
Parallel De Bruijn Graph Construction and
Traversal for De Novo Genome Assembly

Evangelos Georganas†,‡, Aydın Buluç†, Jarrod Chapman∗

Leonid Oliker†, Daniel Rokhsar∗,¶, Katherine Yelick†,‡
†Computational Research Division / ∗Joint Genome Institute, Lawrence Berkeley National Laboratory, USA
‡EECS Department / ¶Molecular and Cell Biology Department, University of California, Berkeley, USA

Abstract—De novo whole genome assembly reconstructs ge-
nomic sequence from short, overlapping, and potentially erro-
neous fragments called reads. We study optimized parallelization
of the most time-consuming phases of Meraculous, a state-
of-the-art production assembler. First, we present a new par-
allel algorithm for k-mer analysis, characterized by intensive
communication and I/O requirements, and reduce the memory
requirements by 6.93×. Second, we efficiently parallelize de
Bruijn graph construction and traversal, which necessitates a
distributed hash table and is a key component of most de novo as-
semblers. We provide a novel algorithm that leverages one-sided
communication capabilities of the Unified Parallel C (UPC) to
facilitate the requisite fine-grained parallelism and avoidance of
data hazards, while analytically proving its scalability properties.
Overall results show unprecedented performance and efficient
scaling on up to 15,360 cores of a Cray XC30, on human genome
as well as the challenging wheat genome, with performance
improvement from days to seconds.

I. INTRODUCTION

Recent advances in sequencing technology have made the
redundant sampling of genomes extremely cost-effective. Such
a sampling consists mostly of shorts reads with low error rates
most of which can be aligned to a reference genome in a
straightforward way. De novo genome assemblers, on the other
hand, reconstruct an unknown genome from a collection of
short reads, without requiring a reference genome. De novo as-
sembly is therefore more powerful and flexible than mapping-
based approaches, since it can be applied to novel genomes
and can in principle discover previously unknown sequences
in species for which reference genomes do not exist. This
advantage, however, comes at a cost of significantly increased
run time and memory requirements. If de novo assembly could
be performed rapidly, it would be preferable to mapping based
approaches for large-scale human genome sequencing, and
other biomedical model and agricultural species.

Meraculous [1] is a state-of-the-art de novo assembler for
short reads, which has demonstrated completeness and accu-
racy [2]. It is a hybrid assembler that combines aspects of de
Bruijn-graph-based assembly with overlap-layout-consensus
approaches. In the de Bruijn-based approach short sequence
reads are represented as all (overlapping) substrings of length
k, referred to as k-mers. Meraculous leverages the base quality
scores produced by sequencing instruments to identify those
k-mers that (1) occur often enough in the reads that they

 0

 200

 400

 600

 800

 1000

 1200

 1400

 480 960 1920 3840 7680
 0

 0.2

 0.4

 0.6

 0.8

 1

Se
co

nd
s

Pa
ra

lle
l e

ffi
ci

en
cy

Number of Cores

Graph construction & traversal
K-mer analysis
Combined time

Parallel efficiency

Fig. 1: Performance and strong scaling of our de Bruijn graph construction
& traversal and k-mer analysis steps on Cray XC30 for the human genome.
The top three timing curves are with respect to the first y-axis (left) whereas
the parallel efficiency curve is with respect to the second y-axis (right). The
x-axis uses a log scale.

are unlikely to contain an error and (2) have unique high
quality extensions in the reads at each end of the k-mer. The
result is a possibly disconnected linear ‘UU sub-graph’ of
the full de Bruijn graph representation of the reads that can
be efficiently traversed to yield nearly error-free contiguous
sequences. The traversal of the ‘UU graph’ is a significant
computational bottleneck that must be performed on a single
large memory node and takes on the order of days for human
but is prohibitive for wheat.

In this work, we present a highly-parallel implementation
of the most challenging phases of the de Bruijn-based whole
genome assembly, namely the k-mer analysis step and the de
Bruijn graph construction & traversal steps. These steps are
described in detail in Section II-A. Our main performance
result is summarized in Figure 1, showing unprecedented
scalability to several thousand cores at which point we can
go from raw sequencing data to contigs in less than three
minutes for a human genome. Although this work focuses on
Meraculous, our parallelization techniques are generally appli-
cable to other de Bruijn-based assemblers. Overall this study
makes numerous contributions in significantly optimizing and
parallelizing these code components using novel algorithmic
and programming methodologies, including:
• A new parallel algorithm for k-mer analysis. We success-SC14, November 16-21, 2014, New Orleans

U.S. Government work not protected by U.S. copyright

reads

contigs

scaffolds

k-mers

1

2

3

Fig. 2: Meraculous assembly flow chart.

fully reduced the memory requirements by 6.93× using
Bloom filters and probabilistic counting techniques, and
attained remarkable scaling up to 15K cores for this I/O-
and communication-intensive computation.

• A novel parallel algorithm for de Bruijn graph construction
& traversal that leverages the one-sided communication
capabilities of the Unified Parallel C (UPC) to facilitate the
requisite random access pattern in the distributed hash table.

• Novel communication optimizations at the hash table con-
struction and the design of a lightweight synchronization
scheme for the parallel de Bruijn graph traversal.

• Analytical propositions to quantify the expected data haz-
ards within the de Bruijn graph traversal with respect to
concurrency.

• Unprecedented performance and scaling on NERSC’s Edi-
son system, a Cray XC30, using the human genome and the
grand-challenge wheat genome to over 15K processors.
Our work shows that efficient utilization of distributed

memory architectures is possible for this irregular problem.
Hence, it removes the requirement of large memory machines
imposed by the original de Bruijn graph construction code
(even for modestly sized genomes) by exploiting UPC’s PGAS
(Partitioned Global Address Space) capabilities. We demon-
strate that our implementation is portable and executable on
both shared- and distributed-memory architectures without
modifications.

II. DE NOVO GENOME ASSEMBLY OVERVIEW

De novo whole genome assembly is the process of recon-
structing the genomic sequence of an organism from short
reads. This is made possible by sequencing the genome
redundantly at some depth so that the reads overlap. Overlap-
layout-consensus (OLC) [3] and the de Bruijn graph [4] are
two types of commonly used techniques for de novo assembly.

The OLC approach is based on the concept of an overlap
graph and is more suitable for assembling genomes that are
sequenced in longer reads that are based on Sanger technology.
In the overlap graph, the vertices are short reads and the edges
represent overlap between those reads. There are several draw-
backs of the OLC approach for short-read assembly: (1) the
resulting overlap graph is linear on the order of the sequencing
data, which is larger than the genome itself by a factor of
depth, (2) the computation of the overlap graph requires all
pairwise read-vs-read comparisons, (3) the problem is to find
a Hamiltonian path in the resulting graph, a problem known

GAT ATC TCT CTG TGA GAA

AAC

ACC

CCG

AAT

ATG

TGC

Contig 1: GATCTGA

Contig 2: AACCG

Contig 3: AATGC

Fig. 3: A de Bruijn graph with k = 3. We highlight with red boxes the UU
k-mers and indicate the corresponding contigs.

to be NP-complete. By contrast, de Bruijn graph is linear in
the order of the genome size, does not require the all pairwise
read-vs-read comparison for graph construction, and solves a
much simpler Eulerian path problem. In the de Bruijn graph,
vertices are k-mers. For those reasons, our work focuses on a
de Bruijn graph based assembler Meraculous.

A. De Bruijn Assembly a la Meraculous

The steps of the de Bruijn assembly, as interpreted by
Meraculous can be summarized as:
1) K-mer analysis (a) k-mer counting: The reads are chopped
into k-mers that overlap by k−1, and a count is kept for each
k-mer occurring more than once. The value of k is chosen
to balance the need for: (i) uniqueness of the k-mers in the
genome, favoring larger k, and (ii) presence of multiple over-
lapping error-free k-mers in each read, favoring k smaller than
1/ error . (b) k-mer characterization: The generated k-mers are
preprocessed and only those with unique high-quality forward
and backward single-base extensions (henceforth called UU
k-mers) are kept.
2) Contig generation (a) De Bruijn graph construction: The
UU k-mers are stored in a hash table where the “key” is the
k-mer and the “value” is a two-letter code [ACGT][ACGT]
that indicates the unique bases that immediately precede and
follow the k-mer in the read dataset. This hash table represents
the “UU graph”. (b) De Bruijn graph traversal: k-mers are
selected to seed forward and reverse traversals of the UU graph
to produce an initial set of “UU contigs” (henceforth called
contigs). The resulting contigs are independent of the selection
of seed k-mers and each UU k-mer is represented exactly once
in the full set of contigs.
3) Scaffolding and gap closing: Information from the initial
reads is leveraged to orient the contigs, close gaps among
them and form the scaffolds, which is the result of the de
novo assembly.

Figure 2 presents a visualization of these steps where the
first arrow depicts k-mer analysis, the second arrow depicts
contig generation, and the third arrow depicts scaffolding. We
emphasize that this work parallelizes steps 1 and 2 that are
the most time-consuming and parallelizing step 3 will be the
subject of future work. Figure 3 illustrates an example de
Bruijn graph with k = 3. Every node in the graph is a k-
mer and two nodes that have an overlap of k − 1 bases are
connected with an edge. In this graph we can identify three
contigs since the GAA node does not have a unique forward
extension (it has two forward high quality extensions).

22%

58%

20%

k-mer analysis contig generation scaffolding

22%

58%

20%

k-mer analysis contig generation scaffolding

12%

73%

15%

k-mer counting and characterization contig generation scaffolding

12%

73%

15%

k-mer counting and characterization contig generation scaffolding

12%

73%

15%

k-mer counting and characterization contig generation scaffolding
12%

73%

15%

k-mer counting and characterization contig generation scaffolding

Human genome Wheat genome
Fig. 4: Percentage of total execution time for each phase of the original
Meraculous for (left) human and (right) wheat data set. The original runtime
for these genome assemblies are 75.6 and 165.4 hours respectively. Note that
these pie charts are just for motivation and only characterize the costs of the
steps in Meraculous prior to this work.

B. The Meraculous Assembler

The production version of Meraculous is written in Perl,
where some of the phases are readily parallelized but with lim-
ited levels of concurrency; however, the Meraculous de Bruijn
graph traversal is completely serial due to the fine-grained
parallelism and data-hazards required for an effective parallel
implementation. Figure 4 shows the percentage breakdown of
the original Meraculous code for the human and wheat data
sets, using maximum useful concurrency levels for the avail-
able parallel regions. Observe that the work described in this
paper parallelizes the two most expensive components, contig
generation as well as k-mer analysis, which together account
for 80% and 85% of the overall runtimes for human and wheat,
respectively. For both genomes, the original contig generation
step ran serially whereas the k-mer analysis used 104 and 206
nodes (each equipped with 48 GB of memory) of a cluster,
respectively for human and wheat. Parallel optimization of
scaffolding will be the subject of future work.

The quality of assemblies with Meraculous have been
previously evaluated compared with other assemblers, using
synthetic data in Assemblathon I [5] and using real vertebrate
datasets (bird, fish, snake) in Assemblathon II [2]. Meraculous
performed exceptionally well in base-level and scaffolding
accuracy, with steadily improving contig sizes. In the recent
Assemblathon II, Meraculous achieved first place rankings in
as many or more metrics than all but one participating group,
with continued outstanding performance in metrics associated
with global assembly accuracy. According to this study, there
is no distributed memory assembler ranked above Meraculous.
This justifies our work on developing a fast distributed mem-
ory parallelization of Meraculous to achieve both quality and
computational efficiency. For the computationally intensive
steps described here, our work is a faithful parallelization of
the latest Meraculous algorithm, producing identical results.

III. PARALLEL K-MER ANALYSIS

K-mers are contiguous DNA subsequences of length k that
are smaller than the read length, a property that allows the
exploitation of overlaps among reads without resorting to ex-
pensive all-vs-all comparison. Since both k-mer counting and

Algorithm 1 Parallel three-pass k-mer analysis
1: for all processors pi in parallel do
2: while there are reads to process do . Pass 1
3: kmers ←PARSETOKMERS(reads)
4: est ← HYPERLOGLOG(kmers)
5: globalest ← PARALLELREDUCE(est)
6: bfilter ← BLOOMFILTER(globalest /p)
7: while there are reads to process do . Pass 2
8: for a batch of reads do . memory constraint
9: kmers ←PARSETOKMERS(reads)

10: owners ←MAPTOPROCESSORS(kmers)
11: ALLTOALLV(kmers, owners)
12: for each incoming k-mer km do
13: if km exists in bfilter then
14: INSERT(locset , km , null)
15: else
16: INSERT(bfilter , km)
17: while there are reads to process do . Pass 3
18: for a batch of reads do . memory constraint
19: kmers ←PARSETOKMERS(reads)
20: owners ←MAPTOPROCESSORS(kmers)
21: exts ←FETCHEXTENSIONS(kmers , reads)
22: ALLTOALLV(kmers, owners)
23: ALLTOALLV(exts, owners)
24: for each incoming k-mer km and extension ext do
25: if km exists in locset then
26: UPDATE(locset , km , ext)

characterization phases have similar computational patterns,
we chose to implement them as one step.

Counting the frequencies of each distinct k-mer involves
reading file(s) that includes DNA short reads, parsing the reads
into k-mers, and keeping a count of each distinct k-mer that
occurs more than ε times (ε ≈ 1, 2). The reason for such a cut-
off is to eliminate sequencing errors. K-mer characterization
additionally requires keeping track of all possible extensions
of the k-mer from either side. This is performed by keeping
two short integer arrays of length four per k-mer, where each
entry in the array keeps track of the number of occurrences of
each nucleotide [ACGT] on either end. If a nucleotide on an
end appears more times than a threshold thq , it is characterized
as high quality extension.

One of the difficulties with performing k-mer analysis in
distributed memory is that the size of the intermediate data
(the set of k-mers) is significantly larger than the input, since
each read is subsequenced with overlaps of k − 1 base pairs.
As each process reads a portion of the reads, a deterministic
map function maps each k-mer to a processor. This map,
map : k -mer → {1, . . . , p}, assigns all the occurrences of
a particular sequence to the same processor, thus eliminating
the need for a global hash table. Because a k-mer can be seen
in two different orientations (due to reverse complementarity),
the map flips it to the lexicographically smaller orientation
before calculating the process number to which it is mapped.

Algorithm 1 lists our parallel k-mer analysis algorithm,
which does three streaming passes, as described in detail
below. During the I/O steps (lines 2, 7, and 17), each pro-
cessor reads an equal amount of sequence data. The algorithm
achieves almost perfect load balance in terms of the number
of distinct k-mers assigned to each processor, thanks to our

use of the strong MurmurHash [6] function to implement the
k-mer to processor map. The locset is a set data structure that
does not allow duplicates, hence potential reinsertion attempts
(line 14) are treated as no-ops.
K-mer analysis algorithm uses MPI’s irregular personalized

communication primitive, ALLTOALLV. Since the k-mer to
processor map is uniform, as described before, the input to
the ALLTOALLV is evenly distributed in each processor. If
h is the maximum data received by any processor and there
are p processors, then ALLTOALLV can be implemented with
a communication volume of O(h + p2) per processor [7].
Unfortunately, the data received per processor, h, is not
necessarily evenly distributed due to potential presence of high
count k-mers. It is most problematic when there are less than
p high count k-mers as there is no way to distribute them
evenly in that case. As shown in Section VII, this is the case
for wheat but not human.

A. Eliminating Erroneous K-mers

The previously mentioned deterministic k-mer to processor
mapping allows us to use hash tables that are local to each
processor. Even then, memory consumption quickly becomes a
problem due to errors because a single nucleotide error creates
k erroneous k-mers. It is not uncommon to have over 80% of
all distinct k-mers erroneous, depending on the read length and
the value of k. We ameliorate this problem using Bloom filters,
which were previously used in serial k-mer counters [8].

A Bloom filter [9] is a space-efficient probabilistic data
structure used for membership queries. It might have false
positives, but no false negatives. If a k-mer was not seen
before, the filter can accidentally report it as ‘seen’. However,
if a k-mer was previously inserted, the Bloom filter will
certainly report it as ‘seen’. This is suitable for k-mer counting
as no real k-mers will be missed. If the Bloom filter reports
that a k-mer was seen before, then we insert that k-mer to the
final locset that does the actual counting. Our novelty is the
discovery that localization of k-mers via the deterministic k-
mer to processor mapping is necessary and sufficient to extend
the benefits of Bloom filters to distributed memory.

The false positive rate of a Bloom filter is Pr(e) = (1 −
e−hn/m)h for m being the number of distinct elements in
the dataset, n the size of the Bloom filter, and h the number
of hash functions used. There is an optimal number of hash
functions given n and m, which is h = ln 2·(m/n). In practice,
we achieve approximately 5% false positive rate using only 1-
2% of the memory that would be needed to store the data
directly in a hash table (without the Bloom filter). Hence, in a
typical dataset where 80% of all k-mers are errors, we are able
to filter out 76% of all the k-mers using almost no additional
memory. Hence, we can effectively run a given problem size
on a quarter of the nodes that would otherwise be required.

B. Estimating the Bloom Filter Size

We have so far ignored that Bloom filters need to know the
number of distinct elements expected to perform optimally.
While dynamically resizing a Bloom filter is possible, it is

expensive to do so. We therefore use a cardinality estimation
algorithm to approximate the number of distinct k-mers.
Specifically, we use the Hyperloglog algorithm [10], which
achieves less than 1.04/

√
m error for a dataset of m distinct

elements. Hyperloglog requires a only several KBs of memory
to count trillions of items. The basic idea behind cardinality
estimators is hashing each item uniformly and maintaining the
minimum hash value. Hyperloglog maintains multiple buckets
for increased accuracy and uses the number of trailing zeros
in the bitwise representation of each bucket as the estimator.

The observation that leads to minimal communication paral-
lelization of Hyperloglog is as follows. Merging Hyperloglog
counts for multiple datasets can be done by keeping the
minimum of their final buckets by a parallel reduction. Con-
sequently, the communication volume for this first cardinality
estimation pass is independent of the size of the sequence
data, and is only a function of the Hyperloglog data structure
size. In practice, we implement a modified version of the
algorithm that uses 64-bit hash values as the original 32-bit
hash described in the original study [10] is not able to process
our massive datasets.

C. Parallel File I/O

A standard format to represent DNA short reads is the
FASTQ format, a text file that includes one read per line
with another line of the same length that encodes the quality
of each base pair. Unfortunately, there is no scalable way to
read a FASTQ file in parallel due to its text-based nature.
One commonly used approach is to create many subfiles to
be read by different processors. Unfortunately this approach
creates problems for data management and can not flexibly be
processed by varying numbers of processors. After evaluating
numerous binary formats including BAM [11], we concluded
that SeqDB [12] is the most suitable format for storing un-
aligned short-read data that can be read efficiently in parallel.

The key benefit of the binary SeqDB format is its current
implementation on HDF5 [13]. Although SeqDB was not de-
signed with parallelism in mind, the fact that an HDF5 file can
be read by a Parallel HDF5 code makes it readable in parallel
with minimal modifications. We modified the SeqDB code
to enable Parallel HDF5 support via the MPI-IO interface.
Both HDF5 and Parallel HDF5 are widely used and available
by default in many supercomputers. The compression from
FASTQ to SeqDB is a one time lossless conversion that can
be performed in about an hour and a half for the whole wheat
genome (about 1 TB at disk) using a single compute node.
Since our k-mer analysis employs a multi-pass algorithm, the
ability to quickly read SeqDB files in parallel becomes an
important advantage. The resulting file is typically 40-50%
smaller than the FASTQ file. While this compression ratio is
less efficient than some other competing formats, SeqDB is
much faster to decompress than alternatives. We envision the
sequencing platforms adopting the SeqDB format due to its
demonstrated advantages, especially for parallel processing.

P0

P1

Pn

…

ACCGATTCA CT
TTGCATTCT AT
ACCCGATAG AA
CTCGATTCA CG

 …

ACCGGCCC GT
ACGGGGCA AT
ACCAATTTG TT
GACCAATTC GA

Input Read k-mers
Distributed
hash table Store k-mers

Fig. 5: Parallel de Bruijn graph construction.

IV. PARALLEL DE BRUIJN GRAPH CONSTRUCTION

We now discuss our parallel de Bruijn graph construction
implementation. In particular we are working with a linear
subgraph of the full de Bruijn graph, as specified by the
Meraculous approach. Below, we use “de Bruijn graph” to
refer to this linear subgraph of the full de Bruijn graph. In
our approach a de Bruijn graph is represented as a hash table
with a k-mer as “key” (a k-mer is a node in the graph) and a
two-letter code [ACGT][ACGT] as “value” which represents
two undirected edges incident to that node. The parallelization
relies heavily on a high performance distributed hash table,
shown in Figure 5 that inputs a set of k-mers with their corre-
sponding two letter code (high quality extensions). Assuming
m initial k-mers and and n processors, each processor will
read m/n k-mers, hash the keys and store every entry to the
appropriate bucket of the distributed hash table.

Communication optimization: The basic algorithm de-
scribed in the previous paragraph suffers from fine-grained
communication required to store k-mers into the distributed
hash table. To mitigate this overhead we leverage a com-
munication optimization called aggregating stores, shown in
Figure 6. Here, a processor pi has n − 1 local buffers
corresponding to the rest n − 1 remote processors, where
the size S of each local buffer is a tuning parameter. Every
processor hashes a k-mer entry and calculates the location in
the hash table where it has to be stored. Instead of incurring
a remote access to the distributed hash table, the processor
computes the processor ID owning that remote bucket in the
hash table and stores the entry to the appropriate local buffer.

In this approach, when a local buffer dedicated for processor
pj becomes full, a remote aggregate transfer to the processor
pj is initiated. Each processor pj has a pre-allocated shared
space (henceforth called local-shared stack) where other pro-
cessors can store entries destined for that processor pj . In
Section VI we describe the memory management of the local-
shared stacks. Once all k-mers are processed, each processor
iterates over its local-shared stack and stores each entry to
the appropriate local bucket in the distributed hash table, in
a communication-free fashion. This optimization trades off
S × (n − 1) extra memory for the reduction in the number
of messages by a factor of S compared to the unoptimized
version. This algorithm also avoids data races by having the
owner process do all the inserts into the hash table.

Pi

…

Local buffer
for P0

Distributed
hash table

Local to P0

Local to P0

Local to P0

Local to P0

P0

Local buffer
for Pn

Buffer local
to P0

1) Pi initiates a remote aggregate
k-mer transfer when the designated
local buffer gets full.

2) P0 later stores
the k-mers in its
local buckets of the
distributed hash
table

Fig. 6: Communication optimization for the de Bruijn graph construction. In
this example, processor pi performs one remote aggregate transfer to processor
p0 when the local buffer for p0 gets full. p0 will store these k-mers in its
local buckets later by iterating over its local-shared stack.

V. PARALLEL DE BRUIJN GRAPH TRAVERSAL

Given the de Bruijn graph construction, we now describe
our parallel algorithm used to traverse the graph and output
the computed set of contigs (defined in Section II-A).

A. Parallel Traversal Without Conflicts

In order to form a contig, a processor pi chooses a random
k-mer from the hash table as seed and creates a new subcontig
data structure which is represented as a string and the initial
content of the string is the seed k-mer. Processor pi then
attempts to extend the subcontig towards both of its endpoints
using the high quality extensions stored as values in the
distributed hash table. To extend a subcontig from its right
endpoint, processor pi uses the k − 1 last bases and its right
high quality extension R for the right-most k-mer in the
subcontig. It therefore concatenates the last k − 1 bases and
the extension R to form the next k-mer to be searched in
the hash table. Processor pi performs a lookup for the newly
formed k-mer and if it is found successfully, the subcontig is
extended to the right by the base R. The same process can be
repeated until the lookup in the hash table fails, meaning that
there are no more UU k-mers that could extend this subcontig
in the right direction. A subcontig can be extended to its left
endpoint using an analogous procedure. If processor pi can
not add more bases to either endpoint of the subcontig, then
a contig has been formed and is stored accordingly.

B. Lightweight Synchronization Scheme

All processors independently start building subcontigs and
no synchronization is required unless two processors pick
initial k-mer seeds that eventually belong in the same contig.
In this case, the processors have to collaborate and resolve this
conflict in order to avoid redundant work. We now explain our
lightweight synchronization scheme at the heart of the parallel
de Bruijn graph traversal.

1) Basic Data Structures: Before detailing the synchroniza-
tion scheme, we describe the high-level enhancements required
in the data structures. First, the k-mer data structure is enriched
with a binary flag used flag that may take two possible
values: UNUSED or USED. Initially this field is set to the UNUSED
value. When a processor finds a k-mer in the hash table:

ACTIVE ABORTED

Found USED k-mers in both directions of the subcontig
and one of the neighboring subcontigs is ABORTED:
1) Attach the ABORTED subcontig to the local subcontig
2) Set the state of the ABORTED subcontig to ACTIVE

Attached in a neighboring subcontig

INACTIVE

Picked a k-mer as seed
and initiated a subcontig

Found UNUSED k-mer in any
direction of the subcontig:
1) Add forward/backward extension
2) Mark k-mer as USED

Found USED k-mers in both directions of the subcontig and
both of the neighboring subcontigs are ACTIVE:
1) Set own state to ABORTED
2) Pick another random seed from the hash table

COMPLETE

Reached both endpoints of a contig:
1) Set state to COMPLETE and store contig
2) Pick another random seed from hash table

Fig. 7: Subcontig’s state machine used for synchronization during the parallel de Bruijn graph traversal. With boldface text we indicate the preconditions for
the corresponding transition. With italic text we describe the actions that occur during the transition.

• The processor reads the k-mer’s used flag.
• If the value is UNUSED then the processor can infer that no

other processors have reached this k-mer and thus can visit
it. It therefore sets that k-mer flag to USED and can use the
k-mer’s information conflict-free.

• If the value is USED then another processor has already added
that k-mer to another subcontig.
Note that these actions need to be executed in an

atomic fashion to ensure correctness (detailed in Section VI).
Thus the k-mer’s used flag is updated atomically using
compare and swap() remote atomics to avoid races and
redundant work. Furthermore, the k-mer data structure has a
pointer my subcontig ptr to the subcontig’s data structure
that it currently belongs to. Finally, we enhance the subcontig
data structure with a lock s lock and a flag state that may
take one of the following values: INACTIVE, ACTIVE, ABORTED
and COMPLETE.

2) Synchronization Algorithm: The synchronization scheme
in our parallel de Bruijn graph traversal is based on the
subcontig’s state machine illustrated in Figure 7. Note that
a processor might conflict with at most two processors due to
the one dimensional nature of the subcontigs. Therefore, when
we mention neighboring subcontigs of a subcontig S we refer
the subcontigs that conceptually lie to the right and to the left
of S in the eventual contig. Similarly, when we refer to the
neighboring processors of pi we are referring to the processors
that are working on the neighboring subcontigs.

Implicitly each (uninitiated) subcontig is in INACTIVE state.
When a processor pi picks a k-mer as seed, it initiates a sub-
contig, then a subcontig data structure is created and its state
is set to ACTIVE, while the the seed’s my subcontig ptr is
set to point to the newly created subcontig. The processor
pi tries to extend the subcontig in both directions using the
previously described procedure. When pi finds UNUSED k-
mers in either direction of the subcontig, it successfully adds
left/right extension bases to the subcontig and marks the
visited k-mers’ used flag field as USED. At the same time, pi
updates the visited k-mers’ my subcontig ptr field to point
to the subcontig’s data structure. Meanwhile, the subcontig’s

state remains ACTIVE.
Assume that processor pi is unable to extend its current sub-

contig in either direction because it has found USED k-mers in
both directions (or it has reached one endpoint of the eventual
contig and has found a USED k-mer in the other direction).
Processor pi then attempts to obtain all the s locks of the
neighboring subcontigs including its own s lock in a total
global order indicated by the the processors’ ids — and thus
ensuring that deadlocks are avoided. Processor pi has access to
the neighboring subcontigs’ data structures (and consequently
to the appropriate s locks) via the my subcontig ptr
fields of the USED k-mers found in both directions.

After obtaining these s locks, pi examines the state fields
of the neighboring subcontigs and takes appropriate actions as
indicated by the state machine in Figure 7, specifically:
• If both neighboring subcontigs are ACTIVE, then pi sets the
state of its subcontig to ABORTED, releases the obtained
s locks following the inverse order in which they were
obtained and picks another random k-mer seed from the
distributed hash table to initiate another subcontig.

• If at least one of the neighboring subcontigs is ABORTED then
pi attaches that subcontig to its own. pi then sets the state
of the “aborted” subcontig to ACTIVE as it is now added to
an “active” subcontig. Moreover, the my subcontig ptr
fields of the k-mers in the previously “aborted” subcontig
are fixed to point to the pi’s subcontig data structure (our
scheme allows us to fix just one intermediate pointer to avoid
revisiting all these k-mers). Finally, pi releases the obtained
s locks following the inverse order in which they were
obtained and continues to extend its subcontig.

A processor working on an ACTIVE subcontig A continues
computing while other processors might obtain A’s s lock
and examine A’s state, hence allowing our synchronization
scheme to be lightweight. Additionally, a processor “aborts”
its subcontig when there are more processors working on the
same contig and they will claim the “aborted” subcontig later,
hence avoiding redundant work. Note that the subcontigs’
state flag doesn’t require atomic update since the locking
scheme we describe guarantees that at most one processor will

examine and update a subcontig’s flag at any point in time.
When pi reaches both endpoints of the contig, it sets the

state of the subcontig to COMPLETE and stores the contig.
Afterwards, pi picks another random k-mer seed from the
distributed hash table and initiates another subcontig. When
all k-mers in the hash table have been visited the parallel de
Bruijn graph traversal is complete.

C. De Bruijn Graph Traversal Synchronization Cost Analysis

Since the synchronization cost of the parallel de Bruijn
graph traversal will likely determine parallel efficiency, we
present three analytical propositions to quantify the correlation
between the expected subcontig conflicts and the concurrency.
Proposition 1 gives a lower bound on the total expected
conflicts while Proposition 2 provides an upper bound. Finally
Proposition 3 demonstrates the expected number of conflicts
incurred on the critical path.

Proposition 1. Let p be the total processors during parallel
execution and n the number of contigs to be assembled during
the de Bruijn graph traversal. Assuming that the n contigs
have the same length and n� p, the number f(p) of expected
conflicts during the traversal increases at least linearly with
p, i.e. f(p) ≥ a · p+ b for some constants a and b.

Proof. Initially there are n contigs to be assembled and the p
available processors pick random k-mers as seeds to start the
traversal. A conflict occurs if two (or more) processors pick an
initial seed belonging to the same contig. We can formulate
this process as tossing p balls into n bins where the tosses
are uniformly at random and independent of each other and
thus the probability that a ball falls into any given bin is 1/n.
Let’s denote Qi,t the event where ball i falls into bin t (and
thus Pr[Qi,t] = 1/n) and Φij be the event that ball i and
ball j collide. By using the Bayes rule we can calculate the
probability of any two balls i and j falling into one bin (i.e.
balls i and j collide):

Pr[Φij] =

n∑
t=1

Pr[Qj,t|Qi,t] Pr[Qi,t] =

n∑
t=1

1

n
Pr[Qi,t]

=
1

n

n∑
t=1

Pr[Qi,t] =
1

n

n∑
t=1

1

n
=

1

n

(1)

where we have used the fact that Pr[Qj,t|Qi,t] = Pr[Qj,t] =
1/n since the events Qj,t and Qi,t are independent.

Let Xij be the indicator random variable of Φij , i.e. Xij =
1 if Φij happens and Xij = 0 otherwise. We can consider
Xijs as Bernoulli variables and tosses can be considered as a
sequence of Bernoulli trials with a probability 1/n of success,
i.e. Pr[Xij = 1] = Pr[Φij] = 1/n. If C is defined as the
number of conflicts then C =

∑
i6=j Xij . So, we can calculate

the expected number of conflicts E[C] as:

E[C] =
∑
i 6=j

E[Xij] =
∑
i 6=j

Pr[Xij = 1] =
1

n

(
p

2

)
(2)

Now, consider the traversal as a sequence of steps, where at
each step p contigs are calculated, and the traversal consists

of n/p such steps. In the first step, the expected number of
conflicts is given by equation 2: E[C1] = 1

n

(
p
2

)
. We assume

that as soon as these conflicts are resolved no more conflicts
occur at the same step and thus E[C1] is a lower bound of the
expected number of conflicts in the first step. In the i-th step,
there are n− (i− 1)p remaining contigs and we can consider
the i-th step as tossing p balls into n − (i − 1)p bins, thus
we get that E[Ci] = 1

n−(i−1)p
(
p
2

)
where Ci is the number of

conflicts at step i. A lower bound on the expected number of
conflicts for the entire graph traversal is therefore:

E[Ctotal] = E[C1] + E[C2] + · · ·+ E[Cn/p]

=
1

n

(
p

2

)
+

1

n− p

(
p

2

)
+ · · ·+ 1

p

(
p

2

)
=

(
p

2

)
· 1

p
·
(

1 +
1

2
+

1

3
+ · · ·+ 1

n/p

)
=

(
p

2

)
· 1

p
·Hn/p =

p− 1

2
·Hn/p

(3)

where with Hi we denote the i-th partial sum of the diverging
harmonic series. For large values of n/p we can write:

Hn/p ' ln (n/p) + γ = ln(n)− ln(p) + γ (4)

where γ ' 0.577 is the Euler-Mascheroni constant. So, the
number f(p) of the expected conflicts as a function of p is:

f(p) = E[Ctotal] =
p− 1

2
· (ln(n)− ln(p) + γ) (5)

We have assumed that n� p. If n ≥ 100 · p then:

ln(n) ≥ ln(100 · p) = ln(100) + ln(p) ≥ 4.6 + ln(p)

⇔ ln(n)− ln(p) + γ ≥ 5.177
(6)

By combining equation 5 and inequality 6 we get that:

f(p) =
p− 1

2
· (ln(n)− ln(p) + γ) ≥ p− 1

2
· 5.177

⇒ f(p) ≥ 2 · p− 2
(7)

which completes the proof by setting a = 2 and b = −2.

Proposition 2. Let G be a de Bruijn graph and assume that
the result of its traversal consists of a single contig L. Let CG

be the number of conflicts in this traversal. Now assume that
some nodes are removed from G resulting in a graph G′. The
traversal of G′ results in CG′ conflicts where CG′ ≤ CG.

Proof. By removing a number of nodes from G, the traversal
of the new graph G′ results in a set of contigs S that span
part of the single contig L. More accurately, the only places
that the combination of S’s members differs from L are those
ones that correspond to the removed nodes (k-mers). Now
assume a seeding function that incurs CG conflicts in G. The
same seeding function creates at most CG conflicts in G′

because the removed nodes only can prevent a conflict (since a
removed node divides a contig in two independent subcontigs).
Therefore we get: CG′ ≤ CG.

The result of Proposition 2 suggests that the worst case
for the number of conflicts in a traversal is one in which the

resulting assembly is a single contig and thus CG is an upper
bound in the number of conflicts. Now, let’s assume that the
seeds are picked uniformly distanced across the single contig
L and that p processors are performing the traversal of G
in parallel. Such a traversal of G results in O(p) conflicts.
By using the latter fact and the result of Proposition 2 we
conclude that an upper bound for the total number of conflicts
during a traversal with seeding function resulting in uniformly
distanced seeds is O(p). Also, Proposition 1 indicates that
the total number of conflicts is Ω(p). Therefore, under the
assumptions made in Propositions 1 and 2, the total number
of expected conflicts is Θ(p).

Let Tserial be the serial time for de Bruijn graph traversal, p
the number of total processors, Ccrit(p) the expected number
of conflicts incurred on the critical path and tconfl the effective
time for resolving a conflict. Then the time for the parallel
traversal T (p) can be modeled roughly as:

T (p) =
Tserial
p

+ Ccrit(p) · tconfl (8)

The first term of Equation 8 decreases linearly with p and is
the useful work, while the second term is the synchronization
overhead of the parallel algorithm, and Ccrit(p) depends on
the total number of conflicts Ctotal(p) and p. We showed
that under some assumptions Ctotal(p) = Θ(p) and thus
a synchronization scheme that merely leaves Θ(p) conflicts
to be resolved on the critical path is unacceptable because
then the second term of equation 8 would increase linearly
with p. The synchronization algorithm at subsection V-B is
lightweight in a sense that as soon as a conflict is detected, one
of the involved processors takes actions according to the state
machine and does not prevent others from doing useful work.
Proposition 3 shows that the expected number of the conflicts
incurred on the critical path is Ccrit(p) = 2 · Ctotal(p)/p. The
scalability performance results in Section VII confirm that our
synchronization overhead does not become a bottleneck even
at high concurrency.

Proposition 3. Let T be the set of conflicts during the parallel
de Bruijn graph traversal with cardinality |T | = Ctotal(p).
Assuming that the contigs have the same length, the expected
number of the conflicts incurred along the critical path
Ccrit(p) is equal to 2 · Ctotal(p)/p.

Proof. We will use the same formulation of the problem as in
Proposition 1. Additionally consider a collision in a particular
bin t during a step of the algorithm where there are R bins
(equivalently consider a conflict in a particular contig t during
a step of the traversal where there are R remaining contigs to
be assembled). Let Qi,t be the same as in Proposition 1, Zt

the indicator variable of the event “there is a collision in bin
t” and Φt

ij the event that balls i and j fall in bin t. Since the
events Qi,t are independent we can write:

Pr[Φt
ij] = Pr[Qi,t∩Qj,t] = Pr[Qi,t] Pr[Qj,t] =

1

R

1

R
=

1

R2

(9)

Using the Bayes theorem we get:

Pr[Φt
ij | Zt = 1] =

Pr[Zt = 1 | Φt
ij] · Pr[Φt

ij]

Pr[Zt = 1]

(9)
=

Pr[Zt = 1 | Φt
ij] · 1/R2

Pr[Zt = 1]
=

1/R2

Pr[Zt = 1]
(10)

since Pr[Zt = 1 | Φt
ij] = 1 (i.e. given that balls i and j

fall into bin t, Zt = 1 with probability 1 since there is a
collision in that bin). Equation 10 dictates that given a collision
t, all pairs of balls (i, j) are equally probable to incur that
collision t. Thus, if we denote with Ct

ij the event where the
pair of balls (i, j) incurs a particular collision t, we can write:
Pr[Ct

ij] = Pr[Ct
lm] for any pairs (i, j) and (l,m). The total

number of pairs of balls is
(
p
2

)
and therefore:

Pr[Ct
ij] =

1(
p
2

) =
2

p(p− 1)
(11)

Finally, if we denote with Iti the event where ball i incurs the
collision t (or equivalently a processor i incurs the conflict t)
we can write:

Iti =

p⋃
j=1
j 6=i

Ct
ij (12)

where the events Ct
ij with i, t fixed and j ∈ {1, ..., p} − {i}

are mutually exclusive. Therefore:

Pr[Iti] = Pr[

p⋃
j=1
j 6=i

Ct
ij] =

p∑
j=1
j 6=i

Pr[Ct
ij]

(11)
=

p∑
j=1
j 6=i

2

p(p− 1)

=
2

p(p− 1)

p∑
j=1
j 6=i

1 =
2

p(p− 1)
· (p− 1) =

2

p

(13)

If we denote with Fi the number of conflicts that a processor
i incurs on the critical path we get:

E[Fi] =
∑
t∈T

Pr[Iti]
(13)
=
∑
t∈T

2

p
=

2

p

∑
t∈T

1 =
2

p
Ctotal(p) (14)

Equation 14 indicates that the expected number of the conflicts
incurred along the critical path is equal to 2·Ctotal(p)/p, which
completes the proof.

VI. IMPLEMENTATION DETAILS

UPC is a PGAS language that combines single program
multiple data (SPMD) programming model with a global
address space. A fixed number of UPC threads are created
at program startup and every thread runs the same program.
Each UPC thread has both private local memory and a partition
of the shared space. An object living in the private local
memory can be accessed only by its owner-thread, while all
threads can access/modify objects in the shared address space.
We primarily use the portable, high-performance Berkeley
UPC compiler [14]. In particular, the contig generation step
is implemented in Berkeley UPC. The k-mer analysis is

implemented using C++ with MPI (due to MPI-IO’s integration
with HDF5 and the presence of a highly-tuned ALLTOALLV
primitive) and linked with the rest of the application thanks to
the interoperability of UPC.

Berkeley UPC also has one-sided communication capa-
bilities. A major attribute of this communication model is
that information is never required from the remote user code
to complete a communication operation. This is extremely
beneficial in the context of the parallel de Bruijn graph
construction and traversal where the accesses in the distributed
hash table are essentially random. Thus, when a processor
needs to access a remote bucket in the distributed hash table,
no coordination is required in the code with the owner of the
remote bucket. This simplifies programming compared with
a two-sided communication model. The result is a portable
implementation that can be executed on both shared and
distributed memory machines without any change, as will be
demonstrated in Section VII.

Memory Management: We now describe the mechanism
that allows us to implement the “aggregating stores” commu-
nication optimization. When processor pi stores S entries to
the local-shared stack of pj , it needs to locate the position in
pj’s stack that these entries should go to. Thus, every local-
shared stack is associated with its stack ptr pointer that
indicates the current position in the local-shared stack. These
stack ptr variables are shared and accessible to all proces-
sors. Therefore, if processor pi is about to store S entries to
processor pj , it (a) reads the current value of pj’s stack ptr,
called cur pos, (b) increases the value of pj’s stack ptr
by S and (c) stores the S entries in pj’s local-shared stack into
the locations cur pos · · · cur pos+S-1 with an aggregate
transfer. Steps (a) and (b) need to be executed atomically
to avoid data hazards, for which we leverage global atomics
atomic fetchadd() provided by Berkeley UPC.

Atomic Flag Updates: In order to ensure atomicity in
the parallel de Bruijn graph traversal we utilize a lock-
free approach that is based on Berkeley UPC atomics.
In particular, to atomically read and update a k-mer’s
used flag (as it is described in Section V-B), we make
use of the compare and swap() global atomic. Thus, if the
used flag field is already USED, then the atomic returns the
value USED. Conversely, if the used flag field is UNUSED the
atomic sets that field to USED and returns the value UNUSED.

DNA Sequence Compression: Given that the vocabulary in
a DNA sequence is the set {A,C,G,T} only two-bits per base
are required for a binary representation. We thus implement
a high-performance compression library that compresses the
DNA sequences from text format into a binary format. This ap-
proach reduces the memory footprint by 4×, while additionally
reducing the bandwidth by 4× for communication events that
involve k-mers or DNA sequences transfers. Finally we exploit
the complementary nature of DNA by not explicitly storing
both (redundant) strands. Instead we process one of its strands
and can recover the reverse complement in a straightforward
way. This design decision complicates the code but offers an

extra 2× saving in memory requirements.

VII. EXPERIMENTAL RESULTS

A. Experimental Testbed

High-concurrency experiments are conducted on Edison,
a Cray XC30 supercomputer at NERSC. Edison has a peak
performance of 2.57 petaflops/sec, with 5576 compute nodes,
each equipped with 64 GB RAM and two 12-core 2.4 GHz
Intel Ivy Bridge processors for a total of 133,824 compute
cores, and interconnected with the Cray Aries network using
a Dragonfly topology. We also explore shared-memory using
a single 1 TB node of the NERSC Carver system, containing
four 8-core 2.0 GHz Intel Nehalem processors.

Our experiments are conducted on real data sets for human
and wheat genomes. The 3.2 billion base pair (gigabase, Gb)
human genome is assembled from 2.5 billion reads (252 Gbp
of sequence) for a member of the CEU HapMap population
(identifier NA12878) sequenced by the Broad Institute. The
reads are 101 bp in length from a paired-end insert library
with mean insert size 238 bp. The 17 Gbp hexaploid wheat
genome (Triticum aestivum L.), is assembled from 2.3 billion
reads (477 Gbp of sequence) for the homozygous bread wheat
line ’Synthetic W7984’ sequenced by the JGI. The reads are
100-250 bp in length from 5 paired-end libraries with insert
size 240-740 bp. This important genome was only recently
sequenced for the first time, due to its size and complexity.

B. Parallel k-mer Analysis

The k-mer analysis step of the original Meraculous had
3459 GB overall memory footprint. By contrast, our optimized
k-mer analysis implementation only required 499 GB of RAM
for the 240 cores run on human genome, a reduction of 6.93×.
Our code achieves a rate of over 3 billion k-mers analyzed
per second for our largest run (15K cores) on the human data,
including the I/O cost. Our maximum attained aggregate I/O
performance is 18.5 GB/s, out of the theoretical peak of 48
GB/s of Edison. The ability to perform this step so fast allowed
us to do previously infeasible exploratory analyses to optimize
the assembly as a function of k.

The strong scaling results for the human and wheat data
are shown in Figure 8 (left) and (right), respectively. Our
algorithm scales efficiently for the human data, all the way
from 240 cores to over 15K cores, for both communication and
local computation phases. The relatively poor scaling of com-
munication for the wheat is because wheat data is significantly
more skewed with about 60 k-mers occurring over 10 million
times, and only 403 k-mers occurring over 1 million times
each. This creates load imbalance in the ALLTOALLV phase
as the receiving processors of those extreme frequency k-mers
spend relatively longer time in the collective call. Knowing
which k-mers occur in extreme counts would help us solve
this problem by treating them specially. Unfortunately, this is
partially a chicken-and-egg problem since our goal is to count
k-mer frequencies in the first place.

 32

 64

 128

 256

 512

 1024

 2048

 240 480 960 1920 3840 7680 15360

Se
co

nd
s

Number of Cores

combined time
communication

local computation
ideal combined time

 256

 512

 1024

 2048

 4096

 960 1920 3840 7680 15360

Se
co

nd
s

Number of Cores

combined time
communication

local computation
ideal combined time

Fig. 8: Strong scaling of the k-mer analysis on Edison for human (left) and wheat (right) genome. Both axes are in log scale. Combined time corresponds
to the sum of communication and computation times of the k-mer analysis.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 480 960 1920 3840 7680 15360

Se
co

nd
s

Number of Cores

combined time
de Bruijn graph traversal

de Bruijn graph construction
ideal combined time

 2

 4

 8

 16

 32

 64

 128

 256

 512

 960 1920 3840 7680 15360

Se
co

nd
s

Number of Cores

combined time
de Bruijn graph traversal

de Bruijn graph construction
ideal combined time

Fig. 9: Strong scaling of the contig generation on Edison for human (left) and wheat (right) genome. Both axes are in log scale. Combined time corresponds
to the sum of de Bruijn graph construction and traversal times.

C. Parallel De Bruijn Graph Construction and Traversal

Figure 9 (left) exhibits the strong scaling behavior of our
de Bruijn graph construction and traversal using the human
data set. We were not able to run this step for less than
480 cores, due to memory limitations. Our implementation
shows efficient scaling for both constructing and traversing
the de Bruijn graph, attaining a 12.24× relative speedup when
increasing concurrency from 480 to 15,360 cores. We high-
light that due to our optimized parallelization approach, our
15, 360 core execution completes the contig generation for the
human genome in ∼ 20 seconds, compared with the original
Meraculous serial code that required ∼ 44 hours on a 128
GB shared memory node. Figure 9 (right) presents the strong
scaling results for the wheat data set. The starting point for
the graph is 960 processors, since the memory requirements
are significantly larger than the human dataset. We achieve
12.5× relative speedup when increasing concurrency from
960 to 15,360 cores. For this grand-challenge genome, our
implementation required only ∼ 32 seconds on 15,360 cores,
whereas single-node memory constraints prevent the original
Meraculous version from running this problem. We extrapolate
that if enough memory was available, the original Meraculous

code would have required 121 hours.

In both data sets, the superlinear speedup in the graph
construction can be explained by the aggregating stores opti-
mization described in Section IV. As we present strong scaling
results, each processor stores fewer k-mers in its hash table
as p grows; at the same time, our communication buffers are
a constant size S, so fewer communication rounds are needed
with larger processor counts. At very large values of p, some
buffers may never fill and will therefore be sent using small
data transfers; this can also produce faster communication in
the underlying communication protocols.

Additionally, for each strong scaling experiment we mea-
sured the fraction of time spent to add forward/backward
extensions at the subcontigs, because this is the useful work-
load and the fraction of time spent in the synchronization
protocol along the critical path. We observed that although
the relative time spent in synchronization mode increases for
higher concurrency levels, the majority of the time is always
consumed in doing useful work. This empirical behavior
validates our analysis in Section V-C and demonstrates that our
synchronization scheme is lightweight, enabling our parallel
algorithm to scale up to tens of thousands of cores.

D. Shared Memory Results on Carver

Table I presents the performance of our parallel algorithms
on the large shared-memory Carver node for the human
genome. Again we attain near perfect scaling between 16- and
32-cores (1.94× relative speedup). The UPC implementation
is identical for both our shared- and distributed-memory exper-
iments, highlighting that our optimized code is both portable
and highly efficient. Note that the wheat genome exceeded the
large memory capacity of Carver, emphasizing the importance
of the UPC distributed memory capability.

E. Strong Scaling on Small E. coli Dataset

To assess the performance of our work on a small dataset,
we experimented on the 4.64 Mbp E. coli K-12 MG1655.
Serial execution for k-mer analysis and contig generation on
Edison required 1281.4 seconds, while at 96 cores the runtime
was reduced by a factor of 92.8× to 13.8 seconds.

F. Comparison with De Novo Parallel Assemblers

To assess the performance of our work relative to other
parallel de novo genome assemblers we evaluated the MPI-
based Ray [15] (version 2.3.0) and ABySS [16] (version
1.3.6) on Edison. In particular, we identified the steps in each
implementation that generate contigs that are analogous to our
“UU contigs”, starting from the input reads. In Ray, these are
“seeds”; in ABySS these are “unitigs”. Results show that our
approach generates contigs from raw reads (human dataset) in
753 seconds on 960 cores, approximately 27.9× and 64.3×
faster than Ray and ABySS respectively. We emphasize that
both Ray and ABySS spend significant time in I/O, and suspect
that this component is not scaling efficiently as it is lacking
an input format amenable to parallelization such as SeqDB.
Ray spent 15,760 seconds for I/O and 5,292 seconds for k-
mer analysis and contig generation. On the other hand, our
algorithm spent 17 seconds for I/O (924× faster than Ray)
and 735 seconds for k-mer analysis and contig generation (7×
faster than Ray). Although our presentation here emphasizes
the computational efficiency of the algorithms, we also note
that Meraculous performs better, in terms of accuracy, com-
pleteness and contiguity/scaffolding, than these other parallel
assemblers on test datasets.

G. Improvement in End-to-End Assembly Times

We incorporated our work into the Meraculous assembler by
replacing the k-mer analysis and contig generation steps and
keeping the original scaffolding step. The result is an end-to-
end improvement in Meraculous assembly times of 6.6× for
Wheat (from 165.4 hours to 25.06 hours) and 5× for Human
(from 75.6 hours to 15.15 hours) when we used 15,360 cores.

Cores K-mer Graph Graph TotalAnalysis Construction traversal
16 57487 s 399 s 685 s 58571 s
32 29590 s 202 s 393 s 30185 s

TABLE I: Performance results (in seconds) on Carver for human genome.
Wheat data exceeds the 1TB memory capacity of the shared-memory node.

VIII. RELATED WORK

A thorough survey of de novo genome assembly is beyond
the scope of our work and we refer the reader to Miller
et al. [17]. We primarily refer to parallel assemblers in this
section. Ray [15] is a parallel de novo genome assembler that
uses its custom distributed compute engine and is built on
top of MPI for communication. ABySS [16] is another MPI-
based parallel assembler that leverages de Bruijn graphs and
implements them via distributed hash table. Neither of these
publications describe their parallel algorithm implementations
in detail. As shown in Section VII-F our approach outper-
formed these contig generation steps by 27.9× and 64.3×
(respectively) on 960 Edison cores.

PASHA [18] is also de Bruijn-based parallel assembler that
utilizes MPI. PASHA is not optimal in its de Bruijn graph
traversal since redundant work may be done in the walks;
its algorithm introduces a serialization bottleneck and the
results do not exhibit good scaling (however PASHA claimed
to be 2.25× faster than ABySS). YAGA [19] is a parallel
distributed-memory de Bruijn based assembler that is shown
to be scalable except for its I/O. Different from YAGA, we
refrain from using parallel sorting as it can be an impediment
to scaling, especially for the very large genomes examined in
our study. In addition, our efficient parallel HDF5 based I/O
allows us to achieve end-to-end performance scalability.

Shared-memory assemblers include Pasqual [20] (OpenMP
parallelization), which is based on the overlap-layout-
consensus approach, while SOAPdenovo [21] (pthreads par-
allelization) and Velvet [22] (OpenMP parallelization) are
based on the de Bruijn graph approach. Jellyfish [23] is a
shared-memory k-mer counting software. Khmer [24] is a pre-
publication software for k-mer counting that uses Bloom filters
but is not distributed. These approaches are more restrictive
as they are limited by the concurrency and memory capacity
of the shared-memory node. Kmernator [25] is the only
distributed k-mer counter but it consumes more memory than
our approach since it does not use Bloom filters.

IX. CONCLUSIONS AND FUTURE WORK

We developed and implemented new parallel algorithms
for the core of a state-of-the-art de novo genome assembler,
demonstrating remarkable scaling up to 15K cores on a
human genome and on the more challenging wheat genome.
We presented new parallel approaches to successfully attain
unprecedented scaling and runtime efficiency for the de Bruijn
graph construction & traversal — despite the irregular com-
putational challenges at the heart of this algorithm. To enable
programming productivity, high performance, as well as porta-
bility across both distributed- and shared-memory platforms,
we leveraged UPC’s partitioned global address space design
for the de Bruijn graph construction & traversal components.
We plan to release a complete assembly pipeline for general
use once the remaining steps of assembly are adapted.

Recent developments in biomedical sequencing allow a sin-
gle genomics facility to sequence 18,000 human genomes/year
(50/day) at a cost of ∼ $1,000 per genome, with applications to

the genetics of rare and common disease. Cancer is a particu-
larly appealing application, as the disease arises fundamentally
from genomic defects in tumor cells, and the identification and
characterization of these mutations can guide treatment. This
flood of genomic data promises to transform and personalize
medicine, but tools for analyzing this data are lagging behind
the capacity to generate this data. We estimate that the
parallelized version of Meraculous will be able to assemble 50
genomes/day on 960 processors (a modest 40 nodes). Using
parallellized Meraculous, the world’s biomedical sequencing
capacity could be assembled using a fraction of the Edison
supercomputer.

ACKNOWLEDGMENTS

Authors from Lawrence Berkeley National Laboratory were
supported by the Applied Mathematics and Computer Sci-
ence Programs of the DOE Office of Advanced Scientific
Computing Research and the DOE Office of Biological and
Environmental Research under contract number DE-AC02-
05CH11231. The first author is also supported by the grant
DE-SC0008700. This research used resources of the National
Energy Research Scientific Computing Center, which is sup-
ported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] J. A. Chapman, I. Ho, S. Sunkara, S. Luo, G. P. Schroth,
and D. S. Rokhsar, “Meraculous: De novo genome as-
sembly with short paired-end reads,” PLoS ONE, vol. 6,
no. 8, p. e23501, 08 2011.

[2] K. R. Bradnam, J. N. Fass, A. Alexandrov, P. Baranay,
M. Bechner et al., “Assemblathon 2: evaluating de novo
methods of genome assembly in three vertebrate species,”
GigaScience, vol. 2, no. 1, pp. 1–31, 2013.

[3] E. W. Myers, G. G. Sutton, A. L. Delcher et al., “A
whole-genome assembly of drosophila,” Science, vol.
287, no. 5461, pp. 2196–2204, 2000.

[4] P. A. Pevzner, H. Tang, and M. S. Waterman, “An
Eulerian path approach to DNA fragment assembly,” Pro-
ceedings of the National Academy of Sciences, vol. 98,
no. 17, pp. 9748–9753, 2001.

[5] D. Earl, K. Bradnam, J. St John, A. Darling et al.,
“Assemblathon 1: a competitive assessment of de novo
short read assembly methods.” Genome research, vol. 21,
no. 12, pp. 2224–2241, Dec. 2011.

[6] A. Appleby, “Murmurhash,” 2011.
[7] D. A. Bader, D. R. Helman, and J. JáJá, “Practical

parallel algorithms for personalized communication and
integer sorting,” Journal of Experimental Algorithmics
(JEA), vol. 1, p. 3, 1996.

[8] P. Melsted and J. K. Pritchard, “Efficient counting of
k-mers in DNA sequences using a bloom filter,” BMC
bioinformatics, vol. 12, no. 1, p. 333, 2011.

[9] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13,
no. 7, pp. 422–426, 1970.

[10] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier,
“Hyperloglog: the analysis of a near-optimal cardinality
estimation algorithm,” DMTCS Proceedings, 2008.

[11] SAM Format Specification Working Group et al., “The
sam format specification (v1. 4-r985).”

[12] M. Howison, “High-throughput compression of FASTQ
data with SeqDB,” IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics (TCBB), vol. 10, no. 1,
pp. 213–218, 2013.

[13] T. H. Group, “Hierarchical data format version 5,
2000-2013.” [Online]. Available: http://www.hdfgroup.
org/HDF5

[14] P. Husbands, C. Iancu, and K. Yelick, “A performance
analysis of the Berkeley UPC compiler,” in Proc. of
International Conference on Supercomputing, ser. ICS
’03. New York, NY, USA: ACM, 2003, pp. 63–73.

[15] S. Boisvert, F. Laviolette, and J. Corbeil, “Ray: simulta-
neous assembly of reads from a mix of high-throughput
sequencing technologies,” Journal of Computational Bi-
ology, vol. 17, no. 11, pp. 1519–1533, 2010.

[16] J. T. Simpson, K. Wong et al., “Abyss: a parallel as-
sembler for short read sequence data,” Genome research,
vol. 19, no. 6, pp. 1117–1123, 2009.

[17] J. R. Miller, S. Koren, and G. Sutton, “Assembly algo-
rithms for next-generation sequencing data,” Genomics,
vol. 95, no. 6, pp. 315–327, 2010.

[18] Y. Liu, B. Schmidt, and D. L. Maskell, “Parallelized short
read assembly of large genomes using de Bruijn graphs,”
BMC bioinformatics, vol. 12, no. 1, p. 354, 2011.

[19] B. G. Jackson, M. Regennitter et al., “Parallel de novo
assembly of large genomes from high-throughput short
reads,” in IPDPS’10. IEEE, 2010.

[20] X. Liu, P. R. Pande, H. Meyerhenke, and D. A. Bader,
“Pasqual: parallel techniques for next generation genome
sequence assembly,” IEEE Transactions on Parallel and
Distributed Systems, vol. 24, no. 5, pp. 977–986, 2013.

[21] R. Li, H. Zhu et al., “De novo assembly of human
genomes with massively parallel short read sequencing,”
Genome research, vol. 20, no. 2, pp. 265–272, 2010.

[22] D. R. Zerbino and E. Birney, “Velvet: algorithms for
de novo short read assembly using de Bruijn graphs,”
Genome research, vol. 18, no. 5, pp. 821–829, 2008.

[23] G. Marçais and C. Kingsford, “A fast, lock-free approach
for efficient parallel counting of occurrences of k-mers,”
Bioinformatics, vol. 27, no. 6, pp. 764–770, 2011.

[24] M. R. Crusoe, G. Edvenson, J. Fish, A. Howe, L. Irber
et al., “khmer k-mer counting & filtering FTW,” https:
//github.com/ctb/khmer, 2014.

[25] R. Egan, “Kmernator: An MPI toolkit for large scale ge-
nomic analysis,” https://github.com/JGI-Bioinformatics/
Kmernator, 2014.

http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
https://github.com/ctb/khmer
https://github.com/ctb/khmer
https://github.com/JGI-Bioinformatics/Kmernator
https://github.com/JGI-Bioinformatics/Kmernator

	Introduction
	De Novo Genome Assembly Overview
	De Bruijn Assembly a la Meraculous
	The Meraculous Assembler

	Parallel k-mer Analysis
	Eliminating Erroneous K-mers
	Estimating the Bloom Filter Size
	Parallel File I/O

	Parallel de Bruijn graph construction
	Parallel de Bruijn Graph Traversal
	Parallel Traversal Without Conflicts
	Lightweight Synchronization Scheme
	Basic Data Structures
	Synchronization Algorithm

	De Bruijn Graph Traversal Synchronization Cost Analysis

	Implementation Details
	Experimental Results
	Experimental Testbed
	Parallel k-mer Analysis
	Parallel De Bruijn Graph Construction and Traversal
	Shared Memory Results on Carver
	Strong Scaling on Small E. coli Dataset
	Comparison with De Novo Parallel Assemblers
	Improvement in End-to-End Assembly Times

	Related Work
	Conclusions and Future Work

