
Challenges and Advances in Parallel Sparse Matrix-Matrix Multiplication ∗

Aydın Buluç
Department of Computer Science

University of California, Santa Barbara
aydin@cs.ucsb.edu

John R. Gilbert
Department of Computer Science

University of California, Santa Barbara
gilbert@cs.ucsb.edu

Abstract

We identify the challenges that are special to parallel
sparse matrix-matrix multiplication (PSpGEMM). We show
that sparse algorithms are not as scalable as their dense
counterparts, because in general, there are not enough
non-trivial arithmetic operations to hide the communication
costs as well as the sparsity overheads. We analyze the scal-
ability of 1D and 2D algorithms for PSpGEMM. While the
1D algorithm is a variant of existing implementations, 2D
algorithms presented are completely novel. Most of these
algorithms are based on the previous research on parallel
dense matrix multiplication. We also provide results from
preliminary experiments with 2D algorithms.

1 Introduction

We consider the problem of multiplying two sparse ma-
trices in parallel (PSpGEMM). Sparse matrix-matrix multi-
plication is a building block for many algorithms includ-
ing graph contraction, breadth-first search from multiple
source vertices, peer pressure clustering [21], recursive for-
mulations of all-pairs-shortest-path algorithms [8], multi-
grid interpolation/restriction [2], and parsing context-free
languages [19]. A scalable PSpGEMM algorithm, operat-
ing on a semiring, is a key component for building scalable
parallel versions of those algorithms.

In this paper, we identify the challenges in the design and
implementation of a scalable PSpGEMM algorithm. Sec-
tion 5 explains those challenges in more detail. We also
propose novel algorithms based on 2D block decomposi-
tion of data, analyze their computation and communication
requirements, compare their scalability, and finally report
timings from our initial implementations.

∗This research was supported in part by the Department of Energy un-
der award number DE-FG02-04ER25632, in part by MIT/LL under con-
tract number 7000012980, and in part by the National Science Foundation
through TeraGrid resources provided by TACC.

To the best of our knowledge, parallel algorithms using a
2D block decomposition have not been developed for sparse
matrix-matrix multiplication. Existing 1D algorithms are
not scalable to thousands of processors. On the contrary 2D
dense matrix multiplication algorithms are proved to be op-
timal with respect to the communication volume [15], mak-
ing 2D sparse algorithms likely to be more scalable than
their 1D counterparts. We show that this intuition is indeed
correct.

Widely used sequential sparse matrix-matrix multiplica-
tion kernels, such as the one used in MATLAB [13] and
CSparse [9], are not suitable for 2D decomposition as
shown before [4]. Therefore, for our 2D algorithms, we
use an outer product based kernel, which is scalable with
respect to the total amount of work performed.

In Section 6, we compare the scalability of 1D and 2D
algorithms for different matrix sizes. In those speed-up pro-
jections, we used our real-world estimates of constants in-
stead of relying on the O-notation. We also investigated the
effectiveness of overlapping communication with computa-
tion. Finally, we implemented and tested a 2D algorithm
for PSpGEMM using matrices from models of real world
graphs.

2 Terminology

The sparse matrix-matrix multiplication problem
(SpGEMM) is to compute C = AB, where the input
matrices A and B, having dimensions M ×K and K ×N
respectively, are both sparse. Although the algorithms op-
erate on rectangular matrices, our analysis assumes square
matrices (M = K = N) in order not to over-complicate
the statement of the results.

In PSpGEMM, we perform multiplication utilizing p
processors. The cost of one floating-point operation, along
with the cost of cache misses and memory indirections as-
sociated with the operation, is denoted by γ, measured in
nanoseconds . α is the latency of sending a message over the
communication interconnect. β is the inverse bandwidth,
measured in nanoseconds per word transfered.

37th International Conference on Parallel Processing

0190-3918/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPP.2008.45

503

The number of nonzero elements in A is denoted by
nnz(A). We adopt the colon notation for sparse matrix
indexing, where A(:, i) denotes the ith column, A(i, :) de-
notes the ith row, and A(i, j) denotes the element at the
(i, j)th position of matrix A. Flops (flops(AB) or flops in
short) is defined as the number of nonzero arithmetic oper-
ations required to compute the product AB.

The sequential work of SpGEMM, unlike dense GEMM,
depends on many parameters. This makes parallel scal-
ability analysis a tough process. Therefore, we restrict
our analysis to sparse matrices with c > 0 nonzeros
per row/column, uniformly-randomly distributed across the
row/column. The sparsity parameter c, albeit oversimpli-
fying, is useful for analysis purposes, since it makes dif-
ferent parameters comparable to each other. For example,
if A and B both have sparsity c, then nnz(A) = cN and
flops(AB) = c2N . It also allows us to decouple the effects
of load imbalances from the algorithm analysis because the
nonzeros are assumed to be evenly distributed across pro-
cessors. Our analysis is probabilistic, exploiting the uni-
form random distribution of nonzeros. Therefore, when we
talk about quantities such as nonzeros per subcolumn, we
mean the expected number of nonzeros.

The lower bound on sequential SpGEMM is Ω(flops) =
Ω(c2N). This bound is achieved by some row-wise and
column-wise implementations [13, 14], provided that c ≥ 1.
The row-wise implementation of Gustavson is the natural
kernel to be used in the 1D algorithm where data is dis-
tributed by rows. It has a asymptotic complexity of

O(N +nnz(A)+flops) = O(N +cN +c2N) = Θ(c2N).

Therefore, we take the sequential work (W) to be γc2N
throughout the paper.

Our sequential SpGEMM kernel used in 2D algorithms
requires matrix B to be transposed before the computation,
at a cost of trans(B), which can be O(N + nnz(B)) or
O(nnz(B) lg nnz(B)), depending on the implementation.
The kernel has total complexity of

O(nzc(A) + nzr(B) + flops lg ni + trans(B)),

where nzc(A) is the number of columns of A that contain
at least one nonzero, nzr(B) is the number of rows of B
that contain at least one nonzero, and ni is the number of
indices i for which A(:, i) �= ∅ and B(i, :) �= ∅.

The data structure used by sequential SpGEMM is
DCSC (doubly compressed sparse column). DCSC has the
following properties:

1. Its storage is strictly O(nnz)

2. It supports a scalable sequential SpGEMM algorithm.

3. It allows fast access to columns of the matrix.

NUM = 0.1 0.2 0.3 0.4

IR = 5 7 3 1

CP = 0 2 3 4

JC = 0 6 7

AUX = 0 1 3 3

Figure 1. Matrix A in DCSC format

DCSC, therefore, is our data structure of choice for storing
submatrices owned locally by each processor in 2D algo-
rithms. Figure 1 shows DCSC representations of a 9-by-9
matrix with 4 nonzeros that has the following triples repre-
sentation:

A = {(5, 0, 0.1), (7, 0, 0.2)(3, 6, 0.3), (1, 7, 0.4)}
More details on DCSC and the scalable sequential
SpGEMM can be found in our previous work [4].

3 Parallel 1D Algorithm

In 1D algorithms, data can be distributed by rows or
columns. We consider distribution by rows; distribution by
columns is symmetric. For the analysis, we assume that
pairs of adjacent processors can communicate simultane-
ously without affecting each other. The algorithm used in
practice in STAR-P [20] is a variant of this row-wise algo-
rithm where simultaneous point to point communications
are replaced with all-to-all broadcasts.

The data is distributed to processors in block rows, where
each processor receives M/p consecutive rows. For a ma-
trix A, Ai denotes the block row owned by the ith proces-
sor. To simplify the algorithm description, we use Aij to
denote Ai(:, jp : (j +1)p−1), the jth block column of Ai,
although block rows are physically not partitioned.

A =

⎛
⎝ A1

. . .
Ap

⎞
⎠ =

⎛
⎝ A11 . . . A1p

.
Ap1 . . . App

⎞
⎠ , B =

⎛
⎝ B1

. . .
Bp

⎞
⎠

For each processor Pi, the computation is set up in the
following way:

Ci = Ci + Ai B = Ci = Ci +
p∑

j=1

Aij Bj

504

Each processor sends and receives p − 1 point-to-point
messages of size nnz(B)/p. Therefore,

Tcomm = (p−1)
(
α+β

nnz(B)
p

)
= Θ(pα+β c N). (1)

The row-wise SpGEMM forms one row of C at a time,
and they might need to access all of B for that. However,
only a portion of B is accessible at any time in parallel
algorithms. This requires multiple iterations to fully form
one row of C. The nonzero structure of the current active
row of C is formed by using an O(N) data structure called
the sparse accumulator (SPA) [13]. It is composed of three
components: a dense vector that holds the real values for
the active row of C, a dense boolean vector that holds the
“occupied” flags, and a sparse list that holds the indices of
nonzero elements in the active row of C so far. Initialization
of the SPA takes O(N) time but loading and unloading can
be done in time proportional to the number of nonzeros in
the SPA.

for all processors Pi in parallel do1

SPA← Initialize ;2

for j ← 1 to p do3

Broadcast (Bj) ;4

for k ← 1 to N/p do5

SPA← Load (Ci(k, :)) ;6

SPA← SPA + Aij(k, :) ∗Bj ;7

Ci(k, :)← UnLoad (SPA) ;8

end9

end10

end11

Algorithm 1: C← A ∗B using row Sparse1D

The pseudocode is given in Algorithm 1. The compu-
tational time is dominated by loads and unloads of SPA,
which is not amortized by the number of nonzero arith-
metic operations in general. The simple running example
in Figure 2 shows an extreme case. In this figure, N = 6,
p = 3, and each x denotes a nonzero. It is easy to see that
flops(AB) = n2 due to the first outer product. After the
very first execution of the inner loop in Algorithm 1, SPA
becomes completely dense for every row Ci(k, :). Those
dense SPA’s are going to be loaded/unloaded p − 1 more
times during the subsequent iterations of the outer-loop,
even though no additional flops are needed.

Since there are N/p rows per processor, and each row
leads to p loads/unloads of the corresponding SPA, we
have N SPA loads/unloads per processors. Each of those
loads takes O(nnz(SPA)) = N time, making up a cost of
O(N2) per processor, when flops per processors where only
O(N2/p).

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

x 0 0 0 0 0
x 0 0 0 0 0
x 0 0 0 0 0
x 0 0 0 0 0
x 0 0 0 0 0
x 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

x x x x x x
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Figure 2. Worst case for 1D Algorithm

Analyzing the general case is hard without making some
assumptions, even for random matrices. Here, we assume
that each nonzero in the output is contributed by a small
(and constant) number of flops. In practice, this is true for
many sparse matrices, and flops/nnz(C) ≈ 1 for reason-
ably large N .

The cost of SPA load/unload per row is then:

flops(AB)
Np

·
p∑

i=1

i =
c2N

Np
· p · (p + 1) = Θ(c2p)

Apart from SPA loads/unloads, each processor iterates p
times over its rows. As each processor has N/p rows, the
cost of computation per processor becomes

Tcomp = γ
(N

p
(p + c2p)

)
= γ

(
N(1 + c2)

)
. (2)

The efficiency of the algorithm overall is:

E =
W

p (Tcomp + Tcomm)

=
γc2N

p
(
γ(N(1 + c2)) + p α + β cN

) (3)

We see that the communication to computation ratio of
1D PSpGEMM is higher than its dense counterpart. In the
dense case, O(p N2) communication was dominated by the
O(N3) computation in a scaled speedup setting. To keep
the efficiency constant in PSpGEMM, work should increase
proportionally to the cost of parallel overheads.

We separately consider the factors that limit scalability.
Scalability due to latency is achieved when γc2N ∝ α p2,
which requires N to grow on the order of p2. Scalability
due to bandwidth costs is achieved when

γc2N ∝ β c p N
αc

β
= Θ(1) ∝ p ,

which is clearly unscalable with increasing number of pro-
cessors.

505

Having shown that 1D algorithm is not scalable in terms
of the amount of communication it does, we now analyze
its scalability due to computation costs.

γc2N ∝ γ p N(c2 + 1)

c2 + 1
c2

= Θ(1) ∝ p .

We see that there is no way to keep parallel efficiency
constant with the 1D algorithm, even when we ignore com-
munication costs. In fact, the algorithm gets slower as the
number of processors increase. STAR-P implementation
by-passes this problem by all-to-all broadcasting nonzeros
of the B matrix, so that the whole B matrix is essentially
assembled at each processor.

This type of implementation avoids the cost of load-
ing/unloading SPA at every stage, but it introduces a mem-
ory problem. Aggregate memory usage among all proces-
sors becomes nnz(A)+ p nnz(B)+ nnz(C), which is un-
scalable. Furthermore, the whole B matrix is unlikely to fit
into the memory of a single node in real applications. There
is clearly a need to design better 1D algorithms, that avoid
SPA loading/unloading and at the same time do not impose
memory problems.

4 Parallel 2D Algorithms

4.1 Sparse Cannon (SpCannon)

Our first 2D algorithm is based on Cannon’s algorithm
for dense matrices [5]. The p processors are logically orga-
nized on a (

√
p×√p) mesh, indexed by their row and col-

umn indices so that the (i, j)th processor is denoted by Pij .
Matrices are assigned to processors according to a 2D block
decomposition. Each node gets a submatrix of dimensions
(N/
√

p)× (N/
√

p) in its local memory. For example, A is
partitioned as shown below and Aij is assigned to processor
Pij .

A =

⎛
⎝ A11 . . . A1

√
p

.
A√

p1 . . . A√
p
√

p

⎞
⎠

The pseudocode of the algorithm is given in Algorithm 2.
Each processor sends and receives

√
p − 1 point-to-point

messages of size nnz(A)/p, and
√

p − 1 messages of size
nnz(B)/p. Therefore, the communication cost per proces-
sor is

Tcomm =
√

p
(
2 α + β

(nnz(A)
p

+
nnz(B)

p

))

= 2 α
√

p +
2 β c N√

p
= Θ(α

√
p +

β c N√
p

). (4)

for all processors Pij in parallel do1

LeftCircularShift (Aij , j) ;2

UpCircularShift (Bij , i) ;3

end4

for all processors Pij in parallel do5

for k ← 1 to
√

p do6

Cij ← Cij + Aij ∗Bij ;7

LeftCircularShift (Aij , 1) ;8

UpCircularShift (Bij , 1) ;9

end10

end11

for all processors Pij in parallel do12

LeftCircularShift (Aij , j) ;13

UpCircularShift (Bij , i) ;14

end15

Algorithm 2: C← A ∗B using SpCannon

The expected number of nonzeros in a given column of
a local submatrix Aij is c/

√
p. Therefore, for a submatrix

multiplication AikBkj ,

ni(Aik, Bkj) = min
{
1,

c2

p

} N√
p

= min{ N√
p
,
c2 N

p
√

p
}

flops(AikBkj) =
flops(AB)

p
√

p
=

c2 N

p
√

p

Tmult =
√

p

(
2 min

{
1,

c√
p

}
+

c2N

p
√

p
lg

(
min

{ N√
p
,
c2N

p
√

p

}))

Overall cost of additions using p processors and Brown
and Tarjan’s O(m lg n/m) merging algorithm [3] is

Tadd =

√
p∑

i=1

(flops
p
√

p
lg i

)
=

flops
p
√

p

√
p∑

i=1

lg i

=
flops
p
√

p
lg

√
p∏

i=1

i =
flops
p
√

p
lg (
√

p !)

Note that we might be slightly overestimating, since we
assume flops/nnz(C) ≈ 1 as we did in the analysis of the
1D algorithm. From Stirling’s approximation and asymp-
totic analysis, we know that lg (n !) = Θ(n lg n) [7]. Thus,
we get:

Tadd = Θ
(flops

p
√

p

√
p lg
√

p

)
= Θ

(
c2N lg

√
p

p

)
.

There are two cases to analyze: p > c2 and p ≤ c2.
Since scalability analysis is concerned with the asymptotic

506

behavior as p increases, we just provide results for the p >
c2 case. The total computation cost Tcomp = Tmult + Tadd

is

Tcomp = γ
(
c +

c2N

p
lg

(c2N

p
√

p

)
+

c2N lg
√

p

p

)

= γ
(
c +

c2N

p
lg

(c2N

p

))
(5)

In this case, efficiency becomes

E =
W

p (Tcomp + Tcomm)

=
γc2N

p
(
γ
(
c + c2N

p lg
(

c2N
p

))
+ α
√

p + β c N√
p

)

=
γc2N

γcp + γc2N lg
(

c2N
p

)
+ α p

√
p + β c

√
p N

(6)

Scalability due to computation is much better than the
1D case. As long as N grows linearly with p, efficiency
due to computation is constant at 1/ lg (c2N/p). Scalability
due to latency is achieved when γc2N ∝ α p

√
p, which

requires N to grow on the order of p1.5. Bandwidth cost
is now the sole bottleneck in scalability. For keeping the
efficiency constant, we need

γc2N ∝ β c
√

p N
γc

β
= Θ(1) ∝ √p .

Although still unscalable, the degree of unscalability is
lower than the 1D case. Consequently, 2D algorithms both
lower the degree of unscalability due to bandwidth costs and
mitigate the bottleneck of computation. This makes over-
lapping communication with computation becomes more
promising.

4.2 Sparse SUMMA (SpSUMMA)

SUMMA [11] is a memory efficient, easy to generalize
algorithm for parallel dense matrix multiplication. It is the
algorithm used in parallel BLAS [6]. As opposed to Can-
non’s algorithm, it allows a tradeoff to be made between
latency cost and memory by varying the degree of block-
ing. The algorithm, illustrated in Figure 3, proceeds in K/b
stages. At each stage,

√
p active row processors broadcast

b columns of A simultaneously along their rows and
√

p
active column processors broadcast b rows of B simultane-
ously along their columns.

Sparse SUMMA , like dense SUMMA , incurs an extra
cost over Cannon for using row-wise and col-wise broad-
casts instead of nearest-neighbor communication, which
might be modeled as an additional O(lg p) factor in com-
munication cost. Other than that, the analysis is similar to

J

K

I

K

A(i, k)
 C(i,j)

* =

B(k, j)

Figure 3. SpSUMMA Execution (b = N/
√

p)

sparse Cannon and we omit the details. Using the DCSC
data structure, the expected cost of fetching b consecutive
columns of a matrix A is b plus the size (number of nonze-
ros) of the output [4]. Therefore, the algorithm asymptoti-
cally has the same computation cost for all values of b.

5 Challenges

We identify three challenges that are specific to the
sparse case. The first one is the load imbalance among
processors. Each processor performs a total of W/p work
in the dense case where W = N3, but such a balance
is hard to achieve in the sparse case. Furthermore, dense
GEMM algorithms [5, 11] usually execute in a synchronous
manner in s stages, where each processor performs W/p s
work per stage. For sparse matrices, achieving good load
balance per stage is even harder than achieving load bal-
ance for the whole computation. Although our analysis as-
sumes constant row/col degree, we have experimented with
random permutations for load balancing on more realistic
graphs. Random permutations turned out to be reasonably
successful except for some class of matrices with full diag-
onal [4], such as 3D geometric graphs [12]. Asynchronous
algorithms might be helpful for mitigating the load balance
problem for matrices with a full diagonal.

The second challenge is the addition of submatrices. In
the dense case, no extra operations are performed for sub-
matrix additions; the same amount of work would need to
be done in the sequential case as well. Contrary to the dense
case, A← A+B can not be performed in time proportional
to the number of nonzeros in B, when both A and B are
sparse.

The third challenge is to hide the communication. While
this is relatively easier in the dense case due to high com-
putation to communication ratio, it becomes more challeng-
ing in the sparse case. Merely increasing the problem size
is generally not enough to decrease the communication to
computation ratio of sparse algorithms. One sided com-
munication with zero copy RDMA operations previously
showed its effectiveness, particularly in the context of dense
matrix multiplication [17] and 3D Fourier Transform [1]. In
the next section, we estimate the applicability of one-sided
communication to sparse Cannon algorithm.

507

0
1000

2000
3000

4000
5000

0

2

4

6

8

10

12

x 10
5

0

10

20

30

40

50

60

70

Num Procs

Synchronous Speedup plot for 1D

Matrix Dimension N

Figure 4. Speedup of Sparse1D

6 Experiments and Implementation

In this section, we project the estimated speedup of 1D
and 2D algorithms and give timing results from a prelimi-
nary version of Sparse SUMMA algorithm that we imple-
mented using MPI.

For realistic evaluation, we first evaluated the constants
in the sequential algorithms on a 2.2 Ghz Opteron, in or-
der to be used in projections. We performed multiple runs
with different N and c values; estimating the constants us-
ing non-linear regression. One surprising result is the order
of magnitude difference in the constants between sequen-
tial kernels. 1D SpGEMM kernel has γ = 293.6 nsec,
whereas the 2D kernel has γ = 19.2 nsec. We attribute the
difference to cache friendliness of the 2D SpGEMM ker-
nel. We assume an interconnect with 1 GB/sec point-to-
point bandwidth, and 1 microsecond latency. TACC’s Dell
Linux Cluster (Lonestar) is an example system that has the
assumed network settings.

Figures 4 and 5 show the estimated speedup of Sparse1D
and SpCannon for matrix dimensions from N = 216 to 220

and number of processors from p = 1 to 4096. The number
of nonzeros per column is 7 throughout the experiments,
which is in line with many real world graphs such as the
Internet graph [16].

We see that Sparse1D’s speedup does not go beyond 60x,
even with bigger matrix dimensions. It also starts showing
diminishing returns for relatively small matrix sizes. On
the contrary, SpCannon shows positive and almost linear
speedup for up to 4096 processors, even though the slope
of the curve is less than ideal. It is crucial to note that the
projections for Sparse1D are based on the complexity of
STAR-P ’s implementation even though it is shown to be
memory inefficient. This is because the original memory

0
1000

2000
3000

4000
5000

0

2

4

6

8

10

12

x 10
5

0

200

400

600

800

1000

1200

Num Procs

Synchronous Speedup plot for 2D

Matrix Dimension N

Figure 5. Speedup of SpCannon

efficient algorithm given in Section 3 actually slows down
as p increases.

In the second set of projections, we evaluate the effects
of overlapping communication with computation. The non-
overlapped percentage of the communication [17] is defined
as:

w = 1− Tcomp

Tcomm
=

Tcomm − Tcomp

Tcomm

Since the cost of additions in 2D algorithms is asymp-
totically different at each stage, we explicitly calculated the
amount of non-overlapped communication in stage granu-
larity 1. Then, the speedup of the asynchronous implemen-
tation is given by:

S =
W

Tcomp + w(Tcomm)

Figure 6 shows the estimated speedup of asyn-
chronous SpCannon assuming one-sided communication
with RDMA support. For relatively smaller matrices,
speedup is about 30% more than the speedup of a syn-
chronous implementation. Interestingly, speedup is higher
for smaller matrices (more than 1200x for 4096 processors).
This is because almost all communication is overlapped
with computation. In this case, as noted in Section 4.1,
efficiency is 1/ lg (c2N/p). In other words, when commu-
nication is fully overlapped, parallel efficiency drops as N
increases.

The projected speedup plots should be interpreted as an
upper bound on the speedup that can be achieved on a real
system using the aforementioned algorithms. That requires
all components to be implemented and working optimally.
The conclusion we can derive from those plots is that no

1This can be considered as a simulation in some sense

508

0
1000

2000
3000

4000
5000

0

2

4

6

8

10

12

x 10
5

0

200

400

600

800

1000

1200

Num Procs

Asynchronous Speedup plot for 2D

Matrix Dimension N

Figure 6. Speedup of SpCannon (Async)

matter how hard we try, it is impossible to get good speedup
with the current 1D algorithms.

Finally, we implemented a real prototype of the Sp-
Summa algorithm using C++, with MPI for parallelism.
The implementation is synchronous in the sense that over-
lapping communication with computation is not attempted.
We ran our code on the TACC’s Dell Linux Cluster (Lones-
tar), which has 2.66GHz dual-core processors in each node.
It has an Infiniband interconnect and we compiled our code
using the Intel C++ Compiler version 9.1.

We performed a strong scaling experiment with a ma-
trix dimension of 220. In our experiments, instead of us-
ing random matrices (matrices from Erdős-Rényi random
graphs [10]), we used matrices from synthetically gener-
ated real-world graphs [18] to achieve results closer to re-
ality. The average number of nonzeros per column is 8 for
those synthetically generated graphs. The results are shown
in Figure 7.

Our code achieves 10× speedup for 16 processors, and it
shows steady speedup until p = 64, which are both promis-
ing. However, it starts to slow down as the number of pro-
cessors approach to 256. A couple of factors lead to this
behavior:

1. The code currently performs sparse matrix additions
by scanning, instead of using an optimal unbalanced
merging algorithm. As p increases, the cost of addi-
tions starts to become a bottleneck

2. Our input matrices model real worlds graphs with
power-law degree distributions. Coupled with our syn-
chronous implementation, this poses a load-balance
problem.

3. SpSUMMA has the extra lg p factor in the communi-
cation that also effects the performance as p increases.

15

12

9

6

3

256641641

T
im

e
(s

ec
s)

Processors

SpSUMMA

Figure 7. Strong scaling of sparse SUMMA

Although the results significantly deviate from the ideal
speedup curve, they still indicate that ours is a good ap-
proach to the problem in practice (one that does not ignore
constants so large as to make the algorithm impractical).

7 Conclusions and Future Work

In this paper, we provided full scalability analysis of 1D
and 2D algorithms for parallel sparse matrix-matrix multi-
plication (PSpGEMM). To the best of our knowledge, such
an analysis does not exist in the literature. We also proposed
the first 2D algorithms for PSpGEMM. We supported our
analysis with projections and preliminary experiments.

Both our analysis and experiments show that 2D algo-
rithms are more scalable than their 1D counterparts, both
in terms of communication and computation costs. The 2D
algorithms proposed in this paper are also amenable to a
remote direct memory access (RDMA) implementation to
hide the communication costs.

The main future direction of our work is to provide a
high-quality implementation of SpSUMMA that scales up
to thousands of processors. We are currently developing a
non-MPI version that uses the one-sided communication ca-
pabilities of GASNET[1] to hide the communication costs.
Using an optimal unbalanced merging algorithm is also re-
quired for scalability, but our experiments with existing
pointer-based merging algorithms show that their constants
are quite big to make them practical in an real implementa-
tion. Developing a cache-efficient algorithm for unbalanced
merging is also one of our priorities.

Lastly, a better 1D algorithm is clearly necessary in order
to use 1D algorithms for settings where p < 100. Such
an algorithm should avoid excessive SPA loading/unloading
and should be scalable in terms of memory consumption.

509

References

[1] C. Bell, D. Bonachea, R. Nishtala, and K. A. Yelick. Op-
timizing bandwidth limited problems using one-sided com-
munication and overlap. In IPDPS, Rhodes Island, Greece,
2006. IEEE Computer Society.

[2] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multi-
grid tutorial: second edition. Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, USA, 2000.

[3] M. R. Brown and R. E. Tarjan. A fast merging algorithm.
Journal of the ACM, 26(2):211–226, 1979.

[4] A. Buluç and J. R. Gilbert. On the Representation and Mul-
tiplication of Hypersparse Matrices. In IPDPS, Miami, FL,
USA, 2008. IEEE Computer Society.

[5] L. E. Cannon. A cellular computer to implement the kalman
filter algorithm. PhD thesis, Montana State University,
1969.

[6] A. Chtchelkanova, J. Gunnels, G. Morrow, J. Overfelt, and
R. A. van de Geijn. Parallel implementation of BLAS: Gen-
eral techniques for Level 3 BLAS. Concurrency: Practice
and Experience, 9(9):837–857, 1997.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, chapter 3, page 55. The MIT
Press, second edition, 2001.

[8] P. D’Alberto and A. Nicolau. R-Kleene: A high-
performance divide-and-conquer algorithm for the all-pair
shortest path for densely connected networks. Algorithmica,
47(2):203–213, 2007.

[9] T. A. Davis. Direct Methods for Sparse Linear Systems. So-
ciety for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2006.

[10] P. Erdős and A. Rényi. On random graphs. Publicationes
Mathematicae, 6(1):290–297, 1959.

[11] R. A. V. D. Geijn and J. Watts. SUMMA: Scalable universal
matrix multiplication algorithm. Concurrency: Practice and
Experience, 9(4):255–274, 1997.

[12] J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric mesh
partitioning: Implementation and experiments. SIAM J. Sci.
Comput., 19(6):2091–2110, 1998.

[13] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices
in Matlab: Design and implementation. SIAM Journal of
Matrix Analysis and Applications, 13(1):333–356, 1992.

[14] F. G. Gustavson. Two fast algorithms for sparse matri-
ces: Multiplication and permuted transposition. ACM Trans.
Math. Softw., 4(3):250–269, 1978.

[15] D. Irony, S. Toledo, and A. Tiskin. Communication lower
bounds for distributed-memory matrix multiplication. J.
Parallel Distrib. Comput., 64(9):1017–1026, 2004.

[16] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan,
and A. Tomkins. The web as a graph: Measurements, mod-
els, and methods. In COCOON, pages 1–17, 1999.

[17] M. Krishnan and J. Nieplocha. Srumma: A matrix multi-
plication algorithm suitable for clusters and scalable shared
memory systems. In IPDPS, Los Alamitos, CA, USA, 2004.
IEEE Computer Society.

[18] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and C. Falout-
sos. Realistic, mathematically tractable graph generation
and evolution, using kronecker multiplication. In PKDD,
pages 133–145, 2005.

[19] G. Penn. Efficient transitive closure of sparse matrices over
closed semirings. Theor. Comput. Sci., 354(1):72–81, 2006.

[20] V. Shah and J. R. Gilbert. Sparse matrices in Matlab*P:
Design and implementation. In HiPC, pages 144–155, 2004.

[21] V. B. Shah. An Interactive System for Combinatorial Scien-
tific Computing w ith an Emphasis on Programmer Produc-
tivity. PhD thesis, University of California, Santa Barbara,
June 2007.

510

