
Computer Science Department
School of Sciences and Engineering

University of Crete

Approaching Ideal NoC Latency with Pre-Configured Routes

Master’s Thesis

George Michelogiannakis

June 2007
Heraklion, Greece

Panepist mio Kr thSqol Jetik¸n kai Teqnologik¸n Episthm¸nTm ma Epist mh Upologist¸n
Approaching Ideal NoC Latency with Pre-Configured RoutesErgas�a pou upobl jhke apì ton Ge¸rgio Miqelogiann�khw merik ekpl rwsh twn apait sewn gia thn apìkthshMetaptuqiakoÔ Dipl¸mato Eid�keushSuggrafèa: ���������������-Ge¸rgio Miqelogiann�kh, Tm ma Epist mh Upologist¸nEishghtik Epitrop : ���������������-Manìlh Kateba�nh, Kajhght , Epìpth���������������-Apìstolo Tragan�th, Kajhght , Mèlo���������������-DionÔsio Pneumatik�to, Anaplhrwt Kajhght , MèloTm ma Hlektronik¸n Mhqanik¸n & Mhqanik¸n Upologist¸n, Poluteqne�o Kr thDekt : ���������������-Panagi¸th Traqani�, Kajhght Prìedro Epitrop Metaptuqiak¸n Spoud¸nHr�kleio, IoÔnio 2007

Approaching Ideal NoC Latency with Pre-Configured Routes

by

George Michelogiannakis

mihelog@csd.uoc.gr

Master’s Thesis

Department of Computer Science

University of Crete

Abstract

In multi-core ASICs, processors and other compute engines need to communicate with mem-

ory blocks and other cores with latency as close as possible to the ideal of a direct buffered wire.

However, current state of the art networks-on-chip (NoCs) suffer, at best, latency of one clock

cycle per hop.

We investigate the design of a NoC that offers close to the ideal latency in some preferred,

run-time configurable paths. Processors and other compute engines may perform network recon-

figuration to guarantee low latency over different sets of paths as needed. Flits in non-preferred

paths are given lower priority than flits in preferred paths to enable the latter to provide low

latency.

To achieve our goal, we extend the “mad-postman” technique [1]: every incoming flit is ea-

gerly (i.e. speculatively) forwarded to the input’s preferred output,if any. This is accomplished

with the mere delay of a single pre-enabled tri-state driver. We later check if that decision was

correct, and if not, we forward the flit to the proper output. Incorrectly forwarded flits are classi-

fied as dead, and are eliminated in later hops.

We use a 2D mesh topology tailored for processor-memory communication, and a modified

version of XY routing that remains deadlock-free. We also propose an extension which enables

i

a switching node to switch to adaptive routing when its benefits are required.

Our evaluation shows that, for the preferred paths, our approach offers typical latency around

500 ps versus 1500 ps for a full clock cycle at 667 MHz or up to 135 ps for an 1 mm ideal

direct connect, in a 130 nm technology; non-preferred pathssuffer a one clock cycle delay per

hop when there is no contention, similar to that of other approaches. Performance gains are

significant and can prove quite useful in other application domains as well.

Keywords: Network-on-chip, Pre-configured, Low-latency, Routes, CMP,System-on-chip.

Thesis Advisor: Manolis Katevenis, Professor

Thesis Co-Advisor: Dionisios Pnevmatikatos, Associate Professor, TechnicalUniversity of

Crete, Chania

ii

Prosèggish th Idanik Kajustèrhsh se D�ktua Entì Chipmèsw ProkajorismoÔ Diadrom¸nGe¸rgio Miqelogiann�kh
mihelog@csd.uoc.grMetaptuqiak Ergas�aTm ma Epist mh Upologist¸nPanepist mio Kr thPer�lhyhSe poluepexergastik� chips, oi epexergastè kai oi upìloipe upologistikè mhqanèqrei�zontai na epikoinwn soun me ti mn me kai ta upìloipa sÔnola kuklwm�twn me kaju-stèrhsh ìso g�netai pio kont� sthn idanik - aut twn makri¸n kalwd�wn me buffer cells.'Omw, ta shmerin� exeligmèna d�ktua entì chip epib�lloun kajustèrhsh enì kÔklou ro-logioÔ an� metagwgèa sth kalÔterh per�ptwsh.DiereunoÔme th sqed�ash enì diktÔou entì chip pou prosfèrei kont� sthn idanik ka-justèrhsh se merik� protim¸mena, epanaprogrammat�sima kat� th leitourg�a tou diktÔou,monop�tia. Oi epexergastè kai oi upìloipe upologistikè mhqanè mporoÔn na epanapro-grammat�soun ta monop�tia gia na egguhjoÔn qamhl kajustèrhsh se diaforetik� sÔnolamonopati¸n, ìpw apaite�tai an� p�sa stigm . Pakèta se mh-protim¸mena monop�tia èqounqamhlìterh proteraiìthta apì pakèta se protim¸mena monop�tia to opo�o epitrèpei stadeÔtera na prosfèroun qamhl kajustèrhsh.Gia na epitÔqoume to stìqo ma, epekte�noume th teqnik tou �treloÔ taqudrìmou� [1℄.SÔmfwna me aut k�je eiserqìmeno pakèto prowje�tai w prìbleyh sthn protim¸menh èxo-do th sugkekrimènh eisìdou, an up�rqei. Autì epitugq�netai mìno me th kajustèrhshenì proenergopoihmènou trikat�statou odhght . Sth sunèqeia elègqoume an aut h apì-fash tan swst , kai an den tan prowjoÔme to pakèto sth prèpousa èxodo. Lanjasmèna

iii

prowjhmèna pakèta kathgoriopoioÔntai w nekr� kai exale�fontai se epìmenou metagwge�.QrhsimopoioÔme disdi�stath topolog�a plègmato tropopoihmènh gia epikoinwn�a epexer-gast¸n me mn me, kai èna ep�sh tropopoihmèno algìrijmo QU dromolìghsh pou paramènei�neu probl mata adiexìdwn. Ep�sh prote�noume mia epèktash gia na mporoÔme na all�zoumese dunamik dromolìghsh ìtan apaitoÔntai ta pleonekt mata th.Oi metr sei ma de�qnoun ìti, gia ta protim¸mena monop�tia, h prosèggish ma prosfèreikajustèrhsh th t�xh twn 500 psse sÔgkrish me ta 1500 ps enì pl rh kÔklou rologioÔtwn 667 MHz ta ew 135 ps kalwd�wn 1 mm, se mia biblioj kh ulopo�hsh 130 nm. Mhprotim¸mena monop�tia èqoun kajustèrhsh enì kÔklou rologioÔ an� metagwgèa ìtan denup�rqei sunagwnismì me �lla pakèta, parìmoia me aut �llwn prosegg�sewn. Ta kèrdh seep�dosh e�nai axiìloga kai mpore� na apodeiqjoÔn idia�tera qr sima kai se �lle efarmogè.Lèxei kleidi�: D�ktua Entì Chip, Prodiamorfwmèna, Qamhl Kajustèrhsh, Diadrom ,Poluepexergastikì Chip, SÔsthma Entì Chip.Epìpth Metaptuqiak Ergas�a: Manìlh Kateba�nh, Kajhght Sunepiblèpwn Metaptuqiak Ergas�a: DionÔsio Pneumatik�to, Anaplhrwt Kajh-ght , Poluteqne�o Kr th, Qani�

iv

Acknowledgments

I am grateful for my family’s continuing support, which has allowed me to achieve this work.

I would like to recognize the contribution of my supervisor,Prof. Manolis Katevenis, and

Prof. Dionisios Pnevmatikatos for the completion of this work. I thank each of them for the

guidance, support, constructive remarks, devoted time, aswell as the opportunites and challenges

they presented me.

This work was conducted as part of a FORTH-ICS graduate student fellowship, supported

by the European Commission in the context of the SARC (ScalableComputer Architecture)

integrated project #27648 (FP6), and the HiPEAC network of excellence.

I wish to thank my colleagues and the people who helped me, both locally and throughout

HiPEAC and SARC, for their assistance: Christos Sotiriou, Spyros Lyberis, Pavlos Mattheakis,

Stamatis Kavvadias, Nikolaos Andrikos, Vasilis Papaefstathiou, Michalis Papamichail, Kees

Goossens, Giuseppe Desoli, Krisztian Flautner, Chris Jesshope, Jose Duato, and Georgi Gay-

dadjiev.

v

vi

It’s hard to work fast without sweating.

vii

viii

Contents

1 Introduction 1

1.1 Related Work . 6

2 Preferred Paths & Routing 9

2.1 Mad-Postman . 9

2.2 Preferred Paths .. 11

2.3 Routing . 12

2.3.1 Packet Format . 12

2.3.2 Routing Logic . 13

2.3.3 Duplicate Flits . 14

2.3.4 Adaptive Routing Extension .. 15

2.4 Deadlock-Freedom .. 18

2.5 Preferred Path Reconfiguration 20

2.6 Backpressure . 22

3 Switch Architecture & Topology 25

3.1 Switch Architecture 25

3.1.1 Routing Logic Implementation .. . 29

3.1.2 Virtual Channels . 33

3.2 Network Topology .33

ix

3.2.1 Network Interfaces .40

4 Layout Results 43

4.1 Preliminary Results .. . 43

4.2 RAM Blocks . 45

4.3 Switch P&R Results . 48

5 Conclusions 53

5.1 Future Work . 53

5.2 Conclusion . 55

References 56

x

List of Figures

1.1 Substituting inverter cells to create a network. 2

1.2 Preliminary simulation circuits. 3

1.3 Example of a reconfiguration to an uneven distribution ofRAM blocks to pro-

cessors’ low-latency regions, to cover run-time demands. 4

2.1 Original mad-postman network routing. 10

2.2 Flit format. 39 Bits total - 7 control, 32 payload 13

2.3 Correct eager forwarding scenario that does not comply with strict XY routing. . 14

2.4 Duplicate flit scenario. 15

2.5 Circle formed by four preferred paths with exatly one turn. 19

2.6 Out-of-order delivery scenario. 21

3.1 Switch architecture. 26

3.2 A macroscopic illustration of a 4x4 switch input queueing approach, without

preferred paths and VCs. 27

3.3 5-1 multiplexer with 3-1 cells. 28

3.4 Preferred path bus. .. . 29

3.5 The simple 2D mesh topology. 34

3.6 2D mesh topology with two subnetworks. 35

3.7 2D mesh topology with two subnetworks - one for each axis.. 36

xi

3.8 RAM blocks rotated to place switches every two X axes. 37

3.9 Rectangular-shaped floorplan. 38

3.10 2x1 switching logic. 39

3.11 Cross-shaped floorplan. 40

4.1 RAM block pin placement. .. 46

xii

List of Tables

4.1 Multiplexer simulation results. 45

4.2 Single-port RAM attributes. 47

4.3 Two-port RAM attributes. 48

4.4 Dual-port RAM attributes. 48

4.5 Switch p&r results (typical). 50

4.6 Switch area results for the bar and cross floorplans. ”a”,”b” refer to Figures 3.9

and 3.11. 50

xiii

xiv

1
Introduction

System-on-Chip (SoC) technology is the ability to place multiple function ”systems” -Intellectual

property (IP) blocks- in a single silicon chip [2]. As SoCs grow in area, complexity and function-

ality, so do their communication requirements in terms of performance (latency and throughput)

and number of interconnected components. These communication demands as well as the hetero-

geneity of IP block network interface logic necessitate thedevelopment of a structured on-chip

communication infrastructure. Networks-on-Chip (NoCs) [3]have by now proven themselves to

be key components of the emerging SoCs. Specialized NoCs are used in other applications as

well, such as large processor chips or chip multiprocessors(CMPs) [4, 5].

NoCs significantly affect performance, latency and area of the chip. Reducing NoC latency is

crucial for SoC performance since it is introduced to every communication pair within the SoC.

Latency may become vital in the case of SoCs with critical timing demands (real-time SoCs).

1

2 CHAPTER 1. INTRODUCTION

140ps 140ps 140ps

2.1mm

150ps

2.1mm

150ps

(a) Long wire with inverter cells.

2.1mm

150ps

2.1mm
150ps

Memory
Block

Memory
Block

CPU

2.1mm

150ps

2.1mm

150ps

2.1mm

150ps

2.1mm
150ps

2.1mm
150ps

(b) Primitive multiplexer cell network infrastructure.

Figure 1.1: Substituting inverter cells to create a network.

It may also play an especially important role in the case of processor units communicating with

other processor units, local memory, shared memory or cacheblocks.

In this master’s thesis we propose a NoC with latency close tothe ideal,i.e. that of long

buffered wires which are the simplest and fastest interconnection method. Our approach is fun-

damentally based on the simple observation that buffer or inverter cells in those long wires can

be replaced with tri-state drivers or multiplexer cells to provide a basic network infrastructure,

as shown in Figure 1.1. We would like to design a network that replaces long wire inverter cells

and achieves latency close to that of those inverter cells insome optimistic scenarios (i.e. when

speculation succeeds). Indeed, we are able to achieve latency of approximately 400 ps per hop

in those good scenarios and a single clock cycle -similar to that of other approaches as explained

in section 1.1- otherwise.

To be able to achieve the above, we extend speculation to routing decisions. We predict each

flit’s output and forward it via only a single pre-enabled tri-state driver. Pre-enabling is an im-

portant factor of our achieved performance, since switch outputs have a substantial fanout of 11

in our implementation, and also because examining a flit by routing logic is time consuming.

Preliminary simulation results to research the validity ofthis approach were conducted in our

130 nm implementation library under worst case conditions.They showed that a pre-configured

multiplexer cell as shown in Figure 1.2(a), imposed a 350 ps delay. Inverter cells were placed

approximately every 2.1 mm, wires between them imposed up to150 ps latency and the cells

themselves imposed an 140 ps latency. Finally, a multiplexer cell which computes it’s control

3

Routing
Comb.
Logic

350ps

D Q

32

32

32

(a) Pre-configured multiplexer cell.

Routing
Comb.
Logic

900ps

5

5

32

32

3232

32

(b) Multiplexer cell with no control input register.

Figure 1.2: Preliminary simulation circuits.

input according to it’s current inputs with a very simple combinational logic, as shown in Fig-

ure 1.2(b), imposes a delay of 900 ps. We therefore confirm that pre-enabling control signals is

crucial to approach the latency of an inverter cell.

To apply this concept in a fully-featured NoC, we resurrect the “mad-postman” [1, 6] tech-

nique proposed two decades ago for inter-chip communication networks. Mad-postman networks

were the first to introduce the concept of eager (i.e. speculative) flit forwarding. We extend this

technique to define run-time reconfigurable preferred pathsin our network. They are formed

by pre-driving tri-state select signals within a switch to form a connection between input/output

pairs. Therefore, flits will be eagerly forwarded to their input’s preferred outputs. Preferred path

delay per hop is solely that of a pre-enabled tri-state driver. Pre-enabling is even more beneficial

in a fully-featured NoC because these control signals fan out to many bits, thus driving them

incurs considerable delay. We examine our proposal in a chipconsisting of many processor units

and RAM blocks. However, our ideas are general and can be easily adapted to other NoC styles.

Packets in our NoC may consist of a single or multiple flits [7]. Flits that are eagerly

forwarded to a wrong switch output are terminated later in the network as “dead”. They are

forwarded by the switch they were misrouted at to their correct switch output through a non-

preferred path at a lower priority than flits which originatefrom the input having that output as

4 CHAPTER 1. INTRODUCTION

preferred (if any), and suffer a latency of one clock cycle when there is no contention.

In order to provide preferred paths with flexibility and to beable to distinguish incorrect

eager forwarding, we utilize a modified version of XY routingwhich remains deadlock-free.

According to it, a flit is considered to have been correctly eagerly forwarded if it moves closer to

its destination in any of the two axes. A flit is considered dead if the distance between it and the

destination increased in any of the two axes with its last hop. This way, we can easily distinguish

an incorrect eager flit forwarding as well as a dead flit in the network. We also propose a routing

logic design which can dynamically switch to adaptive routing. Thus, our NoC is able to be

assisted from adaptive routing’s benefits when they are required.

Network reconfiguration is possible at any time by any processing element (PE) or other user

block in the network. It serves the purpose of enabling PEs todynamically setup low-latency

paths to cover run-time demands. As the example illustratedin Figure 1.3 shows, processors

may dynamically allocate RAM blocks to their low-latency regions to cover program needs. Re-

configuration is accomplished by sending specially formatted single-flit packets to the switching

nodes that need to be reconfigured. Reconfiguration can be requested at any time, but is care-

fully applied to the switching node to prevent out-of-orderdelivery of flits belonging to the same

packet. Dealing with out-of-order flit delivery complicates NoC - PE interface logic and is rarely

allowed in NoCs.

Figure 1.3: Example of a reconfiguration to an uneven distribution of RAM blocks to processors’

low-latency regions, to cover run-time demands.

5

To fully exploit the mad-postman technique and ensure its proper operation, we take a slightly

different approach for switching node architecture than most past research. Our switch resembles

a buffered crossbar [8], having one FIFO at each crosspoint and schedulers at each output. The

scheduler monitors the FIFOs and the preferred path, and determines which FIFO it can serve

next, if any. At each input a combinational routing logic determines if the incoming flit needs to

be forwarded to a non-preferred output. If so, it enqueues the flit in the appropriate crosspoint

FIFO.

We evaluate our proposed approach on a 2D mesh topology [9] tailored for our target appli-

cation,i.e. processors communicating with RAM blocks. We attempt to minimize the number

of switching nodes by placing one switch per 4 RAM blocks. Thisprovides significant savings

in area, power, and latency by reducing the number of hops between two endpoints. The RAM

blocks are placed without any free space between them, essentially forming a bigger block. We

also investigate floorplan options for our switching nodes by evaluating two different shapes

(rectangular and cross-shaped), and outline some modifications to our switch to further reduce

occupied area. Topology and floorplan choices, however, do not affect our low-latency contribu-

tion and are made according to application and optimizationneeds.

Simulation results show that, in a 130 nm technology, our design functions at 667 MHz

under typical case conditions. It offers preferred path latency of approximately 360 ps per hop

that increases to approximately 500 ps per hop when taking into account an 1 mm long wire at

each output. This is compared to up to 135 ps latency for straight wires of a similar length that

offer no configuration or routing capability. Non preferredpath latency is one clock cycle when

there is no contention. Our base switching node design, for 39-bit wide datapaths, occupies an

area of 637µm× 310µm in a rectangular floorplan. We believe that our proposed NoCconcept

is the means to approach the ideal latency as closely as possible. It may also be combined with

orthogonal past NoC research to further improve performance as well as other aspects.

The rest of this master’s thesis is organized as follows: Section 1.1 provides a summary of

past NoC research. Chapter 2 explains the mechanism for pre-configured low latency paths and

our network’s routing logic. Chapter 3 presents our proposedswitch architecture and describes

our NoC’s topology. Chapter 4 presents our placement and routing results. Finally, chapter 5

6 CHAPTER 1. INTRODUCTION

provides our conclusions and identifies room for future work.

1.1 Related Work

Most of past research assumes switch-based, packet-switched architectures. Regular topologies

such as 2D meshes [9] are utilized and are becoming standard practice in general-purpose NoCs.

They provide the basis for NoC development for the vast majority of applications and environ-

ments. Run-time reconfigurable interconnects have been developed to meet specific application

demands or provide an optimized network for specific application environments. FLUX net-

work [10] and CoNoChi [11] assume an FPGA infrastructure, while DYNOC [12] is designed

for ASIC flow. Additional topologies [13, 14, 15] have been proposed to reduce hop count and

therefore network latency. They implement extra links between nodes for this purpose, resulting

in various network topologies such as torus or even 3D mesh. Research in this area can be applied

to our proposed NoC according to the desired aspect for optimization or application domain.

Research has also examined performance-enhancement techniques [16, 17, 18]. These ap-

proaches are based on pre-computing routing, virtual channel (VC) allocation, and arbitration

decisions, as well as speculative pipelines to minimize deterministic routing latency. Implemen-

tations of these approaches with VCs and various datapath widths are able to function with a

clock frequency of around 500 MHz in technologies ranging from 0.07 um to 0.13 um. While

these approaches can yield per hop latency of one clock cycle, this latency is not guaranteed.

These designs suffer high penalties from contention and blocking delays, that significantly in-

crease latency. Moreover, one clock cycle per hop is their minimum possible latency, while our

proposed NoC provides constant minimum per-hop latency, independent of the clock period.

Latest research in this area achieves the same network performance with half the required buffer

size or a 25% performance increase and lesser performance degradation as traffic increases with

the same buffer size, by dynamically allocating VC buffers to input/output ports [19]. Minimum

latency remains, however, 1 clock cycle per node. Asynchronous approaches achieve 2 ns per

hop [20] for highest-priority flits.

Power-efficient and thermal-aware systems [21, 22], fault-tolerant mechanisms [23, 24], and

area-constrained designs [25, 26] have also been examined.They can be applied to our NoC de-

1.1. RELATED WORK 7

pending on each application’s needs. Some of these conceptsmay introduce significant changes

to our NoC design or switching node architecture. However, such changes will not affect our

low-latency contribution.

Another important issue in NoCs is routing for which many algorithms [27] have been pro-

posed. Many recent NoCs utilize adaptive routing algorithms[28, 29, 30, 31] to route around

congested or other problematic areas according to some criteria. As explained in section 2.3, our

NoC utilizes deterministic routing algorithm under normaloperation conditions but can switch

to adaptive routing when it’s benefits are required. Flexibility in preferred paths is provided at

all times.

8 CHAPTER 1. INTRODUCTION

2
Preferred Paths & Routing

In this chapter we present our design for low-latency preferred paths and our network’s routing

logic. In section 2.1 we begin by explaining mad-postman [1,6] and it’s operation as originally

designed. We move on to present preferred paths in our network in section 2.2. In section 2.3

we present our packet’s format and our network’s routing logic. We then move on to discuss

our NoC’s deadlock-freedom in section 2.4. After that we present our run-time reconfiguration

mechanism in section 2.5. Finally, in section 2.6 we outlineour backpressure mechanism.

2.1 Mad-Postman

Mad-postman [1, 6] was introduced in inter-chip packet-switched communication networks. It

offered minimal per-hop latency by eagerly forwarding an incoming flit to the same direction in

the same axis that it entered the switch from. For instance, if a flit was moving along the X axis

9

10 CHAPTER 2. PREFERRED PATHS & ROUTING

from right to left, it would enter the switch from the rightmost input and be eagerly forwarded

to the leftmost output. There was no logic or delay during this forwarding more than that of

simple multiplexor or tri-state cell. Incoming flits were also stored in the switch for checking

that they were correctly eagerly forwarded. The network strictly followed XY routing algorithm.

According to it, a flit must complete its traversal in the X axis before switching to the Y. A flit

was regarded as correctly eagerly forwarded if it followed XY routing. Incorrectly forwarded

flits remained in storage in the switch and were later sent to the appropriate output. We find that

this concept can be applied to NoCs.

S A

D

B
1 2

3

4

Dead

Figure 2.1: Original mad-postman network routing.

The original mad-postman strictly followed XY routing. Therefore, a flit would suffer a

routing logic and buffering penalty once at its final hop (in order to be ejected to the local PE

output), and possibly once more when it changed axes when traversing the network. Consider

the example of Figure 2.1. Source S transmits a packet to destination D. The packet follows XY

routing, illustrated with solid lines. The packet is correctly eagerly forwarded in all hops of this

path, apart from switches A and D. The packet must change axesin switch A, while in switch D

the packet must be forwarded to the switch’s local PE output.At those points the packet suffers

a routing logic and buffering penalty since it must be storedin the switch, wait for it’s proper

output be determined and content for that output. However, since eager forwards are completed

before the switch knows the packet’s proper output, switches A and D will incorrectly eagerly

2.2. PREFERRED PATHS 11

forward the flit. This dead flit will continue to traverse the network through incorrect eager

forwards (illustrated with dashed lines) until it reaches aswitch (in our example switch B) which

cannot eagerly forward the flit in the same manner since it is located at a network’s edge.

We would like our NoC to be able to provide complete paths withthe minimum per-hop

latency. Moreover, we would like to provide the flexibility to change those paths at run-time to

meet various application demands, such as a processor in a CMPallocating more RAM blocks

to it’s low-latency region, as illustrated in Figure 1.3. Tomeet these goals we introduce preferred

paths.

2.2 Preferred Paths

In our switches each input is directly connected to a tri-state buffer at each other port’s output.

We do not connect an output to its own port’s input, as we consider that flits will not desire to

leave the switch from where they entered it. Each output has at most one preferred input. That

input’s tri-state driver is pre-enabled. Therefore, an incoming flit to that input would be eagerly

forwarded to each output having this input as preferred. This is achieved solely with the delay

of a pre-enabled tri-state driver. Thus, preferred paths are formed. Note that an input may have

multiple preferred outputs. Therefore, preferred paths can split and simulate a broadcast network

if so desired at run-time. However, preferred paths may not converge as only one tri-state may

safely drive a wire at any time.

Each input also features a combinational routing logic which examines each incoming flit and

determines whether it must be forwarded to an output other than the preferred. If so, it enqueues it

in the appropriate crosspoint FIFO to be later forwarded by that output’s arbitration logic. Switch

architecture is discussed in section 3.1. If fair arbitration is desired without demands for very

low latency at some part of the network, that part can be reconfigured to remove any preferred

outputs from switch inputs. A flit needs to be forwarded to an output if the eager forwarding was

incorrect. Later hops regard that flit as dead.

Dead flits are not forwarded to any output by routing logic. They propagate through the net-

work in preferred paths until they reach an input with no preferred outputs. Then, they are either

terminated or forwarded to an output by routing logic and possibly enter a circle, as discussed

12 CHAPTER 2. PREFERRED PATHS & ROUTING

in section 2.4. Dead flits occupy preferred paths and therefore may be a nuisance. However,

mad-postman networks indicate that this effect does not reduce the performance of the network

beyond that of virtual cut-through or wormhole networks [1]. Since flits in mad-postman net-

works are misrouted almost twice by average, we therefore expect the dead flit effect in our

network to be similar if flits have the same mis-routing rate.Moreover, in our network we have

the flexibility to configure preferred paths such as dead flitswill occupy parts of the network that

we know do not carry any, or at least any critical, traffic. This may make dead flits have a mini-

mal effect. However, dead flits still consume power with every hop. As of the time of writing of

this master’s thesis, a cycle-accurate network simulator is still under development and therefore

exact experimental confirmation of this issue is left as future work.

2.3 Routing

2.3.1 Packet Format

Packets may consist of a single or multiple flits, in the manner described in [7]. Single-flit

packets are used for reconfiguration and read requests. Multi-flit packets are used for transferring

multiple words of data to write to a RAM, or from a RAM as a reply toa read request. Flits

feature 6 packet ID and 1 flit type control bits marking the initial flit of a packet as request

(single-flit packet) or address, and thereafter data flits with the same packet ID as body or tail.

The 32 payload bits contain data in the case of data flits and destination address, byte enables

and packet type in the case of address or request flits. This translates into an 18% overhead since

each flit has 7 control and 32 payload bits. Data bits may be increased if less overhead is desired

with an increased switch area and power demand. This will also reduce multi-flit packet latency

since fewer flits will be needed, at the cost of higher fanout of the MUX control signals. In our

implementation, 32 payload bits were chosen to match RAM block data width.

Each switch is identified by unique X,Y coordinates. The flit’s final destination is determined

by two extra bits specifying the user block (PE) among the 4 the switch is connected to. Flit

format is illustrated in Figure 2.2.

The initial flit of a packet is an address or request flit. Data flits in the same packet have

2.3. ROUTING 13

(a) Address flit.

(b) Data flit.

Figure 2.2: Flit format. 39 Bits total - 7 control, 32 payload

the same ID and will be treated by each switch as the corresponding address flit was. Since

flits are eagerly forwarded without being able to process their headers, all flits in a packet will

be incorrectly eagerly forwarded in the same way throughoutthe network. The same applies to

the duplicate flit complication, explained in subsection 2.3.3. Attempting to do otherwise would

require combinational logic in preferred path hops and thuswould dramatically increase per-hop

latency.

2.3.2 Routing Logic

Based on our need to accurately classify flits as dead, we choose to implement a deterministic

routing algorithm for normal network operation. Non-deterministic (adaptive) routing algorithms

introduce uncertainty in dead flit classification. This uncertainty is due to the fact that conditions,

and therefore adaptive routing decisions, are subject to change at any time. Therefore, the switch

currently examining a flit is unsure if the flit’s previous hopregarded this switch as the best next

hop at the time, or if the flit was incorrectly eagerly forwarded. Since making switches aware

of neighbouring network configuration is too costly, we adopt a deterministic routing algorithm.

However, in subsection 2.3.4 we propose a design extension that switches to adaptive routing

algorithm when its benefits are needed.

As a result we chose a slightly modified version of XY routing.XY routing instructs a

flit to first complete its movement in the X axis, and then switch to the Y axis to reach its

destination. Our NoC follows this routing algorithm, but ismore flexible in allowing eager

forwards that do not adhere to strict XY routing. Specifically, a flit is considered to have been

14 CHAPTER 2. PREFERRED PATHS & ROUTING

correctly eagerly forwarded, and therefore is not forwarded to another output by the switch,

simply if it is approaching its destination in any of the two axes. This may result in a flit reaching

its destination via a route that does not comply with strict XY routing.

In the example Figure 2.3 illustrates, the flit arrives from source S to destination D solely

through preferred paths (solid lines). Switch A sees that the flit approached destination D in the

Y axis, and therefore regards this eager forwarding as correct. XY routing would have the flit

pass through non-preferred paths (dashed lines) and switchdimensions at node B, after having

fully completed its traversal in the X axis. Because we would like to provide preferred paths with

full flexibility, and also because disallowing these paths by forwarding flits again in non-preferred

paths introduces an unnecessary overhead, we chose to modify our XY routing algorithm accord-

ingly. Similarly, a flit is considered dead simply if it movesaway from its destination in any of

the two axes

S A B

D

b

c
1

a

3

2

Figure 2.3: Correct eager forwarding scenario that does not comply with strict XY routing.

2.3.3 Duplicate Flits

Due to the above mechanisms, our NoC faces the complication of multiple copies of the same flit

reaching their destination via different routes. An example of such an occurrence is illustrated in

Figure 2.4. In that example, the flit leaving source S will be eagerly forwarded via the preferred

path (solid lines) until it reaches destination D. However,switch A will regard this eager forward-

ing as mistaken since it has no preferred path knowledge for its neighbours and the flit’s distance

from destination D increases in the Y axis. Supplying neighbouring preferred path knowledge to

switches would lessen this problem, but is too costly. Therefore, it will forward another copy of

2.3. ROUTING 15

the flit to destination D via non-preferred paths (dashed lines). Duplicate flits must be handled at

the network interface logic. Network interface issues are addressed in subsection 3.2.1.

S

A D

1

2

 3 4

 5

b c

Figure 2.4: Duplicate flit scenario.

2.3.4 Adaptive Routing Extension

Adaptive routing is the ability to dynamically decide the best switch output for flits according to

some criteria [27]. For instance, a switch might desire to avoid congested areas in the network

and therefore route flits around those areas until congestion is resolved. Similarly, a switch might

want to avoid heated areas in thermal-aware applications [21, 22].

Implementation of an adaptive routing algorithm in our NoC introduces uncertainty in dead

flit classification. Since adaptive routing decisions depend on conditions (i.e. factors external

from the switch), they are subject to change at any time. Therefore, a switch examining a flit to

determine if it’s dead is unsure whether that flit’s previoushop regarded this switch as the best

choice at the time, or if the flit was incorrectly eagerly forwarded. Neighbouring preferred path

knowledge would enable a switch to distinguish between those two cases, but is not implemented

due to the high cost it would impose.

On the other hand, adaptive routing has benefits to offer. Notonly can it route flits around

congestion points thus allowing them to resolve quicker andavoid flit delays, but it can also as-

sist with any design priority such as the whole chip maintaining low temperature. Moreover, it

16 CHAPTER 2. PREFERRED PATHS & ROUTING

can route around faulty NoC areas which become unusable due to some silicon defect - a factor

which is becoming more important as technologies become narrower. For this reason we propose

an extension in this section that allows parts of our NoC thatrequire assistance from adaptive

routing to operate under it. This operation mode change could either trigger from heavy con-

gestion nearby a switch, silicon fault or any other prioritythe target application domain dictates.

Implementation details of adaptive routing (routing factors, conditions it takes into account and

priorities, decision thresholds) depend on application demands. This operation mode lasts only

for as long as required according to some threshold set at design time. Our NoC operates under

normal conditions with the deterministic modified XY routing algorithm explained in subsec-

tion 2.3.2.

The decision to change to adaptive routing operation mode ismade by each output individ-

ually since we would like to be able to apply adaptive routingexactly where needed, and also

because each output features independent logic as explained in section 3.1. When this decision is

made, combinational routing logic blocks located in inputsare alerted. After that time and until

that output alerts the routing logic blocks that it has left adaptive routing operation mode, if an

input would forward the initial flit of a packet to that outputaccording to the modified XY rout-

ing described in subsection 2.3.2, the flit is examined by adaptive routing. It is then forwarded to

a switch output according to adaptive routing instead.

As outlined in subsection 2.3.1, a packet is formed by possibly many flits. The initial flit of

a packet contains the destination address. Routing logic calculates the switch output this packet

should be forwarded to and stores that output and the packet’s ID in an array. Since subsequent

data flits do not contain the destination address, they can only be forwarded according to that

array entry. That array entry is removed when the tail flit is encountered.

While this prevents out-of-order delivery of flits belongingto the same packet from occurring

due to operation mode changes, it introduces the complication that if an output’s operation mode

changes, later flits of a packet, including flits in the output’s FIFOs at the time the operation

mode changes, will have to be forwarded according to previous-mode routing decisions. In

case of adaptive routing operation mode being triggered dueto congestion or thermal awareness,

forwarding a few more flits to those areas is not an issue and can be compensated by lowering

2.3. ROUTING 17

the decision threshold to change to adaptive routing. In case of an area of the NoC turning

faulty, the first flits of the packet which have already been forwarded there would have already

been lost if the error affected the packet’s path. Therefore, forwarding and possibly loosing

the subsequent flits makes no difference. There are cases where the first flits of a packet were

forwarded safely before the fault which will affect subsequent flits occurs. However, the rarity of

silicon defects combined with the low chance of these cases occurring does not justify modifying

our implementation to cover these scenarios.

When a switch output decides to change to adaptive routing it disables (breaks) it’s current

preferred path by disabling the appropriate tri-state driver. Leaving any preferred paths enabled

would mean that a substantial number of traffic may pass through to NoC areas we would like

to protect through adaptive routing. Flits travelling in that preferred path will be handled as flits

in all other paths. Later flits of a packet that had its first flits forwarded by a preferred path will

have its later flits forwarded according to that preferred path as well, for the reasons explained in

the previous paragraph and to prevent out-of-order delivery. Out-of-order delivery is discussed

in section 2.5.

In case of congestion, preferred path performance may already be lost as described in sec-

tion 2.4. Therefore, breaking preferred paths while operating in adaptive routing mode due to

congestion does not introduce any performance degradationfor flits travelling in preferred paths

that would not already occur. In case of other factors, such as faulty areas, we might not want to

forward flits there under any circumstances. In any case, if an application does not mind leaving

preferred paths intact for some conditions (e.g.temperature), such an implementation is feasible.

Finally, since adaptive routing may forward flits to outputsthat would make next hops con-

sider them as dead, we need to label them accordingly. Therefore, if a a flit would be forwarded

to an output due to adaptive routing, a bit in the packet type field, as illustrated in Figure 2.2(a),

is asserted. Switches examining a flit with this bit assertednever regard it as dead. They also

clear it before forwarding it to the next hop. If a flit labelled this way enters a preferred path, this

bit will only be cleared when the preferred path ends and in any other intermediate switches that

decide to forward it again in between. This may result in duplicate flits reaching their destination,

but this issue is already accounted for and handled as explained in subsection 2.3.3.

18 CHAPTER 2. PREFERRED PATHS & ROUTING

Design and implementation of the exact adaptive routing algorithm depends on application

needs and priorities. The techniques presented in the subsection provide the mechanisms to allow

operation of parts of the NoC under adaptive routing.

2.4 Deadlock-Freedom

XY routing is deadlock-free [32]. Therefore, network deadlock hazards in our NoC are intro-

duced by adaptive routing and preferred paths since they do not necessarily follow XY routing

and flits propagate in them without any control. End-to-end deadlocks are discussed in subsec-

tion 3.2.1. To guarantee that a flit will never wait indefinitely to be served, a switch needs to be

able to serve FIFOs, and therefore resolve contention, if the preferred path has been continuously

active for an unreasonably long period of time with a FIFO non-empty. The adaptive routing ex-

tension presented in subsection 2.3.4 also provides the option of utilizing adaptive routing in this

or nearby switches. FIFOs are then served until all are empty. During this time, flits arriving in

the broken preferred path will be enqueued in the appropriate FIFO behind previous flits follow-

ing the same path. However, we need to investigate the possibility of a flit traversing the network

indefinitely. We combat this issue in two ways.

First, we provide constraints which, if followed, guarantee that no flit will indefinitely travel

through the network under normal conditions (without adaptive routing). If all preferred paths

in the NoC are straight lines, flit propagation follows strict XY routing. Therefore, every turn

is handled by routing logic and flits cannot enter a circle. This is the case with original mad-

postman networks [1, 6].

Flits cannot enter a circle also in the case of preferred paths having exactly one turn. In this

case, circles are formed by four different preferred paths as illustrated in Figure 2.5. Therefore,

a flit would be examined by routing logic four times before completing a single loop. At these

times, the flit will either be considered dead and therefore be terminated, or it will be propagated

according to XY routing. In the second case, in two out of the four checkpoints the flit will be

forwarded according to the circle. However, in at least one of the other two it will be forwarded

in the other axis and leave the circle.

Preferred paths with two turns may form a circle if the two routing logic checkpoints forward

2.4. DEADLOCK-FREEDOM 19

A

D B

C

Figure 2.5: Circle formed by four preferred paths with exatlyone turn.

the flit according to the circle. Therefore, if preferred paths in our network contain up to one

turn, no flits will indefinitely propagate in circle. This restriction does not take into account turns

with switch data ports as they cannot be part of a circle.

Adaptive routing may construct scenarios that have a flit propagating in circles, depending on

the implemented algorithm. For instance, even under the restriction that preferred paths cannot

feature more than one turn, adaptive routing may forward theflit according to the circle in all

four points of the circle that the flit is examined by routing logic and would otherwise leave the

circle by XY routing. Also, some adaptive routing algorithms face deadlock issues regardless of

preferred paths. Thus, the guarantee, as well as the extra required restrictions if any, that such a

problem will not occur depends on the implemented adaptive routing algorithm.

Second, we investigate the consequences of a formed circle.As already described in subsec-

tion 2.3.2, each switch in the circle will examine if the preferred path forwarding was correct and

forward a copy as necessary. This guarantees that a copy of the flit in the circle will be delivered

to its destination. The flit will continue to propagate inside the circle. Other flits contenting for

occupied resources will be forced to wait. If the flit in the circle propagates such as the preferred

path is not idle at any clock cycle, contenting flits will facean increased queueing delay. How-

ever, as already described in the beginning of this subsection, contenting flits will eventually be

served. This poses a performance issue, but no deadlock willoccur. When FIFOs are served, the

20 CHAPTER 2. PREFERRED PATHS & ROUTING

flit in the circle will be examined by routing logic and therefore may be terminated as dead.

2.5 Preferred Path Reconfiguration

Reconfiguration of our network’s preferred paths consists ofchanging outputs’ preferred inputs

in the appropriate switches. Any PE or other user logic blockcan request reconfiguration by

sending properly formatted single-flit configuration packets. These packets contain the desti-

nation node, the output to be reconfigured and the new preferred input. Configuration flits are

enqueued in the appropriate crosspoint FIFO of their destination even if they follow a preferred

path. When a configuration flit is selected by the output’s arbiter, it is stored in the output’s con-

figuration register which stores the active configuration, instead of being forwarded to the next

hop.

If we were to immediately alter the tri-state enable signals, we would risk out-of-order deliv-

ery of flits belonging to the same packet. Consider the exampleof Figure 2.6. Switch S transmits

a packet to destination D. The initial flit (flit I) is constantly in non-preferred paths (dashed lines)

and therefore is forwarded at every hop by XY routing logic. If a user block in the network was

to reconfigure switch A to select input 1 as preferred for output port 2, later flits (flit II) would

now reach destination node D via a preferred path (solid lines). Therefore, if flit I is in transit and

switch A is reconfigured before the last flits of that packet reach it, those last flits could reach

destination D before the first flits.

Because out-of-order delivery of flits belonging to the same packet can be a nuisance for

destinations and also because address flits must always precede the corresponding data flits, it

must be prevented by our NoC. This can be accomplished by delaying the application of the new

configuration for each output until it is safe. Specifically,once a new configuration is received

at an output, it is only applied when the old preferred path has been idle for 1 clock cycle,

the new preferred path’s FIFO is empty and no more flits from a packet are expected in those

paths. As explained in subsection 2.3.1, flits forming a packet are labelled. Therefore, after

receiving the packet’s address flit and until receiving the tail flit, the arbitration logic knows

that more flits are expected in this specific path and therefore delays the application of the new

configuration. Blocks requesting reconfiguration are unsureexactly when it is applied, unless

2.5. PREFERRED PATH RECONFIGURATION 21

S A

D

1
2�I�II

Figure 2.6: Out-of-order delivery scenario.

application demands dictate the implementation of a reconfiguration acknowledgment or polling

mechanism. Due to this technique, no preferred path will change at each used switch from

the time it receives the first flit of a packet until it forwardsthe last. This ensures that all flits

of the same packet follow the same path and that a switch will not wait indefinitely for tail

flits. Thus, all flits belonging to the same packet will be delivered in-order. As explained in

subsection 2.3.4, adaptive routing does not challenge thisguarantee since all flits of a packet are

forwarded according to the decision made for the address flit, under the active routing algorithm

at the time.

Different packets from the same source to the same destination may be delivered out-of-

order. Since switches have no information regarding more expected packets in the same path,

they may apply their new configuration if the preferred path becomes idle for one clock cycle.

Even if the source transmits back-to-back, the preferred path may become idle for one clock

cycle due to broken preferred paths to avoid starvation effects caused by contention, as explained

in section 2.4. Therefore, this issue must be handled by the network interface logic as explained

in subsection 3.2.1. Alternatively, the application may restrict network reconfiguration to be

performed and applied only when the whole NoC or the part of the NoC to be reconfigured is

idle. Implementation of this restriction may require software synchronization primitives.

Arbitration logic serves flits stored in FIFOs until all are empty, as described in section 3.1.

22 CHAPTER 2. PREFERRED PATHS & ROUTING

If any flits arrive through the preferred path during this time they are enqueued in their preferred

output’s FIFO. Arbitration logic can then serve them in priority according to the implemented

algorithm. This imposes a single clock cycle delay regardless of contention from other inputs,

in this infrequent scenario. However, attempting to re-enable the preferred path in the same

clock cycle that flits arrive in would introduce combinational logic, extra preferred path latency

and timing hazards. These flits will still be forwarded from FIFOs according to the preferred

path. This serves the purpose of avoiding out-of-order delivery scenarios and taking advantage

of preset multi-hop preferred paths.

2.6 Backpressure

Our NoC needs to provide a mechanism for not dropping flits dueto full FIFOs. This mechanism

must inform each output in a switch whether it can safely transmit a flit to the next hop. Likewise,

the previous switch would also be informed if it can safely transmit to the current. Therefore,

long packets reaching a congestion point will be stored in many, possibly consecutive, switches.

Flits of the same packet may not be stored in consecutive switches in case of other flits stored in

the FIFOs in an interleaved manner. Since flits of the same packet are guaranteed to follow the

same path and arrive in-order, no recombination care must betaken.

Depending on area constraints and traffic patterns, we can adopt two different approaches.

According to the first, if any of the next hop’s FIFOs that havethe output port in question as their

input is almost full (to cover for backpressure signal propagation delay), the output’s arbiter is

alerted to not transmit any more flits until the signal is de-asserted and is therefore safe again.

This approach requires only one wire from each output’s nexthop and the simplest logic.

According to the second approach, one wire from each of the next hop’s FIFOs that have the

output in question as their input alerts the switch exactly which crosspoint FIFO is almost full.

This way, the arbiter needs to process packet IDs of flits in FIFO heads to determine if it can

safely transmit any of them. With this approach, FIFOs that are not full are able to receive flits,

and thus communication and FIFO utilization is more efficient. However, 6 wires are required at

each output and also the arbiter must be able to process flit packet IDs in each FIFO head.

Extra care must be taken for flits forwarded in preferred paths. In our NoC we cannot know

2.6. BACKPRESSURE 23

the final destination of flits travelling in preferred paths before they have been eagerly forwarded,

nor can we control their transmission. Therefore, if a backpressure signal to an output port is

asserted, the preferred path leading to this output is broken. Thus, all subsequent flits in that path

are enqueued in the appropriate crosspoint FIFO and later forwarded according to the preferred

path. Alternatively, the preferred path could remain intact, but flits in that path are still enqueued

as above. Therefore, as long as a flit travels in a preferred path, it is not affected by contention or

congestion. However, since preferred path flits take precedence over flits in FIFOs, congestion is

slower to resolve.

24 CHAPTER 2. PREFERRED PATHS & ROUTING

3
Switch Architecture & Topology

This chapter is divided into two sections. The first, section3.1, explains our switching node’s

internal architecture and discusses virtual channels in our NoC. The second, section 3.2, presents

our network’s topology and outlines the role PE network interface logic plays.

3.1 Switch Architecture

Switch input port components and connections are shown in Figure 3.1(b). Output port compo-

nents are shown in Figure 3.1(a). Data wires are illustratedas solid lines and control wires as

dashed lines. Our switch is a composition of the above figures, featuring 6 input/output ports.

Each input is connected to each other port’s output. We do notconnect an output to it’s own

port’s input as we consider that flits will not desire to leavethe switch from where they entered.

Our switch resembles a buffered crossbar [8] in that it features one FIFO at each crosspoint and

25

26 CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

Output

Input1

Input2

Input3
Input4

Input5

Config &
Arbitration

Preferred
Path
Tri-states

Input1

Input2

Input3

Input4

Input5

(a) Output port components.

Output Port
Components

Output Port
Components

Input

Output Port
Components

Output Port
Components

Output Port
Components

Other port outputs

Routing Logic

(b) Input port components.

Figure 3.1: Switch architecture.

independent configuration and arbitration logic at each output. Preferred paths resemble cut-

through paths in buffered crossbars. A combinational routing logic block at each input decides

at which FIFO, if any, should the incoming flit be enqueued.

This choice of switch architecture takes into account mad-postman’s operation, since incom-

ing flits are examined by the routing combinational logic before being able to be enqueued into

FIFOs. Therefore, dead flits do not occupy FIFO lines. Moreover, since our current NoC does

not include virtual channels, as addressed in subsection 3.1.2, crosspoint queueing removes the

nuisance of head-of-line-blocking. Finally, the use of onearbitration and configuration logic

block per output results in simpler logic and therefore shorter critical paths.

An alternative switch architecture examined featured FIFOs at input ports (input queueing).

However, with this choice dead flits would occupy precious FIFO space and also have a greater

impact on non-preferred flits since the latter would have to wait for any dead flits to be served

from the FIFOs at a rate of 1 clock cycle per node, at best. Moreover, enqueueing and serving

dead flits from the FIFOs is more wasteful as far as power is concerned. To avoid these and the

head-of-line blocking problems, VCs would need to be included in this implementation. How-

3.1. SWITCH ARCHITECTURE 27

Output1 Output2

Output3 Output4

RC

RC

Input1

Input2

Input3

Input4

RC

RC

Figure 3.2: A macroscopic illustration of a 4x4 switch inputqueueing approach, without pre-

ferred paths and VCs.

ever, as explained in subsection 3.1.2, VCs are otherwise notneeded since we already perform

classification of our flits. Therefore, our switch architecture does not follow input queueing.

A macroscopic illustration of the input queueing approach in a 4x4 switch, without showing

preferred paths and without VCs, is provided in Figure 3.2.

Output configuration logic is responsible for storing and updating preferred path configura-

tion. Arbitration logic is responsible for serving the FIFOs. Non-empty FIFOs as well as FIFOs

to which a flit is being enqueued in the current clock cycle areselectable. Arbitration logic selects

a selectable FIFO to serve during the next clock cycle if the preferred path is idle during the cur-

rent clock cycle. This serves the purpose of prioritizing preferred path flits without unreasonably

preventing FIFOs from being served. It stops serving them when they are all empty. Arbitration

takes place during the preferred path idle cycle for the nextcycle. Therefore, our NoC achieves

one clock cycle per-hop latency for non-preferred paths when there is no contention. Arbitration

algorithm details may depend on exact NoC demands.

Each output is driven by tri-states directly connected via dedicated wires to each other port’s

input. Each output is also driven by a tri-state which connects the output wire with a multiplexer

which forwards the FIFO flit being served by arbitration logic, if any. These tri-states need to

28 CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

Figure 3.3: 5-1 multiplexer with 3-1 cells.

drive one FIFO and one tri-state at each of the next hop’s outputs other than the port that the

current switch is connected to. They also need to drive the combinational routing logic located

in the input. Therefore they have a fanout of 11.

Tri-state enable signals are driven by the output’s configuration and arbitration logic. Pre-

ferred paths are thus formed by pre-enabling tri-states, therefore connecting an input with any

number of preferred outputs. Tri-states were selected instead of multiplexers because our im-

plementation library does not include a single 5-to-1 multiplexer (AND-OR or other equivalent)

cell. Therefore, we would have to construct such a multiplexer cell with multiple library cells,

imposing a greater latency than a single tri-state driver. We could implement this 5-1 multiplexer

to have some inputs pass through a single multiplexer cell and others through multiple cells, but

we do not want to prioritize paths at design-time, only at run-time according to the application’s

preference. An example of such an implementation is illustrated in Figure 3.3.

Depending on preferred path flexibility and area needs, an extra optimization may be neces-

sary to further reduce switch area. Instead of directly connecting each input to each other output,

a preferred path bus could be deployed, as in Figure 3.4. Thisvastly limits the number of pre-

ferred input-output pairs that can be configured to only one input with any number of outputs.

However, intermediate designs can also be implemented. Forinstance, one such preferred bus in

the X axis and one in the Y could be deployed, perhaps even connected to each other with tri-

states. Therefore, depending on exact preferred path communication needs, NoC area overhead

can be reduced.

3.1. SWITCH ARCHITECTURE 29

Port 1 Port 2 Port 3

Port 4 Port 5 Port 6

Figure 3.4: Preferred path bus.

3.1.1 Routing Logic Implementation

This subsection examines the input port’s combinational routing logic without the adaptive rout-

ing extension presented in subsection 2.3.4. The routing logic’s purpose is to determine which

output does each incoming flit need to be forwarded to. Incoming flits are examined by this

logic as soon as they arrive, independently of preferred paths. This computation extends until

FIFO enqueue enable inputs. The output arbiter regards as selectable, and includes in its arbi-

tration, FIFOs to which a flit is currently being enqueued. All these computations and decisions

constitute the critical path and are completed within a single clock cycle.

A flit should not be forwarded to any output if it is dead or if itwas correctly forwarded by

any of that input’s preferred outputs. Otherwise, an outputis chosen according to XY routing

and the appropriate FIFO enqueue enable signal is asserted.The conditions for these decisions

are presented in subsection 2.3.2. Input port components are illustrated in Figure 3.1(b).

To be able to detect flits that are moving away from their destinations, we implement com-

parators which inform us if the incoming flit’s destination has a higher X coordinate than the

switch examining the flit. This check is made only at X axis inputs since the flit did not traverse

the Y axis with its last hop. The same check is made for the Y coordinate at Y axis inputs.

No dead flit detection is performed at PE data input ports since these incoming flits were just

generated by PEs and thus are never dead. We then evaluate theresult depending on the input

port that is examining the flit and therefore the direction the flit is travelling through the network.

For example, if the leftmost input port of the X axis detects that the flit destination’s X coordi-

30 CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

nate is smaller than that of the switch, it knows it is dead since the flit is travelling from left to

right whereas the destination is to its left. The verilog code which performs dead flit detection is

shown in listing 3.1.

Listing 3.1: Dead flit detection logic

1 wire l a r ge r Y , equal Y , l e s s e r Y ;

2 wire l a r ge r X , equal X , l e s s e r X ;

3

4 / / Coord ina te compara to rs . i n [8 : 2] & i n [1 5 : 9] are d e s t i n a ti o n Y and X r e s p e c t i v e l y .

5 compara to r compY (‘CURRENT SWITCH Y , i n [8 : 2] , l a rge r Y , equal Y , l e s s e r Y) ;

6 compara to r compX (‘CURRENT SWITCH X , i n [1 5 : 9] , l a rge r X , equal X , l e s s e r X) ;

7

8 / / Wires below d e t e c t f l i t s moving away from t h e i r d e s t i n a t io n i n any a x i s .

9 / / There are two cas es f o r moving away i n t h e X ax i s , and two f o rt h e Y a x i s .

10 / / ‘POSITIVE X i s t h e l e f t m o s t X i n p u t (f l i t s t r a v e l i n p o s i t i v e a x i s f l ow).

11 / / S i nce t h e f i r s t p a r t o f t h e compar ison i s s t a t i c (i n p u t p o rt i s a l s o s t a t i c) ,

12 / / s y n t h e s i s w i l l remove i t acco rd ing t o which i n p u t p o r t we in s t a n t i a t e d .

13 wire l e a v e s d e s t X 1 = (i n p u t p o r t == ‘POSITIVE X & l a r g e r X) ;

14 wire l e a v e s d e s t X 2 = (i n p u t p o r t == ‘NEGATIVE X & l e s s e r X) ;

15 wire l e a v e s d e s t Y 1 = (i n p u t p o r t == ‘POSITIVE Y & l a r g e r Y) ;

16 wire l e a v e s d e s t Y 2 = (i n p u t p o r t == ‘NEGATIVE Y & l e s s e r Y) ;

17

18 wire i s d e a d = l e a v e sd e s t X 1 | l e a v e s d e s t X 2 | l e a v e s d e s t Y 1 | l e a v e s d e s t Y 2 ;

The most common XY routing implementation has the source noting in the packet’s header

the number of hops that need to be made in each axis with one extra bit to mark the direction.

Each hop checks if the X axis value is non-zero. If it is, it decrements that value by one and

forwards it in the X axis appropriately. Otherwise, it checks the Y axis value in a similar fashion.

If both are zero the packet is ejected to a local PE port. This implementation requires the simplest

routing logic in switches. However, it is not an option for our NoC because switches cannot alter

the headers of address flits travelling in preferred paths since forwarding is performed before the

header is even processed.

Therefore, in our NoC address flits contain the destination’s coordinates. Switches check

3.1. SWITCH ARCHITECTURE 31

if the destination’s X coordinate is different than their own. If so, they forward the flit to the

appropriate direction in the X axis. Y axis coordinates are handled in a similar way only if

the destination’s X coordinate matches that of the switch. The XY routing computation runs in

parallel with the dead flit detection and uses the same comparators for the X and Y coordinates

for efficiency. The results are then considered by a combinational logic which decides among X

axis outputs first, then Y axis and finally local PE outputs.

Destination address information is only carried by addressflits. Thereafter data flits need to

be forwarded in the same manner using only their packet IDs. The routing and dead flit detection

logics shown in this subsection make decisions for address flits only. These decisions are stored

in a simple array holding packet IDs and switch outputs. Dataflit packet IDs are looked up in

that array. If an entry exists, the flit is forwarded to the stored output. If an entry does not exist,

the flit is terminated as dead. The entry is removed when encountering the tail flit. Address

flits destined to an adjacent PE are forwarded to a Y axis output whereas the appropriate switch

data output for data flits is calculated and stored in the array instead. This array needs to hold

only multi-flit packet IDs. In our implementation that arrayconsisted of only four entries. This

number may need to be increased depending on the expected traffic pattern and network size.

Since dead flit detection and XY routing run in parallel, merging of these two results is

accomplished by few gates which receive both of their outputs. If the dead flit detection signal is

asserted denoting that the flit is dead, the output port selection by the routing logic is ignored and

no FIFO enqueue signals are asserted. The same occurs if the input is not receiving a valid flit

either because no flit is being transmitted during the current clock cycle or because the flit has

not fully arrived yet. This detection is performed by a simple logic which also runs in parallel.

A flit is invalid if its type is 00 and its packet ID is not 11111,which denotes a configuration flit.

The XY routing verilog code is shown in listing 3.2.

Listing 3.2: XY routing logic

1 / / F l i t needs t o be s e n t t o X ax i s , p o s i t i v e f l ow . S i m i l a r l y f or t h e o t h e r cas es .

2 wire needs X pos = l e s s e rX ;

3 wire needs X neg = l a r g e r X ;

4 / / We w i l l need t o f i r s t check f o r X fo rward ings , t hen Y , then lo c a l PE .

32 CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

5 wire needs Y pos = l e s s e rY ;

6 wire needs Y neg = l a r g e r Y ;

7

8 / / Now we check f o r l o c a l PE f o r w a r d i n g s . F l i t d e l i v e r e d by t hi s s w i t c h .

9 / / Equal X i s no t needed due t o o u t p u tp o r t s e l e c t c o n d i t i o n s o rde r .

10 wire s t o p h e r e = equa lY ;

11 / / Th i s l o g i c examines add ress f l i t s on l y . Data f l i t s w i l l s im p l y sea rch t h e ar ray .

12 / / Below we d e c i d e t h e Y p o r t f o r t h e add ress f l i t . i n [1 : 0] s e le c t among t h e 4

13 / / connec ted PEs . We s t o r e t h e a p p r o p r i a t e da ta p o r t i n t o t h ear ray f o r da ta f l i t s .

14 a s s i g n a d d r e s s t o p = i n [1] == 1 ’ b0 & s t o p h e r e ;

15 a s s i g n a d d r e s sb o t t o m = i n [1] == 1 ’ b1 & s t o p h e r e ;

16

17 / / I s t h e incoming f l i t v a l i d .

18 wire i s v a l i d = i n [3 8 : 3 7] != 2 ’ b00 | i n [3 6 : 3 2] == 5 ’ b11111 ;

19

20 / / Log ic d e c i d i n g t h e o u t p u t . The l o g i c e x p l a i n e d i n t h e paragraph below i s a t

21 / / o u t p u t modules and t h u s no t shown here . i da r r a y [] i s t h e da ta f l i t o u t p u t

22 / / a r ray . Lookup l o g i c i s d i r e c t−mapped . I t works s u f f i c i e n t l y as a f u n c t i o n o f

23 / / t h e p a c k e t ID , c o n t a i n i n g t h e sou rce ID , i f d i s t a n t s o u r c es r a r e l y send p a c k e t s

24 / / and a l l s o u r c e s do no t i n t e r l e a v e p a c k e t s . Genera l l y , i t needs t o be changed .

25 a s s i g n o u t p u t p o r t s e l e c t = (! i s v a l i d) ? 3 ’ b111 : (i n [3 8] ?

26 i d a r r a y [i n [3 6 : 3 5]] [2 : 0] : (i s d e a d ? 3 ’ b110 : (needsX pos ? 3 ’ b000 :

27 (needsX neg ? 3 ’ b001 : ((needsY pos | | a d d r e s s t o p) ? 3 ’ b100 :

28 ((needsY neg | | a d d r e s sb o t t o m) ? 3 ’ b101 : 3 ’ b111)))))) ;

If the flit is valid and non-dead, we need to check if it was forwarded by a preferred path to an

output which makes the flit approach its destination in any axis. If XY routing decided to forward

the flit to a X axis output, the acceptable outputs are that oneplus the Y axis output that would

be chosen, if any, had the flit reached the destination’s X coordinate. If XY routing decided to

forward the flit to a Y axis or a local PE output, there are no other acceptable outputs. Thus,

each FIFO at a Y axis or PE output has an AND gate which ignores the incoming FIFO enqueue

signal if the same path’s preferred tri-state driver is enabled during the same clock cycle. If the

flit is to be forwarded to a X axis output, the Y axis coordinatecomparison result decides which

3.2. NETWORK TOPOLOGY 33

of the two Y axis outputs we need to check if it has the input port receiving the flit as preferred.

If that input port is indeed preferred, FIFO enqueue signalsare de-asserted.

3.1.2 Virtual Channels

Virtual channels (VCs) are useful for defining multiple logical topologies within the network,

adaptively routing around congested or faulty nodes and providing packet priority and thus guar-

anteed QoS classes [32]. However, in our NoC preferred pathsalready provide a means to

prioritize packets compared to others as well as form different low-latency topologies. More-

over, our NoC’s topology is already tailored to our specific application environment. Finally, we

have already proposed a modification to implement adaptive routing without VCs explained in

subsection 2.3.4, despite the increased challenges our NoCfaces.

For these reasons, our current NoC does not include VCs. Introducing them would multiply

FIFOs, which translates into a significant area overhead since our switch features one FIFO at

every crosspoint. However, other NoC applications may havedifferent design priorities and

requirements which make VCs more attractive.

3.2 Network Topology

We tailor a 2D mesh topology to our target application, whichis an array of processors and RAM

blocks, aiming to minimize area overhead in addition to latency. We assume a flexible system

that assigns memory blocks to processors’ low-latency regions according to application needs,

and therefore profits from the reconfiguration capabilitiesof our NoC. We used single-port RAM

blocks as explained in section 4.2. In our 130 nm implementation library, RAM blocks feature

data pins on one side of the X axis and address pins on one side of the Y axis. We are able to

rotate and mirror RAM blocks to place their pins as needed by each topology option.

We considered several different network topologies:

• The simple 2D mesh topology shown in Figure 3.5. This topology was one of the first to be

proposed [9]. It is regarded as the simplest choice and it is used by many general-purpose

NoCs which do not have any a-priori application environment information to optimize

their topology. The major drawback with this option is that switches, which are 5x5, are

34 CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

Figure 3.5: The simple 2D mesh topology.

placed in the corners of PEs. Therefore, a significant amountof empty space has to be left

between PEs. This problem could be lessened by floorplanningthe switch as a cross or

rectangle, but not completely solved. Another option to combat this problem is dividing

the switch into multiple sub-switches and placing then in ascending order resembling a

staircase, as proposed in [33]. Moreover, the switch, due toit’s location, is equally far

away from data and address pins, whereas we would like the switch to be right in front of

both. However, the major reason we did not choose this topology is that it does not take

any advantage of our application environment and the options we have, such as rotating

RAM blocks and forming larger network blocks with several PEs.

• The second option we investigated, shown in Figure 3.6, is dividing the network into two

sub-networks. The initial thought was to create address (request) and data sub-networks.

This would enable us to perform optimizations in resources since the address sub-network

would carry less traffic. Moreover, the address sub-networkcould be implemented as a

broadcast tree to the RAM blocks nearest to the processor (in its local region). This would

impose low latency and could prove handy to fully-associative cache implementations.

Requests to distant RAM blocks would utilize the data sub-network. This option may very

3.2. NETWORK TOPOLOGY 35

Figure 3.6: 2D mesh topology with two subnetworks.

well be the best choice for some application environments, but in the general case would

prove area and power consuming. Moreover, RAM blocks need to be able to receive

address flits from both sub-networks which complicates their network interface logic.

Another option is deploying two sub-networks to serve different directions. In the exam-

ple shown, one sub-network serves one direction in each axis. Therefore, traffic from a

processor to a RAM block would probably utilize one network and the response generated

from the RAM block the other. However, in many cases traffic would need to change sub-

networks to reach it’s destination. Thus, sub-networks need to be interconnected with each

other, but not necessarily at every switch. This option, as shown, has only the advantage

of dividing traffic (and therefore congestion) among sub-networks. However, interconnec-

tions between sub-networks may easily prove to be bottlenecks. Finally, this option’s area

overhead is significant.

• As a variation to the previous option we can assign a sub-network to each axis, shown in

Figure 3.7. This option enables us to place a switch right in front of RAM pins, therefore

saving in power and latency due to minimum length wires. Sub-networks still need to

be interconnected as the previous option and those interconnects may prove to be bottle-

36 CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

Figure 3.7: 2D mesh topology with two subnetworks - one for each axis.

necks depending on traffic patterns. This option still imposes a significant area overhead

as the previous option. Moreover, this option’s sole advantage does not outweigh it’s dis-

advantages, especially considering that the independencebetween traffic in different axes

is achievable even in the first option with the proper switch implementation.

• The option illustrated in Figure 3.8 takes into account RAM block pin placement. RAM

blocks are rotated to place data pins every two X axes. This enables us to place switches

only in the X axes with RAM data pins, therefore deploying halfthe amount of switches

compared to the previous options. The switches are larger compared to those of the pre-

vious options, but deploying half the amount of switches provides us with considerable

savings in power and area therefore making this option attractive. Wires in the Y axis

have a length equal to twice a RAM block’s height. We also investigated variations which

featured wires only every two Y axes, as well as interconnecting switch (X,Y) with (X+1,

Y+1) instead of (X, Y+1).

Our NoC’s topology is a modification of the above last option. Since we would like to feature

wires only every two Y axes and minimize empty space, we placefour RAM blocks to form one

larger network block. We rotate and mirror those RAM blocks toplace all data pins on the X

3.2. NETWORK TOPOLOGY 37

Figure 3.8: RAM blocks rotated to place switches every two X axes.

axis and all address pins on the Y axis. CPUs and other user blocks may be placed as part of

such a block or as a whole network block themselves, depending on their size. We deploy one

switch per network block (four PEs). This results in significant savings in area and power due

to the limited amount of switches compared to topologies with one switch per PE. Moreover,

this reduces the latency between two endpoints since flits need to traverse fewer switches. This

topology, with the switch shaped as a rectangle in the X axis,is illustrated in Figure 3.9.

Each switch has 6 input/output ports. Each input is connected to each other port’s output.

Two of these input/output ports are used for inter-switch communication in the X axis, and other

two in the Y axis. The rest two ports are used for communication with the data pins of the 4

adjacent RAM or other user logic blocks. Given the data pin placement, one port is used for

each two RAM blocks facing each other in the X axis. One data output is wired to both RAM

block data input interfaces. The two RAM blocks’ data outputsare connected to a simple logic

illustrated in Figure 3.10, resembling an one-way 2x1 switch.

That 2x1 switching logic has no routing logic and only features one FIFO which is used

38 CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

A
ddr

A
ddr

A
dd

r
A

dd
r

Data Data

Data Data

A
ddr

A
ddr

A
dd

r
A

dd
r

Data Data

Data Data

A
ddr

A
ddr

A
dd

r
A

dd
r

Data Data

Data Data

A
ddr

A
ddr

A
dd

r
A

dd
r

Data Data

Data Data

A
ddr

A
ddr

A
dd

r
A

dd
r

Data Data

Data Data

A
ddr

A
ddr

A
dd

r
A

dd
r

Data Data

Data Data

a

Figure 3.9: Rectangular-shaped floorplan.

by the non-preferred input. From the moment a RAM block receives a read request from it’s

address interface until it is able to output data, it notifiesthis 2x1 switch to choose that RAM

block’s data output as preferred. This switch therefore imposes minimal latency impact. It may

also be reconfigured as other switches. If area permits, a request FIFO may be implemented to

store the order of requests received by the RAM blocks. This will enable it to always anticipate

the next generated flit, and thus avoid non-preferred path delays in case of multiple requests to

both RAM blocks.

RAM block address interfaces are wired to the nearest Y axis output. These connections are

illustrated with dashed lines. Thus, the RAM blocks immediately above or below a switch have

their address interfaces wired to the Y output leading upwards or downwards respectively. This

way, we avoid implementing extra output ports for address inputs. Therefore, a switch forwards

address flits destined to a local RAM block to a Y output and dataflits to a data output. This

means that flits reach RAM blocks through different outputs according to their type, since we

choose the switch port closest to the proper RAM pins. As data input interfaces, address inter-

3.2. NETWORK TOPOLOGY 39

Data input 1 - non-preferred

Data input 2 - preferred

Figure 3.10: 2x1 switching logic.

faces monitor each incoming flit to determine if it is destined for that RAM block. The potential

increased contention for outputs wired to address interfaces is outweighed by the significantly

less area required by our switch. Our switch would have 8 inputs and 12 outputs without the

described optimizations.

Finally, for switches that serve exclusively RAM blocks, we can further reduce the required

switch area since RAM blocks will never need to communicate toeach other directly. Therefore,

each switch data input should not be connected to the other switch data output, therefore saving

two internal switch connections and all the accompanying logic.

For switch placement, we examined two floorplan alternatives evaluated in chapter 4. In the

first, switches are placed in the corners of larger network blocks as a cross, shown in Figure 3.11.

This requires only a small distance between user blocks in each axis. Moreover, wire length, and

therefore propagation delay, between each switch is minimal, even in the Y axis. The second

placement, shown in Figure 3.9, has the switch solely in the Xaxis between two large blocks in

a rectangular shape. User block distance in the Y axis is minimal, and is only used for memory

address interface logic. Communication with switches in theY axis is achieved by wires in higher

metal layers routed above RAM blocks, or possibly in any metallayer routed above address

interface logic. Y axis communication wire length is equal to twice the RAM block’s height,

approximating to 1 mm in our placement and routing.

40 CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

A
ddr

A
ddr

A
dd

r
A

dd
r

Data Data

Data Data

A
ddr

A
ddr

A
dd

r
A

dd
r

Data Data

Data Data

A
ddr

A
ddr

A
dd

r
A

dd
r

Data Data

Data Data

A
ddr

A
ddr

A
dd

r
A

dd
r

Data Data

Data Data

A
ddr

A
ddr

A
dd

r
A

dd
r

Data Data

Data Data

A
ddr

A
ddr

A
dd

r
A

dd
r

Data Data

Data Data

a

b

Figure 3.11: Cross-shaped floorplan.

3.2.1 Network Interfaces

PEs, RAM blocks and other user logic blocks need NoC interfacelogic. This logic is responsible

for enabling communication between the NoC and the block. Itis responsible for submitting

properly formated packets divided in flits, as explained in subsection 2.3.1, as well as receiving

flits destined to that user block. For data network interfaces, incoming flits must be briefly stored

until the whole packet is complete and thus able to be submitted to the user block for processing.

Address network interfaces only receive one flit per packet containing the address. In addition,

network interface logic must be able to arbitrate between complete packets in a desired manner,

e.g. submit read and write requests in the order they were transmitted by the source to satisfy

sequential consistency.

Network interface logic must also identify which flits of a packet it has already received and

discard duplicate copies. Duplicate flits were discussed insubsection 2.3.3. There are various

implementations of this functionality according to designoptimization priorities. To simplify this

task, the flit control bits could be expanded, or the packet IDbits lessened, to include sequence

number bits.

3.2. NETWORK TOPOLOGY 41

Out-of-order delivery of flits belonging to the same packet is impossible, as explained in

section 2.5. However, flits belonging to different packets from the same source may be delivered

in any order. Therefore, interface logic must be able to submit packets for processing once

complete, regardless of other incomplete packets. To implement this functionality, we deploy

multiple small FIFOs in data interfaces and registers in address interfaces, and enqueue flits

accordingly. In case we would like packets to be submitted for processing in the order they were

sent by the source, the relative packet order can be retrieved from the packet header.

Network interface logic must also handle multiple incomingpackets from various sources.

Flits from these packets may arrive in any order. If all buffer is used up, extra incoming flits

remain in previous hops through backpressure. Therefore, no excessive buffer space is required.

Since one data interface FIFO is reserved per packet until itis complete and submitted for

processing, and packets may arrive out-of-order, deadlocks may occur. Lets assume that packet

A has partially arrived at the target RAM. Packet B from the same source arrives at the final hop

before A’s tail flit. However, all of the RAM’s data interface FIFOs are reserved. Therefore,

packet B waits in the switches due to backpressure not allowing packet A’s tail flit to arrive to

complete the packet.

This scenario requires several packets arriving out-of-order through the same path with par-

tially complete packets, since the data interface logic deploys several FIFOs. Assuming sources

do not submit packets interleaved, out-of-order delivery from packets originating from the same

source is only caused by reconfiguration. Therefore, limiting the number of active reconfigura-

tions that can occur at any one time to less than the number of data interface FIFOs guarantees

that at least one FIFO will be eventually freed and no deadlock will occur in this case. Imple-

mentation of this restriction may require software synchronization primitives, defining areas each

CPU can reconfigure paths in, or a reconfiguration acknowledgment mechanism.

We can also investigate an implementation to detect and recover from end-to-end deadlocks

that might rise if multiple sources are involved. For example, if in our application one PE could

be a destination for more sources than the number of FIFOs in it’s interface logic, these packets

are multi-flit, follow the same path and get interleaved suchas all address flits arrive before tail

flits, a similar deadlock situation could occur. Some mechanisms for deadlock recovery we could

42 CHAPTER 3. SWITCH ARCHITECTURE & TOPOLOGY

implement, as well as a presentation of end-to-end deadlockissues, can be found in [34].

4
Layout Results

This chapter provides results of our work. Section 4.1 begins with preliminary simulation results

of some library cells. Section 4.2 presents some of our available RAM blocks and justifies our

RAM block choice. Finally, section 4.3 presents results for our switching node after placement

and routing. All experiments presented in this master’s thesis used a 130 nm library. Synthesis

was conducted with Synopsys Design Compiler version 2004.06-SP2, placement and routing

with Cadence SOC-Encounter version 3.3 and simulation with Verilog-XL version 05.10.002-p.

4.1 Preliminary Results

As one of the first steps of our research, we conducted experiments to extract timing results

from single library cells. They helped us understand what isthe ideal latency of long wires

and therefore how close our approach is compared to that. Moreover, through these results

43

44 CHAPTER 4. LAYOUT RESULTS

we confirmed that pre-enabling tri-state drivers or multiplexer cells is crucial for achieving low

latency.

Long wires feature inverter cells and one buffer cell in casethe total number of cells in the

wire is not even. They are placed approximately every 2 mm of wire length. The drive strength

of these cells varies and can even reach the library’s maximum value of 32×, with the majority

being 16× or 20×. Inverter cells of these drive strengths have an average latency of 140 ps. 2

mm long wires in between them imposed latency in the range of 65 - 150 ps depending on metal

layer, driving strength of the cell driving them, and simulation conditions.

Wires between cells had a resistance of approximately 0.18 kΩ - 0.9 kΩ and a parasitic

capacitance of approximately 45 fF - 250 fF, depending on their length and metal layer. Wires

in higher metal layers are wider and therefore impose a smaller RC delay due to their reduced

resistance. However, the connector (via) from a cell’s connection point to a metal layer imposes

an increased delay as metal height increases. Therefore, lower metal layers are preferable for

short wires and higher metal layers for long wires. In our experiments, most wires were routed

in metal layers 3 - 4 and 5 - 6 with many wires that connected neighbouring cells being routed

in layer 1 - 2. Odd-numbered layers are used for horizontal wires (X axis) and even-numbered

layers for vertical wires (Y axis). Our library features a minimum of 6 and a maximum of 8 metal

layers. Wires in layers 7 - 8 can be routed above RAM blocks. Further information for wires and

their attributes can be found in [35].

Preliminary simulations were conducted with 2-1 multiplexers. They were implemented with

single AND-OR cells. Implementations with NAND cells were also studied but they proved to

be 60 ps - 270 ps slower. This is due to the fact that multiple NAND cells, which are faster than

AND-OR cells, are required to implement a single multiplexer. Implementations with AND-

NOR cells are only preferable if the output wire could have anodd number of inverter cells. If

not, an otherwise unnecessary inverter cell needs to be added therefore making this implementa-

tion slower.

In order to determine the importance of pre-enabling multiplexers, we simulated a multiplexer

which dynamically decides among it’s inputs with a simple two-stage, five-input combinational

logic of 6 logic gates which is driven by some of the multiplexer’s current inputs. On the other

4.2. RAM BLOCKS 45

Table 4.1: Multiplexer simulation results.

I/O Wires length Typical case latency Worst case latency

Pre-configured Dynamic Pre-configured Dynamic

10 mm 254 ps 565 ps 260 ps 900 ps

8 mm 211 ps 496 ps 371 ps 836 ps

5 mm 240 ps 514 ps 368 ps 808 ps

2 mm 254 ps 590 ps 378 ps 893 ps

1 mm 196 ps 496 ps 395 ps 998 ps

hand, we simulated a multiplexer which stores the result of the same combinational logic in a

register which drives it’s select input. These circuits areshown in Figure 1.2. The length of the

wires connected to it’s inputs and outputs varied from 1 mm to10 mm. Long wires featured

inverter of buffer cells as already discussed.

Simulation results are given in Table 4.1. They present the latency from the time the mul-

tiplexer’s inputs are stable until the multiplexer’s output is stable. These results show that the

dynamic multiplexer is 2 to 3 times slower than the pre-configured one. This confirms that pre-

enabling select signals is important for reducing latency.As discussed in section 3.1, cells at the

switch output driving the next switch have a fanout of 11. Thus, pre-configuration becomes even

more important in our NoC due to this high fanout and therefore the increased latency to toggle

the driven value. Finally, since our switch requires a 5-1 multiplexer at each output and our li-

brary does not include single AND-OR cells larger than 3-1, we deploy tri-state cells. However,

the importance and benefits of pre-configuration remain the same.

4.2 RAM Blocks

We chose single-port RAM blocks of 4096 lines of 32 bits each (128 kbits in total), with a column

multiplexer of 16. Without power rings, they are 715.07µm long on the X axis, and 551.64µm

long on the Y axis. We deployed 25µm wide power rings on each side adding 50µm of length

46 CHAPTER 4. LAYOUT RESULTS

(a) Single-port RAM. (b) Dual-port and two-port RAMs.

Figure 4.1: RAM block pin placement.

to each axis. These power rings allow our RAM blocks to operateat their maximum design

frequency of 1 GHz. As shown in Figure 4.1(a), data input/output pins reside on one of the long

sides of the RAM block (X axis), while address input pins reside on one of the short sides (Y

axis). Control pins are on the same side with their respectiveport’s data pins.

Latency and area attributes of several single-port RAM blocks are shown in Table 4.2. As

that table shows, the clock positive edge to valid output data latency increase between the 2048

× 32 and 4096× 32 memories with a column multiplexer of 8 is 0.58 ns (under typical case

conditions) which is disproportional compared to the 0.31 ns between the 1024× 32 and 2048

× 32 memories. The same is true for the 0.68 ns between memories4096× 32 and 8192×

32 with a column multiplexer of 16. Therefore, we chose the 4096 × 32 RAM block with a

column multiplexer of 16. Choosing a larger RAM block would mean that our memories would

be considerably slower than if we chose the previous-size blocks. On the other hand, choosing

a smaller RAM block would mean that we would require more RAM blocks and therefore more

wasted area on our chip due to network interface logic, powerrings and other network overhead.

Therefore, this RAM block balances area and latency efficiency which are the two areas we focus

in our application environment.

64-bit wide RAM blocks are slightly larger than their equally-sized 32-bit wide RAM blocks.

However, they are faster with the same column multiplexer. In our case, the 2048× 64 RAM

block with a column multiplexer of 8 is only slightly faster than the 4096× 32 with a column

multiplexer of 16. Our choice regarding RAM word length is also based on the fact that most

4.2. RAM BLOCKS 47

Table 4.2: Single-port RAM attributes.

Lines Bits per line Column mux Area Clock-to-data latency

Typical case Worst case

128 32 8 390µm × 110µm 1.1 ns 1.8 ns

256 32 8 380µm × 140µm 1.1 ns 1.9 ns

512 32 8 380µm × 200µm 1.2 ns 2.0 ns

512 64 8 720µm × 200µm 1.3 ns 2.2 ns

1024 32 8 380µm × 330µm 1.4 ns 2.4 ns

1024 32 16 720µm × 190µm 1.4 ns 2.3 ns

2048 32 8 380µm × 560µm 1.7 ns 3.0 ns

2048 64 8 720µm × 560µm 1.8 ns 3.2 ns

4096 32 8 380µm × 1040µm 2.2 ns 4.2 ns

4096 32 16 720µm × 550µm 1.9 ns 3.5 ns

8192 32 16 720µm × 1020µm 2.6 ns 4.9 ns

open-source processors are 32-bits wide instead of 64. If that is not a concern for other applica-

tion environments, 64-bit wide RAM blocks might be a more attractive choice depending on the

other options at the desired size.

Two-port memories have one read and one write port. Dual-port memories have two inde-

pendent read/write ports. Their pin layout is shown in Figure 4.1(b). Attributes for two RAM

blocks of each type are shown in Tables 4.3 and 4.4. The numberof possible RAM blocks is con-

siderably smaller for these types since two-port and dual-port memories are restricted to a total

size of 72 kbits and 64 kbits respectively. This is compared to 256 kbits for single-port RAMs.

Moreover, two-port and dual-port memories are not nearly asarea efficient as their respective

single-port RAMs. Dual-port memories are almost twice as large compared to single-port mem-

ories of the same size, whereas two-port memories are approximately 75 % larger. Both are also

considerably more power-consuming than single-port memories. Therefore, since our NoC or

48 CHAPTER 4. LAYOUT RESULTS

Table 4.3: Two-port RAM attributes.

Lines Bits per line Column mux Area Clock-to-data latency

Typical case Worst case

512 64 4 630µm × 370µm 1.7 ns 3.1 ns

1024 32 8 630µm × 360µm 2.0 ns 3.8 ns

Table 4.4: Dual-port RAM attributes.

Lines Bits per line Column mux Area Clock-to-data latency

Typical case Worst case

512 64 4 630µm × 370µm 1.6 ns 2.9 ns

1024 32 8 630µm × 360µm 1.6 ns 2.9 ns

application environment has no specific demand for multiple-port memories, we chose single-

port memories.

4.3 Switch P&R Results

We performed placement and routing of our design without theadaptive routing modification

presented in subsection 2.3.4. Switch p&r results are shownin Table 4.5. Area results for the bar

and cross floorplans discussed in section 3.2 are presented in Table 4.6. Results shown are under

typical case conditions. Power consumption results are under heavy switching activity. Preferred

path latency per switch ranged from 300 to 420 ps. If we also include a 1 mm long wire at the

output, approximately twice a RAM block’s height, latency increases to 450-550 ps, compared to

80 - 135 ps for straight wires of a similar length without any configuration or routing capability.

When there is no contention, non-preferred path latency is one clock cycle. Contention without

starvation effects increases non-preferred path latency depending on various factors, but does not

affect preferred path latency. Our design functions at 667 MHz under our library’s typical case

4.3. SWITCH P&R RESULTS 49

conditions, and at 400 MHz under worst case conditions.

FIFOs were implemented with registers due to their number and small size of 2 lines each.

Reducing the number of lines from 3 to 2 reduced occupied switch area by approximately 20%.

As explained in section 3.1, a FIFO is selectable for servingduring the next clock cycle even

if a flit is being enqueued in the current clock cycle. This increases the arbiter’s critical path to

include the FIFO’s input. We investigated an implementation which regards a FIFO as selectable

only when it’s non-empty. This means than flits in non-preferred paths need 2 clock cycles when

there is no contention, since they would need to be enqueued in the first clock cycle, and only

after that their FIFO can be served during the next (second) clock cycle. Therefore the arbiter’s

critical path is reduced to begin only at the FIFO’s head, which is a group of registers. This

design was able to function with a clock period of 1.2 ns (833 MHz) under typical conditions,

instead of 1.5 ns (667 MHz). However, since non-preferred paths impose a two clock cycle delay,

this translates into a 2.4 ns delay for the short critical path implementation compared to 1.5 ns for

the long critical path. Therefore, the long critical path implementation imposes a shorter latency.

We deployed a 25µm wide power ring for each RAM block. Therefore, their effective size

is 740.07µm× 576.64µm. In an orthogonal shape, one switch occupies a minimum areaof 637

µm × 310µm. In the rectangular placement option as explained in section 3.2 and illustrated

in Figure 3.9, switch height (a) is 170µm at minimum. Since we require one switch every 4

RAM blocks (or user blocks of roughly the same size), NoC area overhead is 13%. In the cross

placement option as depicted in Figure 3.11, switch height in the X axis (a) is 130µm, while

switch length in the Y axis (b) is 140µm. In this case, NoC area overhead is 18%. This shows

that area efficiency drops in the second case. However, cross-shaped switches have the least

possible distance between each other even in the Y axis, therefore minimizing propagation delay

between them.

P&r details of the reduced-area single-preferred path switch explained in section 3.1 are also

shown in Tables 4.5 and 4.6. In the rectangular placement option, switch height (a) is 133µm

(22% decrease). In the cross placement option, switch height in the X axis (a) is 118µm (9%

decrease), while switch length in the Y axis (b) is 114µm (18.5% decrease). This imposes a NoC

area overhead of 10% in the first case and 16% in the second. These results show that the area

50 CHAPTER 4. LAYOUT RESULTS

Table 4.5: Switch p&r results (typical).

Implementation library 130 nm

Power supply 1.2 V

Clock frequency 667 typical - 400 worst case (MHz)

Input/Output ports 6

FIFOs 30

FIFO lines 2

Flit width 39 bits

Pref. path latency/hop 300-420 ps - 450-550 ps incl. 1 mm wire

Full switch Preferred bus Change

Gates 44874 38865 -13 %

Cells 15001 13369 -11 %

Cell area 195228µm2 183056µm2 -6 %

Internal nets 13595 12703 -6.5 %

Combinational area 84424µm2 72420µm2 -14 %

Non-combinational 110798µm2 110632µm2 -0.1 %

Leakage power 91µW 85µW -7 %

Dynamic power 80 mW 77 mW -3 %

Table 4.6: Switch area results for the bar and cross floorplans. ”a”, ”b” refer to Figures 3.9

and 3.11.

Bar floorplan Overhead Cross floorplan Overhead Change

Full switch a = 170µm 13% a = 130µm b = 140µm 18% +38%

Preferred bus a = 133µm 10% a = 118µm b = 114µm 16% +60%

Change a: -22% -23% a: -9% b: -18.5% -11%

4.3. SWITCH P&R RESULTS 51

gain is small, but in some applications it could outweigh theloss in preferred path flexibility.

52 CHAPTER 4. LAYOUT RESULTS

5
Conclusions

This chapter concludes this master’s thesis. In section 5.1we identify room for future work.

Finally, in section 5.2 we summarize this work’s key elements.

5.1 Future Work

A number of issues should be addressed in the future. Firstly, our NoC needs to be made fault-

tolerant since faults may appear in a chip’s lifetime, especially in technologies narrower than 130

nm. This will impose an unavoidably increased area overheadsince it will require redundancy

or at least error-detection circuits. However, technologytrends indicate that designs must be

fault-tolerant in some way in order to be trusted for future designs.

Secondly, our NoC needs to be evaluated in a complete system under various workloads and

demands. This will enable us to accurately analyze our contribution’s impact on a complete

53

54 CHAPTER 5. CONCLUSIONS

system’s performance. It will also give us an understandingof how dead flits affect our NoC’s

performance, and under which configurations and traffic patterns is this impact lessened. A

simple metric that can give us this understanding is how manytimes a flit was forced to wait

in a FIFO due to a dead flit in a preferred path. We can also investigate what is the optimal

strategy for choosing preferred paths based on the expectedtraffic pattern in the NoC, and what

performance increase does the optimal choice bring. As of the time of writing of this master’s

thesis, a complete system cycle-accurate simulator is under development, which will enable us

to run simulations to answer all the above questions.

Finally, our NoC can face synchronization issues which may result in design limitations.

Since preferred paths are purely combinational, flits traversing them can arrive at their destina-

tions and other switches at any point during the clock cycle.Thus, flits may violate flip-flop setup

or hold time upon arrival. This may set the flip-flop to a metastable, or at least to an unknown,

state and may therefore cause multiple problems.

There are several approaches to combat this issue. Firstly,we could impose a constraint on

our preferred paths so that this problem will never occur. This will allow our NoC to function

without altering our design, thus without having a decreased area or power efficiency. Depend-

ing on the constraint, latency and other performance aspects may be negatively affected. For

example, we could limit the number of continuous preferred path hops such that flits will enter

a non-preferred path before the end of the clock cycle that they entered their current preferred

path in. In this case, assuming that flits are submitted from non-preferred paths in the very be-

ginning of the clock cycle, that number is[ClockPeriod
PrefPathHop+Wire Latency

]. This constraint disallows

us to reach very low latency numbers, which we would otherwise be able to.

Furthermore, we could deploy synchronizers at every switchand PE interface logic. While

they will not affect preferred paths until flits exit them, their imposed latency in non-preferred

paths and preferred path exit points is excessive. Finally,our switch components can easily

be implemented asynchronously with known design methodologies. The problem in this ap-

proach lies in the necessary handshake between switches or PE network interface logic blocks

to guarantee that no flit fragments will be routed through thenetwork. This handshake may be

implemented in preferred path entry and exit points insteadof simply adjacent switches, but it

5.2. CONCLUSION 55

will still impose a delay that will prevent us from offering our current low per-hop latency, both

in preferred and non-preferred paths. Alternatively, we could implement encoding schemes such

as dual-rail [36] which also provide this guarantee. However, such implementations will almost

double our NoC’s required area and also require significantlymore power.

Our choice of which option to implement depends on where we are willing to take a penalty.

We could either implement the handshake solution and increase our NoC’s latency, implement

an encoding scheme and increase our NoC’s area and power, or wecould impose restrictions in

preferred paths and lessen our NoC’s preferred path flexibility. This choice may differ in different

application domains, therefore a different decision may bemade for each one.

5.2 Conclusion

We presented a NoC design that offers low latency in pre-configured paths. This latency is

close to that of long buffered wires. To achieve our goal, we have resurrected and tailored mad-

postman, a technique proposed two decades ago. According toour implementation, an incoming

flit is eagerly forwarded to the input’s preferred outputs, if any. This is achieved solely by pre-

enabled tri-state drivers, and therefore with the least delay possible. Flits are then checked by

routing logic to determine if they were correctly eagerly forwarded. If not, flits are forwarded to

their correct output. Incorrectly forwarded flits are terminated in later hops as dead. When there

is no contention, non-preferred paths impose a single clockcycle per-hop delay.

For routing, we implement XY routing. However, we make the modification that a flit is

considered to have been correctly forwarded if it approaches the destination in any of the two

axes, even if it does not follow strict XY routing. This way, flits may take different paths and

gain from increased preferred path flexibility. A flit is considered dead if its distance from the

destination increases in any of the two axes. We have also proposed a modification to allow parts

of our NoC to switch to adaptive routing when it’s benefits areneeded.

Path reconfiguration occurs at run-time. Any user block can transmit configuration packets to

any switch in the NoC. Switch architecture resembles that of abuffered crossbar [8]. FIFOs are

placed at crosspoints, and each output port has independentarbitration and configuration logic.

We presented a 2D mesh topology tailored to our CMP environment to reduce area, power and

56 CHAPTER 5. CONCLUSIONS

latency by limiting the number and complexity of the switches.

P&r results show that preferred path latency varies from 300ps to 550 ps, depending on

placement and wire length. Our NoC imposes a 13% area overhead for the whole chip.

We believe that our work provides a different approach in some areas and can form the basis

for future NoC implementations which focus on low latency. Our main contribution for low-

latency preferred paths can apply in different NoC environments than the one presented, with the

optimizations and assumptions necessary for that environment. Our work provides the means to

achieve latency less than one clock cycle per node, which appears to be the current lower limit.

While there are open issues left for future work, a substantial number of past NoC research can be

applied and therefore provide solutions. Depending on exact application needs, further latency,

area or energy optimizations may be made.

Bibliography

[1] C. R. Jesshope, P. R. Miller, and J. T. Yantchev. High performance communications in

processor networks. InISCA ’89: Proceedings of the 16th annual international symposium

on Computer architecture, pages 150–157, New York, NY, USA, 1989. ACM Press.

[2] Reinaldo A. Bergamaschi and William R. Lee. Designing systems-on-chip using cores. In

DAC ’00: Proceedings of the 37th conference on Design automation, pages 420–425, New

York, NY, USA, 2000. ACM Press.

[3] B. Luca and D. Giovanni. Networks on chips: A new paradigm for system on chip design,

2002.

[4] Michael Bedford Taylor and Walter Lee. Scalar operand networks. IEEE Trans. Parallel

Distrib. Syst., 16(2):145–162, 2005. Member-Saman P. Amarasinghe and Member-Anant

Agarwal.

[5] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang.

The case for a single-chip multiprocessor.SIGOPS Oper. Syst. Rev., 30(5):2–11, 1996.

[6] R. Bevide C. Izu and C Jesshope. Mad-postman: a look-ahead message propagation method

for static bidimensional meshes. InProceedings of the 2nd Euromicro Workshop on Parallel

and Distributed Processing, pages 117–124. IEEE Computer Society Press, 1994.

57

58 BIBLIOGRAPHY

[7] Li-Shiuan Peh and William J. Dally. Flit-reservation flow control. InIn Proc. of the 6th Int.

Symp. on High-Performance Computer Architecture (HPCA), pages 73–84, January 2000.

[8] D. Simos M. Katevenis, G. Passas et al. Variable packet size buffered crossbar (cicq)

switches. InProceedings of the IEEE International Conference on Communications (ICC),

pages 1090–1096, Paris, France, June 2004.

[9] Wiliam J. Dally and Brian Towles. Route packets, not wires:On-chip interconnection

networks. InProceedings of the 38th Design Automation Conference (DAC), pages 684–

689, Las Vegas, NV, June 2001.

[10] Stamatis Vassiliadis and Ioannis Sourdis. Reconfigurable flux networks. InIEEE Interna-

tional Conference on Field Programmable Technology (FPT), December 2006.

[11] Roman Koch Thilo Pionteck and Carsten Albrecht. Applyingpartial reconfiguration to

networks-on-chip. InProceedings of the International Conference on Field Programmable

Logic and Applications (FPL), pages 155–160, Madrid, Spain, August 2006.

[12] Christophe Bobda, Ali Ahmadinia, Mateusz Majer, JuergenTeich, Sandor P. Fekete, and

Jan van der Veen. Dynoc: A dynamic infrastructure for communication in dynami-

cally reconfigurable devices. InIn Proceedings of the International Conference on Field-

Programmable Logic and Applications (FPL), pages 153–158, Tampere, Finland, August

2005.

[13] William Dally and Brian Towles.Principles and Practices of Interconnection Networks.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[14] William J. Dally. Express cubes: Improving the performance of k-ary n-cube interconnec-

tion networks.IEEE Trans. Comput., 40(9):1016–1023, 1991.

[15] Feihui Li, Chrysostomos Nicopoulos, Thomas Richardson,Yuan Xie, Vijaykrishnan

Narayanan, and Mahmut Kandemir. Design and management of 3dchip multiprocessors

using network-in-memory. InISCA ’06: Proceedings of the 33rd annual international

BIBLIOGRAPHY 59

symposium on Computer Architecture, pages 130–141, Washington, DC, USA, 2006. IEEE

Computer Society.

[16] Jongman Kim, Chrysostomos Nicopoulos, and Dongkook Park. A gracefully degrading

and energy-efficient modular router architecture for on-chip networks.SIGARCH Comput.

Archit. News, 34(2):4–15, 2006.

[17] Jongman Kim, Dongkook Park, T. Theocharides, N. Vijaykrishnan, and Chita R. Das. A

low latency router supporting adaptivity for on-chip interconnects. InDAC ’05: Proceed-

ings of the 42nd annual conference on Design automation, pages 559–564, New York, NY,

USA, 2005. ACM Press.

[18] Robert Mullins, Andrew West, and Simon Moore. Low-latency virtual-channel routers for

on-chip networks.SIGARCH Comput. Archit. News, 32(2):188, 2004.

[19] Chrysostomos A. Nicopoulos, Dongkook Park, Jongman Kim, N. Vijaykrishnan, Mazin S.

Yousif, and Chita R. Das. Vichar: A dynamic virtual channel regulator for network-on-chip

routers. InMICRO 39: Proceedings of the 39th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, pages 333–346, Washington, DC, USA, 2006. IEEE Computer

Society.

[20] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin. An asynchronous noc

architecture providing low latency service and its multi-level design framework. InASYNC

’05: Proceedings of the 11th IEEE International Symposium on Asynchronous Circuits and

Systems, pages 54–63, Washington, DC, USA, 2005. IEEE Computer Society.

[21] Li Shang, Li-Shiuan Peh, Amit Kumar, and Niraj K. Jha. Thermal modeling, characteriza-

tion and management of on-chip networks. InMICRO 37: Proceedings of the 37th annual

IEEE/ACM International Symposium on Microarchitecture, pages 67–78, Washington, DC,

USA, 2004. IEEE Computer Society.

[22] Hangsheng Wang, Li-Shiuan Peh, and Sharad Malik. A technology-aware and energy-

oriented topology exploration for on-chip networks. InDATE ’05: Proceedings of the

60 BIBLIOGRAPHY

conference on Design, Automation and Test in Europe, pages 1238–1243, Washington, DC,

USA, 2005. IEEE Computer Society.

[23] Radu Marculescu. Networks-on-chip: The quest for on-chip fault-tolerant communication.

In ISVLSI ’03: Proceedings of the IEEE Computer Society Annual Symposium on VLSI

(ISVLSI’03), page 8, Washington, DC, USA, 2003. IEEE Computer Society.

[24] Sam Kerner Tudor Dumitra and Radu Marculescu. Towards on-chip fault-tolerant commu-

nication. InASPDAC: Proceedings of the 2003 conference on Asia South Pacific design

automation, pages 225–232, New York, NY, USA, 2003. ACM Press.

[25] Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. Interconnections in multi-core ar-

chitectures: Understanding mechanisms, overheads and scaling. In ISCA ’05: Proceedings

of the 32nd Annual International Symposium on Computer Architecture, pages 408–419,

Washington, DC, USA, 2005. IEEE Computer Society.

[26] Cristian Grecu and Michael Jones. Performance evaluation and design trade-offs for

network-on-chip interconnect architectures.IEEE Trans. Comput., 54(8):1025–1040,

2005. Student Member-Partha Pratim Pande and Senior Member-Andre Ivanov and Se-

nior Member-Resve Saleh.

[27] 11-Gu Lee, Jin Lee, and Sin-Chong Park. Adaptive routingscheme for noc communica-

tion architecture. InAdvanced Communication Technology, 2005, ICACT 2005. The 7th

International Conference on, pages 1180– 1184. IEEE Communications Society, 2005.

[28] Li Shang, Li-Shiuan Peh, Amit Kumar, and Niraj K. Jha. Thermal modeling, characteriza-

tion and management of on-chip networks. InMICRO 37: Proceedings of the 37th annual

IEEE/ACM International Symposium on Microarchitecture, pages 67–78, Washington, DC,

USA, 2004. IEEE Computer Society.

[29] Maurizio Palesi, Rickard Holsmark, Shashi Kumar, and Vincenzo Catania. A methodology

for design of application specific deadlock-free routing algorithms for noc systems. In

BIBLIOGRAPHY 61

CODES+ISSS ’06: Proceedings of the 4th international conference on Hardware/software

codesign and system synthesis, pages 142–147, New York, NY, USA, 2006. ACM Press.

[30] Srinivasan Murali, David Atienz, Luca Benini, and Giovanni De Michel. A multi-path

routing strategy with guaranteed in-order packet deliveryand fault-tolerance for networks

on chip. InDAC ’06: Proceedings of the 43rd annual conference on Designautomation,

pages 845–848, New York, NY, USA, 2006. ACM Press.

[31] Jingcao Hu and Radu Marculescu. Dyad: smart routing for networks-on-chip. InDAC ’04:

Proceedings of the 41st annual conference on Design automation, pages 260–263, New

York, NY, USA, 2004. ACM Press.

[32] Lionel M. Ni and Philip K. McKinley. A survey of wormholerouting techniques in direct

networks. pages 492–506, 2000.

[33] Manolis Katevenis and Miriam Blatt. Switch design for soft-configurable wsi systems. In

IFIP WG 10.5: Proceedings of the workshop on Wafer Scale Integration, pages 255–270,

Grenoble, France, 1986. Saucier, Trilhe, Eds, North Holland Co.

[34] Michael Taylor. The raw prototype design document, 2000.

[35] M. Horowitz, R. Ho, and K. Mai. The future of wires, 1999.

[36] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou. Coping with the variability of

combinational logic delays. InICCD ’04: Proceedings of the IEEE International Confer-

ence on Computer Design (ICCD’04), pages 505–508, Washington, DC, USA, 2004. IEEE

Computer Society.

