cycle delay regasiigf contention from other inputs,
in this infrequent scenario. However, attempting to rebémahe preferred path in the same
clock cycle that flits arrive in would introduce combinatidiogic, extra preferred path latency
and timing hazards. These flits will still be forwarded fron®s according to the preferred
path. This serves the purpose of avoiding out-of-ordewndsfiscenarios and taking advantage

of preset multi-hop preferred paths.

2.6 Backpressure

Our NoC needs to provide a mechanism for not dropping flitssddall FIFOs. This mechanism
must inform each output in a switch whether it can safelydnaiba flit to the next hop. Likewise,
the previous switch would also be informed if it can safeBnsmit to the current. Therefore,
long packets reaching a congestion point will be stored inynpossibly consecutive, switches.
Flits of the same packet may not be stored in consecutivelsestin case of other flits stored in
the FIFOs in an interleaved manner. Since flits of the samkgb@are guaranteed to follow the
same path and arrive in-order, no recombination care mustides.

Depending on area constraints and traffic patterns, we capt &do different approaches.
According to the first, if any of the next hop’s FIFOs that h#twe output port in question as their
input is almost full (to cover for backpressure signal pggiagon delay), the output’s arbiter is
alerted to not transmit any more flits until the signal is deeated and is therefore safe again.
This approach requires only one wire from each output’s hegtand the simplest logic.

According to the second approach, one wire from each of thehwog’s FIFOs that have the
output in question as their input alerts the switch exacthycl crosspoint FIFO is almost full.
This way, the arbiter needs to process packet IDs of flits FCFheads to determine if it can
safely transmit any of them. With this approach, FIFOs thatreot full are able to receive flits,
and thus communication and FIFO utilization is more effitiétowever, 6 wires are required at
each output and also the arbiter must be able to processdkeptDs in each FIFO head.

Extra care must be taken for flits forwarded in preferred galh our NoC we cannot know

2.6. BACKPRESSURE 23

the final destination of flits travelling in preferred patleddre they have been eagerly forwarded,
nor can we control their transmission. Therefore, if a bagkpure signal to an output port is
asserted, the preferred path leading to this output is Imrokieus, all subsequent flits in that path
are enqueued in the appropriate crosspoint FIFO and lateafded according to the preferred
path. Alternatively, the preferred path could remain ihthat flits in that path are still enqueued
as above. Therefore, as long as a flit travels in a preferréd & not affected by contention or

congestion. However, since preferred path flits take preelover flits in FIFOs, congestion is

slower to resolve.

24

CHAPTER 2. PREFERRED PATHS & ROUTING

Switch Architecture & Topology

This chapter is divided into two sections. The first, secBdh explains our switching node’s
internal architecture and discusses virtual channelsifNoC. The second, section 3.2, presents

our network’s topology and outlines the role PE networkriiatee logic plays.

3.1 Switch Architecture

Switch input port components and connections are shownguar&i3.1(b). Output port compo-
nents are shown in Figure 3.1(a). Data wires are illustratedolid lines and control wires as
dashed lines. Our switch is a composition of the above figdesguring 6 input/output ports.
Each input is connected to each other port’s output. We daoobect an output to it's own
port’s input as we consider that flits will not desire to le#lve switch from where they entered.

Our switch resembles a buffered crossbar [8] in that it fiestwne FIFO at each crosspoint and

25

26 CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

Other port outputs

Output Port
______________________________ .-»| Components

s S Inputl

Input1} P Preferred N
: Path | Output Port
R Input2 . ! ~

Input2— B R Tri-states - Components

.........

Config & e Input :
Inputs——— |] Arbitration f..., . E ' | output Port
—':l_l__ ! : : .| Components
St NG Output :
1L~ , >
Output Port

—_— v {f ’ l E
Inputs —— ; ________)&)& : . Components
1] ; . - . :

A 4

A 4

.......................

...................

Input3 J Output Port
—_— ¢.»| Components

Inputd v
Input5 Routing Logic
(a) Output port components. (b) Input port components.

Figure 3.1: Switch architecture.

independent configuration and arbitration logic at eaclpuut Preferred paths resemble cut-
through paths in buffered crossbars. A combinational ngulbgic block at each input decides
at which FIFO, if any, should the incoming flit be enqueued.

This choice of switch architecture takes into account mastfpan’s operation, since incom-
ing flits are examined by the routing combinational logicdvefbeing able to be enqueued into
FIFOs. Therefore, dead flits do not occupy FIFO lines. Moegosince our current NoC does
not include virtual channels, as addressed in subsectio8,rosspoint queueing removes the
nuisance of head-of-line-blocking. Finally, the use of @mbitration and configuration logic
block per output results in simpler logic and therefore sasritical paths.

An alternative switch architecture examined featured EBROinput ports (input queueing).
However, with this choice dead flits would occupy precious@kpace and also have a greater
impact on non-preferred flits since the latter would have #it Yor any dead flits to be served
from the FIFOs at a rate of 1 clock cycle per node, at best. bl@e enqueueing and serving
dead flits from the FIFOs is more wasteful as far as power is@wed. To avoid these and the

head-of-line blocking problems, VCs would need to be inctuotethis implementation. How-

3.1. SWITCHARCHITECTURE 27

Outputl Output2

2 T =

Inputl —— | - ’ | — Input3
1 I Ll I)
Input2 —— ~ ’ — Input4
1 I > l I L)
RC RC

Output3 Outputd

Figure 3.2: A macroscopic illustration of a 4x4 switch inguteueing approach, without pre-

ferred paths and VCs.

ever, as explained in subsection 3.1.2, VCs are otherwisaewited since we already perform
classification of our flits. Therefore, our switch architeet does not follow input queueing.
A macroscopic illustration of the input queueing approactai4x4 switch, without showing

preferred paths and without VCs, is provided in Figure 3.2.

Output configuration logic is responsible for storing andatmg preferred path configura-
tion. Arbitration logic is responsible for serving the FIENon-empty FIFOs as well as FIFOs
to which aflitis being enqueued in the current clock cyclesgtectable. Arbitration logic selects
a selectable FIFO to serve during the next clock cycle if tiedgored path is idle during the cur-
rent clock cycle. This serves the purpose of prioritizingferred path flits without unreasonably
preventing FIFOs from being served. It stops serving theranithey are all empty. Arbitration
takes place during the preferred path idle cycle for the ogale. Therefore, our NoC achieves
one clock cycle per-hop latency for non-preferred pathsnthere is no contention. Arbitration

algorithm details may depend on exact NoC demands.

Each output is driven by tri-states directly connected @didated wires to each other port’s
input. Each output is also driven by a tri-state which comsdte output wire with a multiplexer

which forwards the FIFO flit being served by arbitration mgf any. These tri-states need to

28 CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

Figure 3.3: 5-1 multiplexer with 3-1 cells.

drive one FIFO and one tri-state at each of the next hop’sutsitpther than the port that the
current switch is connected to. They also need to drive tinebomational routing logic located

in the input. Therefore they have a fanout of 11.

Tri-state enable signals are driven by the output’s condijoim and arbitration logic. Pre-
ferred paths are thus formed by pre-enabling tri-statesetbre connecting an input with any
number of preferred outputs. Tri-states were selecte@anisbf multiplexers because our im-
plementation library does not include a single 5-to-1 rpidtier (AND-OR or other equivalent)
cell. Therefore, we would have to construct such a multeell with multiple library cells,
imposing a greater latency than a single tri-state drivex.cauld implement this 5-1 multiplexer
to have some inputs pass through a single multiplexer cdllbémers through multiple cells, but
we do not want to prioritize paths at design-time, only attinme according to the application’s

preference. An example of such an implementation is ilkistt in Figure 3.3.

Depending on preferred path flexibility and area needs, & eptimization may be neces-
sary to further reduce switch area. Instead of directly eating each input to each other output,
a preferred path bus could be deployed, as in Figure 3.4. vHsily limits the number of pre-
ferred input-output pairs that can be configured to only oyl with any number of outputs.
However, intermediate designs can also be implementedn§iance, one such preferred bus in
the X axis and one in the Y could be deployed, perhaps evenecteoh to each other with tri-
states. Therefore, depending on exact preferred path comation needs, NoC area overhead

can be reduced.

3.1. SWITCHARCHITECTURE 29

Y 1Y 1Y
A AV AV

Port 4 Port 5 Port 6

Figure 3.4: Preferred path bus.

3.1.1 Routing Logic Implementation

This subsection examines the input port's combinationating logic without the adaptive rout-
ing extension presented in subsection 2.3.4. The routigig’topurpose is to determine which
output does each incoming flit need to be forwarded to. Inognflits are examined by this
logic as soon as they arrive, independently of preferredspathis computation extends until
FIFO enqueue enable inputs. The output arbiter regardslectaale, and includes in its arbi-
tration, FIFOs to which a flit is currently being enqueued. tAése computations and decisions

constitute the critical path and are completed within alsictpck cycle.

A flit should not be forwarded to any output if it is dead or ifnas correctly forwarded by
any of that input’s preferred outputs. Otherwise, an outpuhosen according to XY routing
and the appropriate FIFO enqueue enable signal is assaittedconditions for these decisions

are presented in subsection 2.3.2. Input port componeaifiustrated in Figure 3.1(b).

To be able to detect flits that are moving away from their desitbns, we implement com-
parators which inform us if the incoming flit's destinatioasha higher X coordinate than the
switch examining the flit. This check is made only at X axisutgsince the flit did not traverse
the Y axis with its last hop. The same check is made for the Ydinate at Y axis inputs.
No dead flit detection is performed at PE data input portsesthese incoming flits were just
generated by PEs and thus are never dead. We then evaluaéstitedepending on the input
port that is examining the flit and therefore the directiomfilt is travelling through the network.

For example, if the leftmost input port of the X axis detetistithe flit destination’s X coordi-

© 00 N o o b~ W N P

10
11
12
13
14
15
16
17
18

30 CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

nate is smaller than that of the switch, it knows it is deadsesithe flit is travelling from left to
right whereas the destination is to its left. The verilogeadich performs dead flit detection is

shown in listing 3.1.

Listing 3.1: Dead flit detection logic

wire larger.Y , equalY , lesserY;

wire larger. X, equalX, lesserX;

/Il Coordinate comparators. in[8:2] & in[15:9] are destindbn Y and X respectively.
comparator compy (‘CURRENT.SWITCHY, in[8:2], larger.Y , equalY,6 lesserY);
comparator comX (‘CURRENT_SWITCHX, in[15:9], largerX , equalX,6 lesserX);

/I Wires below detect flits moving away from their destinani in any axis.

/I There are two cases for moving away in the X axis, and two fthre Y axis.

/1 ‘POSITIVEX is the leftmost X input (flits travel in positive axis flow)

/Il Since the first part of the comparison is static (input pofs also static),
/I synthesis will remove it according to which input port wesitantiated .

wire leavesdestX1l = (input_.port == ‘POSITIVEX & larger_X);

wire leavesdestX2 = (input_port == ‘NEGATIVEX & lesser.X);

wire leavesdestY1l = (input_port == ‘POSITIVEY & larger_Y);

wire leavesdestY2 = (input_.port == ‘NEGATIVE.Y & lesser.Y);

wire is_.dead = leavesdestX1l | leavesdestX2 | leavesdestYl | leavesdestY2;

The most common XY routing implementation has the sourcengan the packet’s header
the number of hops that need to be made in each axis with ore l@kto mark the direction.
Each hop checks if the X axis value is non-zero. If it is, it @@eents that value by one and
forwards it in the X axis appropriately. Otherwise, it chetike Y axis value in a similar fashion.
If both are zero the packet is ejected to a local PE port. Thgementation requires the simplest
routing logic in switches. However, it is not an option forNoC because switches cannot alter
the headers of address flits travelling in preferred patitediorwarding is performed before the
header is even processed.

Therefore, in our NoC address flits contain the destinagi@oordinates. Switches check

3.1. SWITCHARCHITECTURE 31

if the destination’s X coordinate is different than theirrowif so, they forward the flit to the

appropriate direction in the X axis. Y axis coordinates amedied in a similar way only if

the destination’s X coordinate matches that of the switdie XY routing computation runs in
parallel with the dead flit detection and uses the same caatgrarfor the X and Y coordinates
for efficiency. The results are then considered by a comioinaltlogic which decides among X
axis outputs first, then Y axis and finally local PE outputs.

Destination address information is only carried by addfigss Thereafter data flits need to
be forwarded in the same manner using only their packet IBs.rduting and dead flit detection
logics shown in this subsection make decisions for addrgs®fily. These decisions are stored
in a simple array holding packet IDs and switch outputs. Digtpacket IDs are looked up in
that array. If an entry exists, the flit is forwarded to therstboutput. If an entry does not exist,
the flit is terminated as dead. The entry is removed when eriedng the tail flit. Address
flits destined to an adjacent PE are forwarded to a Y axis ouwthareas the appropriate switch
data output for data flits is calculated and stored in theyanstead. This array needs to hold
only multi-flit packet IDs. In our implementation that arregnsisted of only four entries. This
number may need to be increased depending on the expedteddadtern and network size.

Since dead flit detection and XY routing run in parallel, nieggof these two results is
accomplished by few gates which receive both of their ostpifithe dead flit detection signal is
asserted denoting that the flit is dead, the output port Setelsy the routing logic is ignored and
no FIFO enqueue signals are asserted. The same occurs ripthieis not receiving a valid flit
either because no flit is being transmitted during the carckatk cycle or because the flit has
not fully arrived yet. This detection is performed by a simfagic which also runs in parallel.
Aflitis invalid if its type is 00 and its packet ID is not 1112hich denotes a configuration flit.

The XY routing verilog code is shown in listing 3.2.

Listing 3.2: XY routing logic
1 // Flit needs to be sent to X axis, positive flow. Similarly rfdhe other cases.
2 wire needsX_pos = lesserX;

3 wire needsX_neg = largerX;

4 /] We will need to first check for X forwardings, then Y, thewoch|l PE.

© 00 ~N o O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

32 CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

wire needsY _pos = lesserY;

wire needsY _neg = largerY;

/I Now we check for local PE forwardings. Flit delivered by ish switch.

/l Equal X is not needed due to outpytort_select conditions order.

wire stop_here = equalY;

[/l This logic examines address flits only. Data flits will nsply search the array.
/!l Below we decide the Y port for the address flit. in[1:0] selt among the 4

I/l connected PEs. We store the appropriate data port into theray for data flits.
assign addresstop = in[1] == 1'b0 & stop_here;

assign addressbottom = in[1l] == 1'bl & stophere;

/Il 1s the incoming flit valid.

wire is_valid = in[38:37] != 2'b00 | in[36:32] == 5'b11111;

/!l Logic deciding the output. The logic explained in the pgraph below is at

/!l output modules and thus not shown here._adray[] is the data flit output

/] array. Lookup logic is directmapped. It works sufficiently as a function of
/!l the packet ID, containing the source ID, if distant souscearely send packets
/Il and all sources do not interleave packets. Generally, iteds to be changed.
assign output port_select = (!isvalid) ? 3'b111 : (in[38] ?
id_array[in[36:35]][2:0] : (is.dead ? 3'b110 : (needX_pos ? 3'b000

(needsX_neg ? 3'b001 : ((need% _pos || addresstop) ? 3'b100

((needsY_neg || addressbottom) ? 3'b101 : 3'b111))))));

If the flit is valid and non-dead, we need to check if it was farded by a preferred path to an
output which makes the flit approach its destination in any.dkXY routing decided to forward
the flit to a X axis output, the acceptable outputs are thatpiuethe Y axis output that would
be chosen, if any, had the flit reached the destination’s Xdinate. If XY routing decided to
forward the flit to a Y axis or a local PE output, there are nceothcceptable outputs. Thus,
each FIFO at a Y axis or PE output has an AND gate which igniesitoming FIFO enqueue
signal if the same path’s preferred tri-state driver is éediduring the same clock cycle. If the

flit is to be forwarded to a X axis output, the Y axis coordinadenparison result decides which

3.2. NETWORK TOPOLOGY 33

of the two Y axis outputs we need to check if it has the input peeeiving the flit as preferred.

If that input port is indeed preferred, FIFO enqueue sigaedsde-asserted.

3.1.2 Virtual Channels

Virtual channels (VCs) are useful for defining multiple lagli¢copologies within the network,
adaptively routing around congested or faulty nodes anddgiray packet priority and thus guar-
anteed QoS classes [32]. However, in our NoC preferred pthady provide a means to
prioritize packets compared to others as well as form difietow-latency topologies. More-
over, our NoC’s topology is already tailored to our specifiplagation environment. Finally, we
have already proposed a modification to implement adapbivigng without VCs explained in
subsection 2.3.4, despite the increased challenges ourfd¢es.

For these reasons, our current NoC does not include VCs.dunting them would multiply
FIFOs, which translates into a significant area overheacksiur switch features one FIFO at
every crosspoint. However, other NoC applications may ldifferent design priorities and

requirements which make VCs more attractive.

3.2 Network Topology

We tailor a 2D mesh topology to our target application, whechn array of processors and RAM
blocks, aiming to minimize area overhead in addition torlaje We assume a flexible system
that assigns memory blocks to processors’ low-latencyoregaccording to application needs,
and therefore profits from the reconfiguration capabilitiesur NoC. We used single-port RAM
blocks as explained in section 4.2. In our 130 nm implementdibrary, RAM blocks feature
data pins on one side of the X axis and address pins on one fsile ¥ axis. We are able to
rotate and mirror RAM blocks to place their pins as needed bip &apology option.

We considered several different network topologies:

e The simple 2D mesh topology shown in Figure 3.5. This topplegs one of the first to be
proposed [9]. Itis regarded as the simplest choice and #esl oy many general-purpose
NoCs which do not have any a-priori application environmedrmation to optimize

their topology. The major drawback with this option is thaitshes, which are 5x5, are

34

CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY
S S S S
e} o T e}
Data < Data < Data < Data <
-« < < > —>
5 S 5 5
o] ol o] o]
Data < Data < Data < Data <
—p < < > «—>
5 o o S
© o] ° ol
Data < Data < Data < Data <

Figure 3.5: The simple 2D mesh topology.

placed in the corners of PEs. Therefore, a significant amafugrinpty space has to be left
between PEs. This problem could be lessened by floorplarthaagwitch as a cross or
rectangle, but not completely solved. Another option to lbatrthis problem is dividing
the switch into multiple sub-switches and placing then iceasling order resembling a
staircase, as proposed in [33]. Moreover, the switch, dugstéocation, is equally far
away from data and address pins, whereas we would like thtelsta be right in front of
both. However, the major reason we did not choose this tgyakthat it does not take
any advantage of our application environment and the optwa have, such as rotating

RAM blocks and forming larger network blocks with several PEs

The second option we investigated, shown in Figure 3.6 Miglidig the network into two
sub-networks. The initial thought was to create addresgi@st) and data sub-networks.
This would enable us to perform optimizations in resour@esesthe address sub-network
would carry less traffic. Moreover, the address sub-netveotdd be implemented as a
broadcast tree to the RAM blocks nearest to the processds (imdal region). This would
impose low latency and could prove handy to fully-assoegatiache implementations.

Requests to distant RAM blocks would utilize the data sub-agtwrT his option may very

3.2. NETWORK TOPOLOGY 35

5 5 S 5
o] o] o] o]
Data < Data < Data < Data <
——y—— «——y—
¥~ ¥~ ¥~ [¥~al
*—>» &k > —&k—>» —4&—>
S i) 5 S
o] o] o] o]
Data < Data < Data < Data <
—————| ——y— ————— ————Y¥—
[¥~al [¥~a ¥ ¥~
*—» & —>» ——4&—>
5 5 S 5
2 2 2 2
Data Data Data v Data v

Figure 3.6: 2D mesh topology with two subnetworks.

well be the best choice for some application environmentsjrbthe general case would
prove area and power consuming. Moreover, RAM blocks neecktalite to receive

address flits from both sub-networks which complicates thetwork interface logic.

Another option is deploying two sub-networks to serve ddfe directions. In the exam-
ple shown, one sub-network serves one direction in each &tisrefore, traffic from a
processor to a RAM block would probably utilize one networH #me response generated
from the RAM block the other. However, in many cases traffic \daeed to change sub-
networks to reach it's destination. Thus, sub-networksltede interconnected with each
other, but not necessarily at every switch. This option,resv®, has only the advantage
of dividing traffic (and therefore congestion) among subaoeks. However, interconnec-
tions between sub-networks may easily prove to be bottlend€nally, this option’s area

overhead is significant.

e As a variation to the previous option we can assign a subar&tto each axis, shown in
Figure 3.7. This option enables us to place a switch rightantfof RAM pins, therefore
saving in power and latency due to minimum length wires. Betworks still need to

be interconnected as the previous option and those inteects may prove to be bottle-

36

CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

o T o S
g 2 g 2
Data t Data t Data t Data ry
' > > 9 <> <> ==t
kS} o kS} KS]
g 2 g 2
Data t Data t Data t Data 7y
> = ’I > g ’I g =1he
= = =]\ -
5P] [k] 1
)] ge! 0
< < < <

Data 1 Data I Data ¢ Data i

Figure 3.7: 2D mesh topology with two subnetworks - one faheaxis.

necks depending on traffic patterns. This option still irgsoa significant area overhead
as the previous option. Moreover, this option’s sole advgatdoes not outweigh it’s dis-
advantages, especially considering that the independetaeen traffic in different axes

is achievable even in the first option with the proper switoplementation.

The option illustrated in Figure 3.8 takes into account RAMdal pin placement. RAM
blocks are rotated to place data pins every two X axes. Tlablers us to place switches
only in the X axes with RAM data pins, therefore deploying e amount of switches
compared to the previous options. The switches are largapaced to those of the pre-
vious options, but deploying half the amount of switchesvgles us with considerable
savings in power and area therefore making this optionditea Wires in the Y axis
have a length equal to twice a RAM block’s height. We also itigesed variations which
featured wires only every two Y axes, as well as interconng&witch (X,Y) with (X+1,

Y+1) instead of (X, Y+1).

Our NoC's topology is a modification of the above last optiomc8 we would like to feature

wires only every two Y axes and minimize empty space, we diawgeRAM blocks to form one

larger network block. We rotate and mirror those RAM blockplace all data pins on the X

3.2. NETWORK TOPOLOGY 37

° ° ° k°]
Tle-- Tle- Ole-- Tle--
Data < Data < Data < Data <
} > - o } > -
Ble(Ble(ele(Ble(
z o o 2
S 9 9 9
5 5 5 5
Ol -- Ole- Ole-- Ol --
Data < Data < Data < Data <
<P > < > [
» BleQ > Ered > Bleg > Erd
o -0 --pla - -l
] 1 o o

Figure 3.8: RAM blocks rotated to place switches every two gsax

axis and all address pins on the Y axis. CPUs and other useksbioay be placed as part of
such a block or as a whole network block themselves, depgrafirtheir size. We deploy one
switch per network block (four PEs). This results in sigmifit savings in area and power due
to the limited amount of switches compared to topologieh wite switch per PE. Moreover,
this reduces the latency between two endpoints since fléd teetraverse fewer switches. This

topology, with the switch shaped as a rectangle in the X &iustrated in Figure 3.9.

Each switch has 6 input/output ports. Each input is conetieesach other port’s output.
Two of these input/output ports are used for inter-switcmewnication in the X axis, and other
two in the Y axis. The rest two ports are used for communicatiith the data pins of the 4
adjacent RAM or other user logic blocks. Given the data pircgri@ent, one port is used for
each two RAM blocks facing each other in the X axis. One datpuius wired to both RAM

block data input interfaces. The two RAM blocks’ data outprts connected to a simple logic
illustrated in Figure 3.10, resembling an one-way 2x1 dwitc

That 2x1 switching logic has no routing logic and only feagione FIFO which is used

38 CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

y Y AT — x 1 AN
j>1‘311‘3’(] eled = >919C] eled _pe--|@¢- .>e1eq eleq
g 1118 = & 2
2 5 2 =] B O] P 5
" Data Data “F--9-I"1" Data Data ¢ ~ Data Data <

bW v v
a

7} K‘ / yy \
~ered eleq Erd eled —ered eea .
= SrF-"r'+1= 3l---?°F1& S
= < S < g <
: o LIz o ..[d]z 3
~ Data E%a\ta‘ < " Data Data < ~ Data Data <

\ 4 \ 4

Figure 3.9: Rectangular-shaped floorplan.

by the non-preferred input. From the moment a RAM block rezei@ read request from it’s
address interface until it is able to output data, it notiflds 2x1 switch to choose that RAM
block’s data output as preferred. This switch thereforeasgs minimal latency impact. It may
also be reconfigured as other switches. If area permits,westdIFO may be implemented to
store the order of requests received by the RAM blocks. THisewable it to always anticipate
the next generated flit, and thus avoid non-preferred pdtyslén case of multiple requests to

both RAM blocks.

RAM block address interfaces are wired to the nearest Y axpubuThese connections are
illustrated with dashed lines. Thus, the RAM blocks immegliatbove or below a switch have
their address interfaces wired to the Y output leading uge/ar downwards respectively. This
way, we avoid implementing extra output ports for addrepsitis. Therefore, a switch forwards
address flits destined to a local RAM block to a Y output and @asato a data output. This
means that flits reach RAM blocks through different outputsoading to their type, since we

choose the switch port closest to the proper RAM pins. As dadatiinterfaces, address inter-

3.2. NETWORK TOPOLOGY 39

Data input 2 - preferred

-y
Ll
Ll
Ll
Ll

v

" Data input 1 - non-preferred

Figure 3.10: 2x1 switching logic.

faces monitor each incoming flit to determine if it is destifier that RAM block. The potential
increased contention for outputs wired to address integfag outweighed by the significantly
less area required by our switch. Our switch would have 8tyaad 12 outputs without the

described optimizations.

Finally, for switches that serve exclusively RAM blocks, vandurther reduce the required
switch area since RAM blocks will never need to communicatsich other directly. Therefore,
each switch data input should not be connected to the oth@stsdata output, therefore saving

two internal switch connections and all the accompanyiggiclo

For switch placement, we examined two floorplan alternataxaluated in chapter 4. In the
first, switches are placed in the corners of larger netwaskld as a cross, shown in Figure 3.11.
This requires only a small distance between user blocksah asis. Moreover, wire length, and
therefore propagation delay, between each switch is minievan in the Y axis. The second
placement, shown in Figure 3.9, has the switch solely in tlaxiX between two large blocks in
a rectangular shape. User block distance in the Y axis ismaihiand is only used for memory
address interface logic. Communication with switches invtlagis is achieved by wires in higher
metal layers routed above RAM blocks, or possibly in any mitgbr routed above address
interface logic. Y axis communication wire length is equakwice the RAM block’s height,

approximating to 1 mm in our placement and routing.

40 CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

)
Erd eeq b > erd eeq . _erqd eeq
o % o 8 = S
Q < =5 < 2 2
z 5 z k=] Z 5
=3 <[~ =12 <"1 1°°1= 2
Data Data ‘/D'ata D%ta\‘ Data Data
a
>T3119C| elegq _ >9190 eleg >19119G ereq
o % b = e o] O oL - oalO o
=3 < = 3 =3 =z
g 3 g S g kS
= Data Data < Data Data < ~ Data Data <

Figure 3.11: Cross-shaped floorplan.

3.2.1 Network Interfaces

PEs, RAM blocks and other user logic blocks need NoC intelitagie. This logic is responsible
for enabling communication between the NoC and the blocks itesponsible for submitting
properly formated packets divided in flits, as explainedubsection 2.3.1, as well as receiving
flits destined to that user block. For data network intesagecoming flits must be briefly stored
until the whole packet is complete and thus able to be sueditt the user block for processing.
Address network interfaces only receive one flit per packetaining the address. In addition,
network interface logic must be able to arbitrate betweenpiete packets in a desired manner,
e.g. submit read and write requests in the order they were trdtesrdy the source to satisfy

sequential consistency.

Network interface logic must also identify which flits of agbat it has already received and
discard duplicate copies. Duplicate flits were discusseslilvsection 2.3.3. There are various
implementations of this functionality according to desagrtimization priorities. To simplify this
task, the flit control bits could be expanded, or the packabit® lessened, to include sequence

number bits.

3.2. NETWORK TOPOLOGY 41

Out-of-order delivery of flits belonging to the same pacleetmpossible, as explained in
section 2.5. However, flits belonging to different packetsf the same source may be delivered
in any order. Therefore, interface logic must be able to stulpackets for processing once
complete, regardless of other incomplete packets. To imghe this functionality, we deploy
multiple small FIFOs in data interfaces and registers inreskl interfaces, and enqueue flits
accordingly. In case we would like packets to be submitteghfocessing in the order they were
sent by the source, the relative packet order can be retirfess the packet header.

Network interface logic must also handle multiple incompagkets from various sources.
Flits from these packets may arrive in any order. If all bufieused up, extra incoming flits
remain in previous hops through backpressure. Thereforexcessive buffer space is required.

Since one data interface FIFO is reserved per packet umilcbmplete and submitted for
processing, and packets may arrive out-of-order, deadlowky occur. Lets assume that packet
A has partially arrived at the target RAM. Packet B from the s@wmurce arrives at the final hop
before As tail flit. However, all of the RAM’s data interfacdHOs are reserved. Therefore,
packet B waits in the switches due to backpressure not altppwacket A's talil flit to arrive to
complete the packet.

This scenario requires several packets arriving out-déothrough the same path with par-
tially complete packets, since the data interface logidalepseveral FIFOs. Assuming sources
do not submit packets interleaved, out-of-order deliveoyrf packets originating from the same
source is only caused by reconfiguration. Therefore, Ingithe number of active reconfigura-
tions that can occur at any one time to less than the numbeatafidterface FIFOs guarantees
that at least one FIFO will be eventually freed and no de&dWaidl occur in this case. Imple-
mentation of this restriction may require software synairation primitives, defining areas each
CPU can reconfigure paths in, or a reconfiguration acknowledgmechanism.

We can also investigate an implementation to detect and/eed¢mm end-to-end deadlocks
that might rise if multiple sources are involved. For exaepjfiin our application one PE could
be a destination for more sources than the number of FIFQ's imterface logic, these packets
are multi-flit, follow the same path and get interleaved saslall address flits arrive before tail

flits, a similar deadlock situation could occur. Some me@@raa for deadlock recovery we could

42 CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

implement, as well as a presentation of end-to-end dead$sales, can be found in [34].

Layout Results

This chapter provides results of our work. Section 4.1 kegiith preliminary simulation results
of some library cells. Section 4.2 presents some of our @viglRAM blocks and justifies our
RAM block choice. Finally, section 4.3 presents results far ®witching node after placement
and routing. All experiments presented in this master'sithased a 130 nm library. Synthesis
was conducted with Synopsys Design Compiler version 20085, placement and routing

with Cadence SOC-Encounter version 3.3 and simulation withd¢e XL version 05.10.002-p.

4.1 Preliminary Results

As one of the first steps of our research, we conducted expatsrto extract timing results
from single library cells. They helped us understand whahesideal latency of long wires

and therefore how close our approach is compared to that.eder, through these results

43

44 CHAPTER 4. LAYOUT RESULTS

we confirmed that pre-enabling tri-state drivers or mudtkalr cells is crucial for achieving low
latency.

Long wires feature inverter cells and one buffer cell in cigetotal number of cells in the
wire is not even. They are placed approximately every 2 mmic# igngth. The drive strength
of these cells varies and can even reach the library’s maxivalue of 32, with the majority
being 16< or 20x. Inverter cells of these drive strengths have an averagadgtof 140 ps. 2
mm long wires in between them imposed latency in the rang® eflfs0 ps depending on metal
layer, driving strength of the cell driving them, and sintida conditions.

Wires between cells had a resistance of approximately 018 .9 k(2 and a parasitic
capacitance of approximately 45 fF - 250 fF, depending om teegth and metal layer. Wires
in higher metal layers are wider and therefore impose a smRIC delay due to their reduced
resistance. However, the connector (via) from a cell’'s eation point to a metal layer imposes
an increased delay as metal height increases. Therefover loetal layers are preferable for
short wires and higher metal layers for long wires. In ouregkpents, most wires were routed
in metal layers 3 - 4 and 5 - 6 with many wires that connectedhimuring cells being routed
in layer 1 - 2. Odd-numbered layers are used for horizonte#sviX axis) and even-numbered
layers for vertical wires (Y axis). Our library features anmum of 6 and a maximum of 8 metal
layers. Wires in layers 7 - 8 can be routed above RAM blockstheainformation for wires and
their attributes can be found in [35].

Preliminary simulations were conducted with 2-1 multiglex They were implemented with
single AND-OR cells. Implementations with NAND cells werle@studied but they proved to
be 60 ps - 270 ps slower. This is due to the fact that multiplé&N®Acells, which are faster than
AND-OR cells, are required to implement a single multiplexenplementations with AND-
NOR cells are only preferable if the output wire could haveodd number of inverter cells. If
not, an otherwise unnecessary inverter cell needs to beldddesfore making this implementa-
tion slower.

In order to determine the importance of pre-enabling migiiprs, we simulated a multiplexer
which dynamically decides among it’'s inputs with a simpletstage, five-input combinational

logic of 6 logic gates which is driven by some of the multi@eg current inputs. On the other

4.2. RAM BLOCKS 45

Table 4.1: Multiplexer simulation results.

I/O Wires length Typical case latency Worst case latency
Pre-configured Dynamic| Pre-configured Dynamic
10 mm 254 ps 565 ps 260 ps 900 ps
8 mm 211 ps 496 ps 371 ps 836 ps
5mm 240 ps 514 ps 368 ps 808 ps
2mm 254 ps 590 ps 378 ps 893 ps
1 mm 196 ps 496 ps 395 ps 998 ps

hand, we simulated a multiplexer which stores the resulhefdame combinational logic in a
register which drives it's select input. These circuits sttewn in Figure 1.2. The length of the
wires connected to it's inputs and outputs varied from 1 mmMGanm. Long wires featured

inverter of buffer cells as already discussed.

Simulation results are given in Table 4.1. They presentakenty from the time the mul-
tiplexer’s inputs are stable until the multiplexer’s outjmistable. These results show that the
dynamic multiplexer is 2 to 3 times slower than the pre-camfg one. This confirms that pre-
enabling select signals is important for reducing lateAsydiscussed in section 3.1, cells at the
switch output driving the next switch have a fanout of 11. §jpre-configuration becomes even
more important in our NoC due to this high fanout and theretbe increased latency to toggle
the driven value. Finally, since our switch requires a 5-1tiplexer at each output and our li-
brary does not include single AND-OR cells larger than 3-& deploy tri-state cells. However,

the importance and benefits of pre-configuration remaindhees

4.2 RAM Blocks

We chose single-port RAM blocks of 4096 lines of 32 bits ea@8Wbits in total), with a column
multiplexer of 16. Without power rings, they are 715,a long on the X axis, and 551.64m
long on the Y axis. We deployed 2Bn wide power rings on each side adding /4@ of length

46 CHAPTER 4. LAYOUT RESULTS

surd /1 zereq

z 2 2
= & g
9] (¢ vc—,;
RAM & & RAM 7
= bo o
g = S
< > <
Data 1/0 pins Datal I/0 pins
(a) Single-port RAM. (b) Dual-port and two-port RAMSs.

Figure 4.1: RAM block pin placement.

to each axis. These power rings allow our RAM blocks to opeaatiheir maximum design
frequency of 1 GHz. As shown in Figure 4.1(a), data inpufatipins reside on one of the long
sides of the RAM block (X axis), while address input pins resith one of the short sides (Y

axis). Control pins are on the same side with their respeptives data pins.

Latency and area attributes of several single-port RAM Idaate shown in Table 4.2. As
that table shows, the clock positive edge to valid outpud tiEtency increase between the 2048
x 32 and 4096x 32 memories with a column multiplexer of 8 is 0.58 ns (undgidgl case
conditions) which is disproportional compared to the 0.8 batween the 1024 32 and 2048
x 32 memories. The same is true for the 0.68 ns between mentfig&Esx 32 and 8192«

32 with a column multiplexer of 16. Therefore, we chose the&@ 32 RAM block with a
column multiplexer of 16. Choosing a larger RAM block would mélaat our memories would
be considerably slower than if we chose the previous-siaekisl On the other hand, choosing
a smaller RAM block would mean that we would require more RAMckand therefore more
wasted area on our chip due to network interface logic, poings and other network overhead.
Therefore, this RAM block balances area and latency effigirdch are the two areas we focus
in our application environment.

64-bit wide RAM blocks are slightly larger than their equadiged 32-bit wide RAM blocks.
However, they are faster with the same column multiplexerour case, the 2048 64 RAM
block with a column multiplexer of 8 is only slightly fastdran the 4096« 32 with a column
multiplexer of 16. Our choice regarding RAM word length iscalsased on the fact that most

4.2. RAM BLOCKS 47

Table 4.2: Single-port RAM attributes.

Lines | Bits per line| Column mux Area Clock-to-data latency
Typical case Worst case
128 32 8 390um x 110pm 1.1ns 1.8 ns
256 32 8 380m x 140um 1.1ns 1.9ns
512 32 8 380um x 200 zm 1.2ns 2.0ns
512 64 8 720pum x 200 zm 1.3ns 2.2ns
1024 32 8 380um x 330um 1.4ns 2.4ns
1024 32 16 720pum x 190 m 1.4ns 2.3ns
2048 32 8 380um x 560 m 1.7ns 3.0ns
2048 64 8 720 pum x 560 m 1.8 ns 3.2ns
4096 32 8 380um x 1040um 2.2ns 4.2 ns
4096 32 16 720 pum x 550 zm 19ns 3.5ns
8192 32 16 720pm x 1020pm 2.6ns 4.9 ns

open-source processors are 32-bits wide instead of 64atligmot a concern for other applica-
tion environments, 64-bit wide RAM blocks might be a moreaattive choice depending on the

other options at the desired size.

Two-port memories have one read and one write port. Dudlfpemories have two inde-
pendent read/write ports. Their pin layout is shown in Fegdrl(b). Attributes for two RAM
blocks of each type are shown in Tables 4.3 and 4.4. The nuofipeissible RAM blocks is con-
siderably smaller for these types since two-port and doalHpemories are restricted to a total
size of 72 kbits and 64 kbits respectively. This is compace#56 kbits for single-port RAMs.
Moreover, two-port and dual-port memories are not nearlgraa efficient as their respective
single-port RAMs. Dual-port memories are almost twice agdarompared to single-port mem-
ories of the same size, whereas two-port memories are appately 75 % larger. Both are also

considerably more power-consuming than single-port m&sorTherefore, since our NoC or

48 CHAPTER 4. LAYOUT RESULTS

Table 4.3: Two-port RAM attributes.

Lines | Bits per line| Column mux Area Clock-to-data latency

Typical case Worst case

512 64 4 630m x 370um 1.7ns 3.1ns
1024 32 8 630 m x 360 um 2.0ns 3.8ns

Table 4.4: Dual-port RAM attributes.

Lines | Bits per line| Column mux Area Clock-to-data latency

Typical case Worst case

512 64 4 630m x 370um 1.6ns 29ns
1024 32 8 630um x 360m 1.6ns 2.9ns

application environment has no specific demand for mulgaeg memories, we chose single-

port memories.

4.3 Switch P&R Results

We performed placement and routing of our design withoutatti@ptive routing modification
presented in subsection 2.3.4. Switch p&r results are shiowable 4.5. Area results for the bar
and cross floorplans discussed in section 3.2 are preseniadbie 4.6. Results shown are under
typical case conditions. Power consumption results aremmeiavy switching activity. Preferred
path latency per switch ranged from 300 to 420 ps. If we alstude a 1 mm long wire at the
output, approximately twice a RAM block’s height, latencgreases to 450-550 ps, compared to
80 - 135 ps for straight wires of a similar length without ampfiguration or routing capability.
When there is no contention, non-preferred path latencyesotock cycle. Contention without
starvation effects increases non-preferred path lateepgmntding on various factors, but does not

affect preferred path latency. Our design functions at 6&¥zMnder our library’s typical case

4.3. SWITCH P&R RESULTS 49

conditions, and at 400 MHz under worst case conditions.

FIFOs were implemented with registers due to their numbdrsanall size of 2 lines each.
Reducing the number of lines from 3 to 2 reduced occupied bwaitea by approximately 20%.
As explained in section 3.1, a FIFO is selectable for serdadng the next clock cycle even
if a flit is being enqueued in the current clock cycle. Thig@ases the arbiter’s critical path to
include the FIFO'’s input. We investigated an implementatidich regards a FIFO as selectable
only when it's non-empty. This means than flits in non-prefdipaths need 2 clock cycles when
there is no contention, since they would need to be enqueutietifirst clock cycle, and only
after that their FIFO can be served during the next (secdodkcycle. Therefore the arbiter’s
critical path is reduced to begin only at the FIFO’s head,clwhs a group of registers. This
design was able to function with a clock period of 1.2 ns (8332ylunder typical conditions,
instead of 1.5 ns (667 MHz). However, since non-preferrédgpianpose a two clock cycle delay,
this translates into a 2.4 ns delay for the short criticahpaiplementation compared to 1.5 ns for
the long critical path. Therefore, the long critical pattplementation imposes a shorter latency.

We deployed a 2xm wide power ring for each RAM block. Therefore, their effeetsize
is 740.07um x 576.64um. In an orthogonal shape, one switch occupies a minimumai@3ay
pm x 310 um. In the rectangular placement option as explained in@e@&i2 and illustrated
in Figure 3.9, switch height (a) is 17@m at minimum. Since we require one switch every 4
RAM blocks (or user blocks of roughly the same size), NoC axegiteead is 13%. In the cross
placement option as depicted in Figure 3.11, switch heighhe X axis (a) is 13Q:m, while
switch length in the Y axis (b) is 140m. In this case, NoC area overhead is 18%. This shows
that area efficiency drops in the second case. However,-st@gsed switches have the least
possible distance between each other even in the Y axigftterminimizing propagation delay
between them.

P&r details of the reduced-area single-preferred pathcévékplained in section 3.1 are also
shown in Tables 4.5 and 4.6. In the rectangular placememrgmwitch height (a) is 133m
(22% decrease). In the cross placement option, switch haighe X axis (a) is 11&:m (9%
decrease), while switch length in the Y axis (b) is 144 (18.5% decrease). This imposes a NoC

area overhead of 10% in the first case and 16% in the seconde Thsults show that the area

50 CHAPTER 4. LAYOUT RESULTS

Table 4.5: Switch p&r results (typical).

Implementation library 130 nm

Power supply 1.2V

Clock frequency 667 typical - 400 worst case (MHz)

Input/Output ports 6

FIFOs 30

FIFO lines 2

Flit width 39 bits

Pref. path latency/hop| 300-420 ps - 450-550 ps incl. 1 mm wire
Full switch | Preferred bus Change

Gates 44874 38865 -13 %

Cells 15001 13369 -11%

Cell area 195228:m?* | 183056,m? -6 %

Internal nets 13595 12703 -6.5 %

Combinational area 84424um? | 72420pm? -14 %

Non-combinational 110798um? | 110632um? -0.1%

Leakage power 91 W 85 W -7 %

Dynamic power 80 mW 77 mW -3%

Table 4.6: Switch area results for the bar and cross floosplda”, "b” refer to Figures 3.9

and 3.11.

Bar floorplan| Overhead Cross floorplan Overhead Change

Full switch || a=170um 13% a=130um b =140um 18% +38%
Preferred bus| a = 133um 10% a=118um b =114um 16% +60%
Change a: -22% -23% a: -9% b: -18.5% -11%

4.3. SWITCH P&R RESULTS 51

gain is small, but in some applications it could outweighltss in preferred path flexibility.

52

CHAPTER 4. LAYOUT RESULTS

Conclusions

This chapter concludes this master’s thesis. In sectiow®.1dentify room for future work.

Finally, in section 5.2 we summarize this work’s key elensent

5.1 Future Work

A number of issues should be addressed in the future. FimilyNoC needs to be made fault-
tolerant since faults may appear in a chip’s lifetime, egdlan technologies narrower than 130
nm. This will impose an unavoidably increased area overlsgazk it will require redundancy
or at least error-detection circuits. However, technoltrgyds indicate that designs must be
fault-tolerant in some way in order to be trusted for futuesidns.

Secondly, our NoC needs to be evaluated in a complete systdar uarious workloads and

demands. This will enable us to accurately analyze our dmion’s impact on a complete

53

54 CHAPTER 5. CONCLUSIONS

system’s performance. It will also give us an understandinigow dead flits affect our NoC’s
performance, and under which configurations and trafficepadgt is this impact lessened. A
simple metric that can give us this understanding is how niengs a flit was forced to wait
in a FIFO due to a dead flit in a preferred path. We can also iigate what is the optimal
strategy for choosing preferred paths based on the expweaféd pattern in the NoC, and what
performance increase does the optimal choice bring. Aseofithe of writing of this master’s
thesis, a complete system cycle-accurate simulator isruelelopment, which will enable us
to run simulations to answer all the above questions.

Finally, our NoC can face synchronization issues which nmesult in design limitations.
Since preferred paths are purely combinational, flits tiiag them can arrive at their destina-
tions and other switches at any point during the clock cyEhaus, flits may violate flip-flop setup
or hold time upon arrival. This may set the flip-flop to a medbit, or at least to an unknown,
state and may therefore cause multiple problems.

There are several approaches to combat this issue. Figlgould impose a constraint on
our preferred paths so that this problem will never occuris Will allow our NoC to function
without altering our design, thus without having a decrdasea or power efficiency. Depend-
ing on the constraint, latency and other performance aspeay be negatively affected. For
example, we could limit the number of continuous preferrathgops such that flits will enter
a non-preferred path before the end of the clock cycle thet émtered their current preferred
path in. In this case, assuming that flits are submitted frompreferred paths in the very be-

ginning of the clock cycle, that number i§ 522t . This constraint disallows

us to reach very low latency numbers, which we would othexwis able to.

Furthermore, we could deploy synchronizers at every svatwh PE interface logic. While
they will not affect preferred paths until flits exit themgethimposed latency in non-preferred
paths and preferred path exit points is excessive. Finally,switch components can easily
be implemented asynchronously with known design methagileéo The problem in this ap-
proach lies in the necessary handshake between switchds wetiRork interface logic blocks
to guarantee that no flit fragments will be routed throughrteevork. This handshake may be

implemented in preferred path entry and exit points inst#aglmply adjacent switches, but it

5.2. CONCLUSION 55

will still impose a delay that will prevent us from offeringiocurrent low per-hop latency, both
in preferred and non-preferred paths. Alternatively, wald@mplement encoding schemes such
as dual-rail [36] which also provide this guarantee. Howgesech implementations will almost
double our NoC’s required area and also require significandye power.

Our choice of which option to implement depends on where wendlting to take a penalty.
We could either implement the handshake solution and iserear NoC's latency, implement
an encoding scheme and increase our NoC'’s area and power,cnuleimpose restrictions in
preferred paths and lessen our NoC'’s preferred path fleyibllhis choice may differ in different

application domains, therefore a different decision maynlaele for each one.

5.2 Conclusion

We presented a NoC design that offers low latency in pre-gorégd paths. This latency is
close to that of long buffered wires. To achieve our goal, &eelhresurrected and tailored mad-
postman, a technique proposed two decades ago. According tomplementation, an incoming
flit is eagerly forwarded to the input’s preferred outputgny. This is achieved solely by pre-
enabled tri-state drivers, and therefore with the leastydpbssible. Flits are then checked by
routing logic to determine if they were correctly eagerlyarded. If not, flits are forwarded to
their correct output. Incorrectly forwarded flits are temated in later hops as dead. When there
is no contention, non-preferred paths impose a single agcle per-hop delay.

For routing, we implement XY routing. However, we make thedfioation that a flit is
considered to have been correctly forwarded if it appros¢he destination in any of the two
axes, even if it does not follow strict XY routing. This wayifdlmay take different paths and
gain from increased preferred path flexibility. A flit is cashesred dead if its distance from the
destination increases in any of the two axes. We have alsmpea a modification to allow parts
of our NoC to switch to adaptive routing when it's benefits meeded.

Path reconfiguration occurs at run-time. Any user block camsimit configuration packets to
any switch in the NoC. Switch architecture resembles thatlaffeered crossbar [8]. FIFOs are
placed at crosspoints, and each output port has indepead®gtration and configuration logic.

We presented a 2D mesh topology tailored to our CMP envirohtoereduce area, power and

56 CHAPTER 5. CONCLUSIONS

latency by limiting the number and complexity of the switshe

P&r results show that preferred path latency varies from 39@o 550 ps, depending on
placement and wire length. Our NoC imposes a 13% area owkfbethe whole chip.

We believe that our work provides a different approach inesamneas and can form the basis
for future NoC implementations which focus on low latencyur@ain contribution for low-
latency preferred paths can apply in different NoC envirenta than the one presented, with the
optimizations and assumptions necessary for that envieohn®ur work provides the means to
achieve latency less than one clock cycle per node, whickappo be the current lower limit.
While there are open issues left for future work, a substemtiimber of past NoC research can be
applied and therefore provide solutions. Depending ontegaalication needs, further latency,

area or energy optimizations may be made.

Bibliography

[1] C. R. Jesshope, P. R. Miller, and J. T. Yantchev. High perboroe communications in
processor networks. ISCA '89: Proceedings of the 16th annual international sysiym
on Computer architecturgpages 150-157, New York, NY, USA, 1989. ACM Press.

[2] Reinaldo A. Bergamaschi and William R. Lee. Designing syst@n-chip using cores. In
DAC '00: Proceedings of the 37th conference on Design automgrages 420-425, New
York, NY, USA, 2000. ACM Press.

[3] B. Luca and D. Giovanni. Networks on chips: A new paradigmdystem on chip design,
2002.

[4] Michael Bedford Taylor and Walter Lee. Scalar operandvoeks. IEEE Trans. Parallel
Distrib. Syst, 16(2):145-162, 2005. Member-Saman P. Amarasinghe anddgieAnant

Agarwal.

[5] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilsand Kunyung Chang.
The case for a single-chip multiprocess8IGOPS Oper. Syst. Re80(5):2-11, 1996.

[6] R.Bevide C. Izu and C Jesshope. Mad-postman: a look-ahessbge propagation method
for static bidimensional meshes.Pnoceedings of the 2nd Euromicro Workshop on Parallel

and Distributed Processingages 117-124. IEEE Computer Society Press, 1994.

57

58

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

Li-Shiuan Peh and William J. Dally. Flit-reservationt@ontrol. InIn Proc. of the 6th Int.

Symp. on High-Performance Computer Architecture (HR@AYyes 73—-84, January 2000.

D. Simos M. Katevenis, G. Passas et al. Variable packaes buffered crossbar (cicq)
switches. InProceedings of the IEEE International Conference on Comnatioiacs (ICC)

pages 1090-1096, Paris, France, June 2004.

Wiliam J. Dally and Brian Towles. Route packets, not wiré€3n-chip interconnection
networks. InProceedings of the 38th Design Automation Conference (Dp&)es 684—
689, Las Vegas, NV, June 2001.

Stamatis Vassiliadis and loannis Sourdis. Reconfigarfiix networks. INEEE Interna-

tional Conference on Field Programmable Technology (F®Bcember 2006.

Roman Koch Thilo Pionteck and Carsten Albrecht. Applypaytial reconfiguration to
networks-on-chip. IiProceedings of the International Conference on Field Progmaable
Logic and Applications (FPLpages 155-160, Madrid, Spain, August 2006.

Christophe Bobda, Ali Ahmadinia, Mateusz Majer, Juerdeith, Sandor P. Fekete, and
Jan van der Veen. Dynoc: A dynamic infrastructure for comication in dynami-
cally reconfigurable devices. In Proceedings of the International Conference on Field-
Programmable Logic and Applications (FRLgages 153-158, Tampere, Finland, August
2005.

William Dally and Brian Towles.Principles and Practices of Interconnection Networks

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA3200

William J. Dally. Express cubes: Improving the perf@mnce of k-ary n-cube interconnec-
tion networks.IEEE Trans. Comput40(9):1016-1023, 1991.

Feihui Li, Chrysostomos Nicopoulos, Thomas Richards¥nan Xie, Vijaykrishnan
Narayanan, and Mahmut Kandemir. Design and management dfifdnultiprocessors

using network-in-memory. IBSCA '06: Proceedings of the 33rd annual international

BIBLIOGRAPHY 59

[16]

[17]

[18]

[19]

[20]

[21]

[22]

symposium on Computer Architectupages 130-141, Washington, DC, USA, 2006. IEEE

Computer Society.

Jongman Kim, Chrysostomos Nicopoulos, and Dongkook.P#& gracefully degrading
and energy-efficient modular router architecture for oip-ctetworks.SIGARCH Comput.
Archit. News 34(2):4-15, 2006.

Jongman Kim, Dongkook Park, T. Theocharides, N. Vipsthnan, and Chita R. Das. A
low latency router supporting adaptivity for on-chip irdennects. IrDAC '05: Proceed-
ings of the 42nd annual conference on Design automagiages 559-564, New York, NY,
USA, 2005. ACM Press.

Robert Mullins, Andrew West, and Simon Moore. Low-latgivirtual-channel routers for
on-chip networksSIGARCH Comput. Archit. New32(2):188, 2004.

Chrysostomos A. Nicopoulos, Dongkook Park, Jongman,imVijaykrishnan, Mazin S.
Yousif, and Chita R. Das. Vichar: A dynamic virtual channelulegor for network-on-chip
routers. INMICRO 39: Proceedings of the 39th Annual IEEE/ACM Internaiddympo-
sium on Microarchitecturgpages 333-346, Washington, DC, USA, 2006. IEEE Computer
Society.

E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudiin asynchronous noc
architecture providing low latency service and its mudtrdl design framework. IASYNC
'05: Proceedings of the 11th IEEE International SymposiumAeynchronous Circuits and
Systemgpages 54-63, Washington, DC, USA, 2005. IEEE Computer Societ

Li Shang, Li-Shiuan Peh, Amit Kumar, and Niraj K. Jha.efimal modeling, characteriza-
tion and management of on-chip networks MICRO 37: Proceedings of the 37th annual
IEEE/ACM International Symposium on Microarchitectysages 67—78, Washington, DC,
USA, 2004. IEEE Computer Society.

Hangsheng Wang, Li-Shiuan Peh, and Sharad Malik. Arteldgy-aware and energy-

oriented topology exploration for on-chip networks. DATE '05: Proceedings of the

60 BIBLIOGRAPHY

conference on Design, Automation and Test in Eurppges 1238-1243, Washington, DC,
USA, 2005. IEEE Computer Society.

[23] Radu Marculescu. Networks-on-chip: The quest for oip-édwlt-tolerant communication.
In ISVLSI '03: Proceedings of the IEEE Computer Society Annyai@®sium on VLSI
(ISVLSI'03) page 8, Washington, DC, USA, 2003. IEEE Computer Society.

[24] Sam Kerner Tudor Dumitra and Radu Marculescu. Towardsthop fault-tolerant commu-
nication. INASPDAC: Proceedings of the 2003 conference on Asia SoutlidPdesign
automation pages 225-232, New York, NY, USA, 2003. ACM Press.

[25] Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. Intertections in multi-core ar-
chitectures: Understanding mechanisms, overheads alwigsda ISCA '05: Proceedings
of the 32nd Annual International Symposium on Computer fgchire pages 408-419,
Washington, DC, USA, 2005. IEEE Computer Society.

[26] Cristian Grecu and Michael Jones. Performance evalmaand design trade-offs for
network-on-chip interconnect architecturedEEE Trans. Comput.54(8):1025-1040,
2005. Student Member-Partha Pratim Pande and Senior Me#wmake Ivanov and Se-

nior Member-Resve Saleh.

[27] 11-Gu Lee, Jin Lee, and Sin-Chong Park. Adaptive rousicigeme for noc communica-
tion architecture. IPAdvanced Communication Technology, 2005, ICACT 2005. The 7th
International Conference qipages 1180— 1184. IEEE Communications Society, 2005.

[28] Li Shang, Li-Shiuan Peh, Amit Kumar, and Niraj K. Jha.efimal modeling, characteriza-
tion and management of on-chip networks MICRO 37: Proceedings of the 37th annual
IEEE/ACM International Symposium on Microarchitectysages 67—78, Washington, DC,
USA, 2004. IEEE Computer Society.

[29] Maurizio Palesi, Rickard Holsmark, Shashi Kumar, andcéinzo Catania. A methodology

for design of application specific deadlock-free routingagithms for noc systems. In

BIBLIOGRAPHY 61

CODES+ISSS '06: Proceedings of the 4th international carfee on Hardware/software
codesign and system synthepiages 142-147, New York, NY, USA, 2006. ACM Press.

[30] Srinivasan Murali, David Atienz, Luca Benini, and Giowa De Michel. A multi-path
routing strategy with guaranteed in-order packet delivaerg fault-tolerance for networks
on chip. InDAC '06: Proceedings of the 43rd annual conference on Deaigiomation
pages 845—-848, New York, NY, USA, 2006. ACM Press.

[31] Jingcao Hu and Radu Marculescu. Dyad: smart routing éwarks-on-chip. I'DAC '04:
Proceedings of the 41st annual conference on Design automaiages 260-263, New
York, NY, USA, 2004. ACM Press.

[32] Lionel M. Ni and Philip K. McKinley. A survey of wormholeouting techniques in direct
networks. pages 492-506, 2000.

[33] Manolis Katevenis and Miriam Blatt. Switch design fofftsconfigurable wsi systems. In
IFIP WG 10.5: Proceedings of the workshop on Wafer Scale tatem, pages 255-270,
Grenoble, France, 1986. Saucier, Trilhe, Eds, North Hdll&o.

[34] Michael Taylor. The raw prototype design document,200
[35] M. Horowitz, R. Ho, and K. Mai. The future of wires, 1999.

[36] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiri@oping with the variability of
combinational logic delays. ICCD '04: Proceedings of the IEEE International Confer-
ence on Computer Design (ICCD’Q4jages 505-508, Washington, DC, USA, 2004. IEEE

Computer Society.

