
The Roofline Model

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Auto-tuning and the Roofline Model
Sam Williams, David Patterson, Kathy Yelick, Jim Demmel,

Andrew Waterman, Rich Vuduc, Lenny Oliker, John Shalf, Jonathan Carter, …
samw@eecs.berkeley.edu

P    A    R    A    L    L    E    L        C    O    M    P    U    T    I    N    G        L    A    B   O    R    A    T    O    R    Y

Auto-tuning the Sparse Linear Algebra Motif
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Auto-tuners

Applications

Auto-tuning the Structured Grid Motif
Reference
Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, Katherine Yelick, "Lattice Boltzmann Simulation
Optimization on Leading Multicore Platforms", International Parallel & Distributed Processing Symposium
(IPDPS) (to appear), 2008.
Best Paper, Application Track

Lattice-Boltzmann Magneto-hydrodynamics (LBMHD)
•Simulates plasma turbulence via LBM
•Couples CFD with Maxwell’s Equations
•Thus it requires:

27pt Momentum distribution
15pt Magnetic distribution
7 macroscopic quantities
(density, momentum, magnetic field)

•Two phases to the code:
collision() advances the grid one time step
stream() handles the boundary conditions (periodic for benchmark)

•Each lattice update requires ~1300 flops and ~1200 bytes of data
•flop:byte ~ 1.0(ideal), ~0.7(cache-based machines)

Auto-tuning LBMHD
•Auto-tuning dramatically improved performance on the Opteron (4x).
•Became important when the problem could no longer be mapped with
Niagara2’s 4MB pages.
•Although prefetching showed little benefit, SIMD and streaming stores
helped significantly.
•Cell was not auto-tuned, and only collision() was implemented.

Using the Roofline Model
•Out-of-the-box code touches
  too many arrays per loop
  iteration.
•Cache bypass improves the
   arithmetic intensity
•Dataset is too large for the
  snoop filter to ever work.
•Clearly, no room for
  improvement on Clovertown,
  Barcelona, or Cell.
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Auto-tuned performance

Cell Blade
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Reference
Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, James Demmel,
"Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms",
Supercomputing (SC), 2007.

What’s a Sparse Matrix?
•Like a dense matrix,
•but most of the entries are 0.0
•Huge performance advantage in
  storing/operating on the nonzeros
•CSR is the standard representation
•Requires significant meta data

Sparse Matrix Vector Multiplication (SpMV)
•Evaluate y=Ax
•A is a sparse matrix
•x & y are dense vectors
•No ILP, DLP, and very low flop:byte ratio (<0.166)

Auto-tuning SpMV
•Register, Cache, and TLB blocking result in hierarchical data structures.
•Exhaustive search for optimal prefetch distance.
•Memory traffic minimization heuristic improves flop:byte ratio (<0.25)
•Dramatic increases in performance across all machines
•SIMDization of little/no value.
•Benefits are matrix dependent.

Using the Roofline Model
•Plot only the Dense matrix
  stored in sparse format
•Clearly heavily memory-
  bound on all computers
•Register blocking amortizes
  meta data
•Prefetching/NUMA often
  essential in delivering
  higher bandwidth

Original performance
Auto-tuned performance

Reference
Samuel Williams, Andrew Waterman, David Patterson, “Roofline: An Insightful Multicore Performance Model”,
(submitted to) Communications of the ACM, 2008

Introduction
•Use bound and bottleneck analysis to distill the key components of
  architecture and performance (computation, communication, locality)
  into a visually-intuitive performance model.
•Allow programmers to model, 
  predict, and analyze a kernel’s
  performance.
•Here we restrict the model to
  memory-intensive SPMD
  floating-point kernels. 

Naïve Roofline Model
•Well known formalism.
•Base on microbenchmarks
  and optimization manuals.
•Combines communication,
  computation, and locality
  into a single figure.

In-core Parallelism
•Current architectures achieve
  high performance through many
  forms of in-core parallelism.
•A lack of exploitation of any form
  of in-core parallelism will
  degrade performance.
•Delineate performance levels
  = in-core ceilings

Instruction Mix
•Large numbers of integer instructions
  can limit FP performance.

Memory Bandwidth
•High memory bandwidth comes
  from hiding latency and
  exploiting parallelism.
•HW prefetchers hide latency for
  unit-stride access patterns.
•SW prefetchers supplement this.
•Multisocket SMPs require
  careful placement of data
  (NUMA optimizations).
•A lack of any of these will
  degrade memory bandwidth
  = bandwidth ceilings

Locality
•Think 3C’s of caches.
•All kernels have compulsory
  cache misses.
•Caches are finite
  = capacity misses
•Caches aren’t fully associative
  = conflict misses
•If software doesn’t handle these,
  arithmetic intensity will degrade
  = arithmetic intensity walls

Future Work
•Performance counters will dramatically
  enhance the Roofline Model.
•Expanding the model to other communication and computation metrics
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What is Auto-tuning?
Basic Idea
•Provides performance portability across the breadth and evolution of
  multicore architectures.
•There are too many complex architectures with too many possible code
  transformations to hand optimize every kernel for every architecture.
•An optimization on one machine may slow another machine down.
•Need a general, automated solution.

Code Generators
•Kernel-specific
•Perl scripts generate 1000’s of code variations for various optimizations:

• NUMA-Aware collocates data with the threads processing it
• Array Padding avoids conflicts in the L1/L2
• Register Blocking in the sparse motif, data structure is

hierarchically blocked for locality
• Cache Blocking minimizes cache misses and memory traffic
• Vectorization avoids thrashing the TLB
• Unrolling/DLP compensates for poor compilers
• SW Prefetching attempts to hide L2 and DRAM latency
• SIMDization compensates for poor compilers, and

streaming stores minimize memory traffic

Auto-tuners
•Search over all possible code variants for best performance.
•Often, an exhaustive search is intractable.

• The trend is to use heuristics to guide the search.
• The future is to use performance models to guide the search.

Isn’t this just compilation? No.
•Auto-tuners are dataset aware, where compilers are oblivious.
•Auto-tuners are motif-oriented, not code-oriented.
•Auto-tuners can change the data structures, loop structures or
  even the algorithm at runtime to achieve better performance

Where does this fit in the ParLab ?
ParLab
•Multi- and manycore is the only foreseeable solution to improve
   performance or reduce power.
•Vertically and horizontally integrated lab focused on manycore.
•Within each layer are multiple research groups.
•Within each group are multiple projects.
•Two groups (analysis and verification) dive through all layers

My Work
•Fits into two different, but related layers:

• The Roofline model is a template for analyzing performance
• Auto-tuning computational motifs is buried in the Efficiency Layer.

•Uses existing multicore SMPs as proxies for next generation multicore
  computers
  e.g. Victoria Falls with 128 threads is like a 128 core machine


