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Outline 

1.  Gyrokinetic Toroidal Code 
2.  Challenges for efficient PIC simulations 
3.  Solutions for multicore 
4.  Results 
5.  Summary and Discussion 
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Gyrokinetic Toroidal Code 
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Gyrokinetic Toroidal Simulations 

  Simulate the particle-particle interactions of a charged plasma  
 in a Tokamak fusion reactor 

  With millions of particles per processor, the naïve N2 method is 
totally intractable. 

  Solution is to use a particle-in-cell (PIC) method 
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Particle-in-Cell Methods 

  Particle-in-cell (or particle-mesh) methods simulate particle-particle 
interactions in O(N) time by examining the field rather than individual 
forces.   

  Typically involves iterating on four steps: 
  From individual particles, determine the spatial distribution of charge 
  From the distribution of charge, determine the electromagnetic potential 
  From the potential, determine the force on each particle 
  Given force, move the particle. 

  This requires creation of two auxiliary meshes (arrays): 
  the spatial distribution of charge density 
  the spatial distribution of electromagnetic potential 

  In the sequential world, the sizes of the particle arrays are an order 
of magnitude larger than the grids 
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  Particle-in-cell (or particle-mesh) methods simulate particle-particle 
interactions in O(N) time by examining the field rather than individual 
forces.   

  Typically involves iterating on four steps: 
  Scatter Charge: 
  Poisson Solve:  
  Gather: 
  Push: 

2φ ~ ρ 
determine ρ 

φ accelerates particles 
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Challenges: 
• Technology 
• PIC 
• GTC 
• Memory-level parallelism 
• Locality 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

Technology 

  In the past DRAM capacity per core grew exponentially. 
  In the future, DRAM costs will dominate the cost & power of 

extreme scale machines 
  As such, DRAM per socket will remain constant or grow slower than 

cores 

  Applications must be re-optimized for a fixed DRAM budget 
 = sustained Flop/s    per    byte of DRAM capacity 

  Algorithms/optimizations whose DRAM capacity requirements scale 
linearly with the number of cores are unacceptable 
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  Nominally, push is embarrassingly parallel, and the technologies for 
solving PDEs on structured grids are well developed. 

  Unfortunately efficient HW/SW support for gather/scatter 
operations is still a developing area of research 
 (single thread/multicore/multinode) 

Although particles and grid points appear linearly in memory, 

PIC Challenges 
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  Nominally, push is embarrassingly parallel, and the technologies for 
solving PDEs on structured grids are well developed. 

  Unfortunately efficient HW/SW support for gather/scatter 
operations is still a developing area of research 
 (single thread/multicore/multinode) 

When the particles’ spatial coordinates are mapped to the grid,  
there is no correlation 

PIC Challenges 
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  Nominally, push is embarrassingly parallel, and the technologies for 
solving PDEs on structured grids are well developed. 

  Unfortunately efficient HW/SW support for gather/scatter 
operations is still a developing area of research 
 (single thread/multicore/multinode) 

Thus particles will update random locations in the grid,  
or conversely, grid points are updated by random particles 

PIC Challenges 
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  Nominally, push is embarrassingly parallel, and the technologies for 
solving PDEs on structured grids are well developed. 

  Unfortunately efficient HW/SW support for gather/scatter 
operations is still a developing area of research 
 (single thread/multicore/multinode) 

Moreover, the load-store nature of modern microprocessors demands 
the operations be serialized (load-increment-store) 

PIC Challenges 
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Sequential GTC Challenges 

  As if this weren’t enough, GTC further complicates matters as 
  the grid is a 3D torus 
  points in psi are spatially uniform 
  particles are non-circular rings (approximated by 4 points), and  

  Luckily rings only exist in a poloidal plane, but the radius of the ring 
can grow to ~6% of the poloidal radius. 
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3D Issues 

  Remember, GTC is a 3D code 
  As such, particles are sandwiched between two poloidal planes 
  and scatter their charge to as many 16 points in each plane 
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Multicore GTC Challenges 
(memory-level parallelism) 

  Although out-order processors reorder instructions to exploit 
instruction-level parallelism, they resolve the data dependencies in 
hardware. 

  If the sequence load1, add1, store1, load2, add2, store2 
runs on one core, hardware can reorder it into : 
load1, load2, add1, add2, store1, store2 assuming 

addresses 1 and 2 are different. 

  However, if sequences 1 and 2 run on different cores,  
 this benefit is lost and the programmer must manage the data 
dependency in software. 
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Multicore GTC Challenges 
(Data locality) 

  Multicore SMPs have complex memory hierarchies. 
  Although the caches are coherent, data migration between caches 

is slow and should be avoided. 
  Moreover each core has a limited cache size.  If random access 

working set exceeds the size, performance will be diminished. 

  Given the random access nature (scatter/gather) of GTC, how 
do we partition the problem to mitigate these limitations? 
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Multicore Solutions 
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Focus: Charge Deposition 

  The charge deposition phase is the most complex as it requires 
solving the data dependency challenges in addition to the 
 data locality challenges found in the gather phase 

  As such, this talk will focus on optimizing charge deposition 
(scatter) phase for shared memory (threaded) multicore 
environments 

  In the MPI version of GTC, the torus is first partitioned in zeta 
(around the torus) into “poloidal planes” (1 per process) 

  Unfortunately the physics limits this decomposition to about 64-256 
processes. 

  Currently, additional processes work collaboratively on each poloidal 
plane reducing together at the end of scatter. 

  We explore threading rather than MPI parallelization of each plane 
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Managing Data Locality 
(Particle Decomposition) 

  Throughout this work we use a simple 1D decomposition of the 
particle array: 

  Particles are initially sorted by their radial coordinate 
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Managing Data Locality 
(Grid Decomposition) 

  We explored four different strategies for managing data locality and total 
memory usage. 

  In all cases there is a shared grid.   
  It may be augmented with (private) per-thread copies 
  update thread’s copy of grid if possible, else update shared grid. 
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Example #1 

  Consider an initial distribution of particles on the shared grid. 
  As the grid is a single shared data structure, all updates require 

some form of synchronization 

0 

2 

3 

4 

5 

6 
7 

8 

9 10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 
27 

28 

29 

30 

31 

1 

20 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

Example #2 

  When using the partitioned grid, we see that some accesses go to 
the private partitions, but others go to the shared grid (where they 
will need some form of synchronization) 
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Managing Data Hazards 
(Synchronization) 

  We explored five different synchronization strategies: 
  coarse   lock all r & zeta for a given psi (2 rings) 
  medium   lock all zeta for a given r & psi (2 grid points) 
  fine   lock one grid point at a time 
  atomic   64b FP atomic increment via CAS 

    (required some assembly/intrinsics) 
  none   one barrier at the end of the scatter phase 

  Remember the coarser the lock 
  the more overhead is amortized 
  the less the available concurrency 
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Visualizing Locking Granularity 
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Locality × Synchronization 

  There are 20 combinations of grid decomposition and data 
synchronization. 

  However,  
  3 won’t guarantee correct results (lack of required synchronization)  
  4 are nonsensical (synchronization when none is required) 

  As such, only 15 needed to be implemented 
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Miscellaneous 

  In addition, we implemented a number of sequential optimizations 
including: 
  Structure-of-arrays data layout 
  explicit SIMDization (via intrinsics) 
  Data alignment 
  loop fusion 
  process pinning 
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Results 
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Experimental Setup 

  We examined charge deposition performance on three multicore SMPs: 
  Dual-socket, quad-core, hyperthreaded 2.66GHz Intel Nehalem 
  Dual-socket, octal-core, 8-way VMT 1.16GHz Sun Niagara2 
  Dual-socket, quad-core 2.3GHz Barcelona (in SC’09 paper) 

Niagara is a proxy for the TLP of tomorrow’s manycore machines 

  Problems are based on: 
  grid size (mgrid)    32K, 151K, 600K, 2.4M 
  particles per grid point (micell)  2, 5, 10, 20, 50, 100 

  Generally, we examine the performance of the threaded variant as a 
function of optimization or problem size 

  Additionally, we compare against the conventional wisdom MPI version. 
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Performance 
as a function of grid decomposition and synchronization 

  Consider problem with 150K grid points and 5 particles/point 
  As locks become increasingly finer, the overhead of pthreads becomes an 

impediment, but Atomic operations reduce the overhead dramatically 
  Nehalem did very well with the partially overlapping decomposition 
  Performance is much better than MPI 
  Partitioned decomposition attained performance comparable to replication 
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Memory Usage 
as a function of grid decomposition and synchronization 

  Although the threaded performance was comparable to either the MPI 
variant or the naïve replication approach, the memory usage was 
dramatically improved 

  ~12x on Nehalem, and ~100x on Niagara 
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Performance 
as a function of problem configuration 
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  For the memory-efficient implementations (i.e. no replication) 
  Performance generally increases with increasing density (higher locality) 
  Performance generally decreases with increasing grid size (larger working set) 
  On Niagara, problems need to be large enough to avoid contention among the 
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Summary & Discussion 
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Summary 

  GTC (and PIC in general) exhibit a number of challenges to locality, 
parallelism, and synchronization. 
  Message passing implementations won’t deliver the efficiency 
  Managing data dependencies is a nightmare for shared memory 

  We’ve shown that threading the charge deposition kernel can deliver 
roughly twice the performance of the MPI implementation 

  Moreover, we’ve shown that we can be memory-efficient 
 (grid partitioning with synchronization) without sacrificing 
performance. 
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