
LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

1

Memory-Efficient Optimization of Gyrokinetic
Particle-to-Grid Interpolation for Multicore

Processors

Kamesh Madduri, Samuel Williams, Stephane Ethier,
Leonid Oliker, John Shalf, Erich Strohmaier, Katherine Yelick

 Lawrence Berkeley National Laboratory (LBNL)
 National Energy Research Scientific Computing Center (NERSC)
 Princeton Plasma Physics Laboratory (PPPL)

SWWilliams@lbl.gov

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Outline

1.  Gyrokinetic Toroidal Code
2.  Challenges for efficient PIC simulations
3.  Solutions for multicore
4.  Results
5.  Summary and Discussion

2

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

3

Gyrokinetic Toroidal Code

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Gyrokinetic Toroidal Simulations

  Simulate the particle-particle interactions of a charged plasma
 in a Tokamak fusion reactor

  With millions of particles per processor, the naïve N2 method is
totally intractable.

  Solution is to use a particle-in-cell (PIC) method

4

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Particle-in-Cell Methods

  Particle-in-cell (or particle-mesh) methods simulate particle-particle
interactions in O(N) time by examining the field rather than individual
forces.

  Typically involves iterating on four steps:
  From individual particles, determine the spatial distribution of charge
  From the distribution of charge, determine the electromagnetic potential
  From the potential, determine the force on each particle
  Given force, move the particle.

  This requires creation of two auxiliary meshes (arrays):
  the spatial distribution of charge density
  the spatial distribution of electromagnetic potential

  In the sequential world, the sizes of the particle arrays are an order
of magnitude larger than the grids

5

  Particle-in-cell (or particle-mesh) methods simulate particle-particle
interactions in O(N) time by examining the field rather than individual
forces.

  Typically involves iterating on four steps:
  Scatter Charge:
  Poisson Solve:
  Gather:
  Push:

2φ ~ ρ
determine ρ

φ accelerates particles

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

6

Challenges:
• Technology
• PIC
• GTC
• Memory-level parallelism
• Locality

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Technology

  In the past DRAM capacity per core grew exponentially.
  In the future, DRAM costs will dominate the cost & power of

extreme scale machines
  As such, DRAM per socket will remain constant or grow slower than

cores

  Applications must be re-optimized for a fixed DRAM budget
 = sustained Flop/s per byte of DRAM capacity

  Algorithms/optimizations whose DRAM capacity requirements scale
linearly with the number of cores are unacceptable

7

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

  Nominally, push is embarrassingly parallel, and the technologies for
solving PDEs on structured grids are well developed.

  Unfortunately efficient HW/SW support for gather/scatter
operations is still a developing area of research
 (single thread/multicore/multinode)

Although particles and grid points appear linearly in memory,

PIC Challenges

8

1 2 3 4 5 0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

  Nominally, push is embarrassingly parallel, and the technologies for
solving PDEs on structured grids are well developed.

  Unfortunately efficient HW/SW support for gather/scatter
operations is still a developing area of research
 (single thread/multicore/multinode)

When the particles’ spatial coordinates are mapped to the grid,
there is no correlation

PIC Challenges

9

1

2

3

4

5

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

  Nominally, push is embarrassingly parallel, and the technologies for
solving PDEs on structured grids are well developed.

  Unfortunately efficient HW/SW support for gather/scatter
operations is still a developing area of research
 (single thread/multicore/multinode)

Thus particles will update random locations in the grid,
or conversely, grid points are updated by random particles

PIC Challenges

10

1

2

3

4

5

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

  Nominally, push is embarrassingly parallel, and the technologies for
solving PDEs on structured grids are well developed.

  Unfortunately efficient HW/SW support for gather/scatter
operations is still a developing area of research
 (single thread/multicore/multinode)

Moreover, the load-store nature of modern microprocessors demands
the operations be serialized (load-increment-store)

PIC Challenges

11

1

2

3

4

5

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Sequential GTC Challenges

  As if this weren’t enough, GTC further complicates matters as
  the grid is a 3D torus
  points in psi are spatially uniform
  particles are non-circular rings (approximated by 4 points), and

  Luckily rings only exist in a poloidal plane, but the radius of the ring
can grow to ~6% of the poloidal radius.

12

c

b d

a

r psi

zeta

mgrid = total number of points

2D “Poloidal Plane”

3D Torus

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

3D Issues

  Remember, GTC is a 3D code
  As such, particles are sandwiched between two poloidal planes
  and scatter their charge to as many 16 points in each plane

13

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Multicore GTC Challenges
(memory-level parallelism)

  Although out-order processors reorder instructions to exploit
instruction-level parallelism, they resolve the data dependencies in
hardware.

  If the sequence load1, add1, store1, load2, add2, store2
runs on one core, hardware can reorder it into :
load1, load2, add1, add2, store1, store2 assuming

addresses 1 and 2 are different.

  However, if sequences 1 and 2 run on different cores,
 this benefit is lost and the programmer must manage the data
dependency in software.

14

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Multicore GTC Challenges
(Data locality)

  Multicore SMPs have complex memory hierarchies.
  Although the caches are coherent, data migration between caches

is slow and should be avoided.
  Moreover each core has a limited cache size. If random access

working set exceeds the size, performance will be diminished.

  Given the random access nature (scatter/gather) of GTC, how
do we partition the problem to mitigate these limitations?

15

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

16

Multicore Solutions

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Focus: Charge Deposition

  The charge deposition phase is the most complex as it requires
solving the data dependency challenges in addition to the
 data locality challenges found in the gather phase

  As such, this talk will focus on optimizing charge deposition
(scatter) phase for shared memory (threaded) multicore
environments

  In the MPI version of GTC, the torus is first partitioned in zeta
(around the torus) into “poloidal planes” (1 per process)

  Unfortunately the physics limits this decomposition to about 64-256
processes.

  Currently, additional processes work collaboratively on each poloidal
plane reducing together at the end of scatter.

  We explore threading rather than MPI parallelization of each plane

17

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Managing Data Locality
(Particle Decomposition)

  Throughout this work we use a simple 1D decomposition of the
particle array:

  Particles are initially sorted by their radial coordinate

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

thread 0 thread 1 thread 2 thread 3

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Managing Data Locality
(Grid Decomposition)

  We explored four different strategies for managing data locality and total
memory usage.

  In all cases there is a shared grid.
  It may be augmented with (private) per-thread copies
  update thread’s copy of grid if possible, else update shared grid.

19

shared grid

no replication
full overlap

partitioned grid

O(1) replicas
no overlap

thread 0

thread 1
thread 2

thread 3

partitioned grid
(w/ghosts)

O(1) replicas
overlap by rmax/16

thread 0

thread 1
thread 2

thread 3

replicated grids

O(P) replicas
no overlap

thread 0

thread 1

thread 2

thread 3

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Example #1

  Consider an initial distribution of particles on the shared grid.
  As the grid is a single shared data structure, all updates require

some form of synchronization

0

2

3

4

5

6
7

8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

31

1

20

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Example #2

  When using the partitioned grid, we see that some accesses go to
the private partitions, but others go to the shared grid (where they
will need some form of synchronization)

21

3

4

5
7

0

2

6

1

9

15

8

10

11

12

13

14

16

17

21

22

18

19

20

23

24

26
27

31

25

28

29

30

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Managing Data Hazards
(Synchronization)

  We explored five different synchronization strategies:
  coarse lock all r & zeta for a given psi (2 rings)
  medium lock all zeta for a given r & psi (2 grid points)
  fine lock one grid point at a time
  atomic 64b FP atomic increment via CAS

 (required some assembly/intrinsics)
  none one barrier at the end of the scatter phase

  Remember the coarser the lock
  the more overhead is amortized
  the less the available concurrency

22

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Visualizing Locking Granularity

23

0 0

Coarse

0

Medium / Fine

note, medium locking locks the same point
in both sandwiching poloidal planes
where fine locks the point in one plane
at a time.

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Locality × Synchronization

  There are 20 combinations of grid decomposition and data
synchronization.

  However,
  3 won’t guarantee correct results (lack of required synchronization)
  4 are nonsensical (synchronization when none is required)

  As such, only 15 needed to be implemented

24

shared

partitioned
partitioned
(w/ghosts)
replicated

coarse medium fine atomic none

✔
✔
✔

nonsensical

✔
✔
✔

✔
✔
✔

✔
✔
✔

✔ nonsensical nonsensical nonsensical

incorrect

incorrect

incorrect

synchronization

de
co

m
po

si
tio

n

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Miscellaneous

  In addition, we implemented a number of sequential optimizations
including:
  Structure-of-arrays data layout
  explicit SIMDization (via intrinsics)
  Data alignment
  loop fusion
  process pinning

25

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

26

Results

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Experimental Setup

  We examined charge deposition performance on three multicore SMPs:
  Dual-socket, quad-core, hyperthreaded 2.66GHz Intel Nehalem
  Dual-socket, octal-core, 8-way VMT 1.16GHz Sun Niagara2
  Dual-socket, quad-core 2.3GHz Barcelona (in SC’09 paper)

Niagara is a proxy for the TLP of tomorrow’s manycore machines

  Problems are based on:
  grid size (mgrid) 32K, 151K, 600K, 2.4M
  particles per grid point (micell) 2, 5, 10, 20, 50, 100

  Generally, we examine the performance of the threaded variant as a
function of optimization or problem size

  Additionally, we compare against the conventional wisdom MPI version.

27

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Performance
as a function of grid decomposition and synchronization

  Consider problem with 150K grid points and 5 particles/point
  As locks become increasingly finer, the overhead of pthreads becomes an

impediment, but Atomic operations reduce the overhead dramatically
  Nehalem did very well with the partially overlapping decomposition
  Performance is much better than MPI
  Partitioned decomposition attained performance comparable to replication

0

1

2

3

4

5

6

C M F A C M F A C M F A

P
er

fo
rm

an
ce

 (G
Fl

op
/s

)

0

1

2

3

4

5

6

C M F A C M F A C M F A

MPI

MPI

Nehalem Niagara2

28

Shared Partitioned Partitioned
+ ghosts

Shared Partitioned Partitioned
+ ghosts

R
ed

uc
tio

n

R
ed

uc
tio

n

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Memory Usage
as a function of grid decomposition and synchronization

  Although the threaded performance was comparable to either the MPI
variant or the naïve replication approach, the memory usage was
dramatically improved

  ~12x on Nehalem, and ~100x on Niagara

29

!

"!!

#!!!

#"!!

$!!!

%&'()*+,(-* .'(/-/-01)*+,(-* .'(/-/-01)*+,(-*2
,&03/+34(5'6)3

748-9-'(:+,(-*+'((':3
;&'(,)+*)<=+,(-*+'((':>3?
@06A3

B
(-
*
+'
((
'
:
3
+C
)
D
0
(:
+E
/-
9-
F
'
/-
0
1
+>
C
G
?

.'('99)9+HD<9)D)1/'/-01

#!+I+#"+CG

I+#"!!+CG

I+J!!+CG

;0'(3)
C)*-4D

K-1)
7/0D-6

;0'(3)
C)*-4D

K-1)
7/0D-6

;0'(3)
C)*-4D

K-1)
7/0D-6
L)*46/-01

C.H

!

"!

#!!

#"!

$!!

$"!

%&'()*+,(-* .'(/-/-01)*+,(-* .'(/-/-01)*+,(-*2
,&03/+34(5'6)3

748-9-'(:+,(-*+'((':3
;&'(,)+*)<=+,(-*+'((':>3?
@06A3

B
(-
*
+'
((
'
:
3
+C
)
D
0
(:
+E
/-
9-
F
'
/-
0
1
+>
C
G
?

.'('99)9+HD<9)D)1/'/-01

;0'(3)
C)*-4D

I-1)
7/0D-6

;0'(3)
C)*-4D

I-1)
7/0D-6

;0'(3)
C)*-4D

I-1)
7/0D-6
J)*46/-01

C.H

Nehalem Niagara2

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Performance
as a function of problem configuration

30

  For the memory-efficient implementations (i.e. no replication)
  Performance generally increases with increasing density (higher locality)
  Performance generally decreases with increasing grid size (larger working set)
  On Niagara, problems need to be large enough to avoid contention among the

128 threads

32
K

15

1K

60
0K

32
K

15

1K

60
0K

2.

4M

2.
4M

G

rid
 S

iz
e

G
rid

 S
iz

e

Particles per Grid Point Particles per Grid Point

Nehalem Niagara2

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

31

Summary & Discussion

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Summary

  GTC (and PIC in general) exhibit a number of challenges to locality,
parallelism, and synchronization.
  Message passing implementations won’t deliver the efficiency
  Managing data dependencies is a nightmare for shared memory

  We’ve shown that threading the charge deposition kernel can deliver
roughly twice the performance of the MPI implementation

  Moreover, we’ve shown that we can be memory-efficient
 (grid partitioning with synchronization) without sacrificing
performance.

32

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 33

Further Reading

K. Madduri, S. Williams, S. Ethier, L. Oliker, J. Shalf, E. Strohmaier,
K. Yelick, "Memory-Efficient Optimization of Gyrokinetic Particle-to-Grid
Interpolation for Multicore Processors", Supercomputing (SC), 2009.

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 34

Acknowledgements

  Research supported by DOE Office of Science under contract
number DE-AC02-05CH11231

  Research supported by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Discovery
(Award #DIG07-10227)

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

35

Questions?

