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Notice and Disclaimers 

•   Notice: This document contains information on products in the design phase of development. The information here 
is subject to change without notice. Do not finalize a design with this information. Contact your local Intel sales office 
or your distributor to obtain the latest specification before placing your product order. 

•   INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS 
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO 
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO 
SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS 
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, 
OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or 
life sustaining applications. Intel may make changes to specifications, product descriptions, and plans at any time, 
without notice. 

•   All products, dates, and figures are preliminary for planning purposes and are subject to change without notice.  
•   Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or 

"undefined.“ Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or 
incompatibilities arising from future changes to them. 

•  Performance tests and ratings are measured using specific computer systems and/or components and reflect the 
approximate performance of Intel products as measured by those tests.  Any difference in system hardware or 
software design or configuration may affect actual performance.   

•   The Intel products discussed herein may contain design defects or errors known as errata which may cause the 
product to deviate from published specifications. Current characterized errata are available on request. 

•   Copies of documents which have an order number and are referenced in this document, or other Intel literature, 
may be obtained by calling 1-800-548-4725, or by visiting Intel's website at http://www.intel.com. 

•   Intel® Itanium®, Intel® Xeon®, Xeon Phi™, Pentium®, Intel SpeedStep® and Intel NetBurst® , Intel®, and VTune 
are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other 
countries. Copyright © 2012, Intel Corporation. All rights reserved. 

•   *Other names and brands may be claimed as the property of others..  
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Notice and Disclaimers Continued … 

•  Software and workloads used in performance tests may have been optimized for performance only on Intel 
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer 
systems, components, software, operations and functions. Any change to any of those factors may cause the 
results to vary. You should consult other information and performance tests to assist you in fully evaluating your 
contemplated purchases, including the performance of that product when combined with other products.  For more 
information go to http://www.intel.com/performance 

•  Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that 
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and 
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on 
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for 
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel 
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding 
the specific instruction sets covered by this notice.  Notice revision #20110804  
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Pathways to Performance 
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 coherent caches vs. 
local stores 

 Prefetching vs. 
Multithreading 

 cache blocking, loop 
fusion, SIMDization 

 programming models 

 high-order 
discretizations 

 Linear Solvers 

 comm.-avoiding 

  In this talk, we…  
  Examine a variety of techniques from these areas to maximize 

performance of the geometric multigrid v-cycle. 
  Evaluate Intel’s new Xeon PhiTM (Knights Corner) coprocessor 
  Differentiate the benefits of technology (GDDR) and architecture 

(coherent caches) 
  Quantify the benefits of optimization and communication-avoiding. 

 Transistor density, 
frequency, energy 

 DRAM technology 
DDR3 vs. GDDR5 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

Multigrid Introduction 

  Linear Solvers (Ax=b) are ubiquitous in scientific computing... 
  Combustion, Climate, Astrophysics, Cosmology, etc…  

  Multigrid exploits the nature of elliptic PDEs to provide a hierarchical 
approach with O(N) computational complexity. 
  Geometric Multigrid is specialization in which the linear operator (A) is 

simply a stencil on a structured grid (i.e. matrix-free) 
  Applicable to small (yet very important) range of linear systems 
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“MG V-cycle” 
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Benchmark: Specification 

  2563 grid/node at the finest resolution… 
  fits into KNC or GPU device DRAM = 
  no PCIe transfers are required. 

  subdivided into 643 subdomains (“boxes”) 
  designed to mimic some of the challenges 

 associated with AMR MG 
  explicit communication of subdomain 

 boundaries (ghost zones). 
  Truncated V-cycle (stops at 43 subdomains) 
  Gauss Seidel, Red-Black (“GSRB”) relaxation… 

  2 GSRB’s (4 stencil sweeps) at each level down the v-cycle 
  24 GSRB’s at the bottom (sufficient for single-node convergence) 
  2 GSRB’s at each level back up the v-cycle 

  Fixed 10 V-cycles 
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Collection of 
subdomains 
owned by an 
MPI process 

one subdomain 
of 643 elements 
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Benchmark: GSRB Operator 

  High-performance baseline implementation… 
  construction of the Laplacian, Helmholtz, and GSRB relaxation have 

been fused to minimize data movement (=2x performance gain).  
  Hybrid MPI+OpenMP implementation where everything is threaded 
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L = aαI – b∇β∇ 

helmholtz = a*alpha[i,j,k]*phi[i,j,k] - b*h2inv*( 
  beta_i[i+1,j,k] * ( phi[i+1,j,k] - phi[i  ,j,k] ) - 
  beta_i[i  ,j,k] * ( phi[i  ,j,k] - phi[i-1,j,k] ) + 
  beta_j[i,j+1,k] * ( phi[i,j+1,k] - phi[i,j  ,k] ) - 
  beta_j[i,j  ,k] * ( phi[i,j  ,k] - phi[i,j-1,k] ) + 
  beta_k[i,j,k+1] * ( phi[i,j,k+1] - phi[i,j,k  ] ) - 
  beta_k[i,j,k  ] * ( phi[i,j,k  ] - phi[i,j,k-1] ) 
) 

phi[i,j,k] = phi[i,j,k] –  
  lambda[i,j,k] * ( helmholtz - rhs[i,j,k] ) 
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Performance Challenges 

  Code has little reuse and large working sets: 
  VC 2nd order => DRAM bandwidth-bound (flop:byte ~ 0.2) 
  Cache working set ~350KB per subdomain 
  Only 1 stencil sweep per MPI communication step 
  Small subdomains = significant % in communication  

         (poor surface:volume) 

  Quadruply nested parallelism: 
  no individual loop longer than 64 iterations (bad for OpenMP) 
  worse, 3 loops see exponentially decreasing parallelism 

8 
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Evaluation Platforms 
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Evaluation Platforms 

  2P Cray XE6 node (“Opteron”) 
  2P Intel® Xeon® E5-2670 (“SNBe”) 
  Intel® Xeon PhiTM coprocessor (“KNC”) 
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Opteron KNC1 SNBe 

4 chips per node 1 2 

6 cores (threads) per chip 60 (240) 8 

201.6 DP GFlop/s per node 1248 332.8 

49.4 STREAM GB/s per node 150 70 

64+512KB cache per core 32+512KB 32+256KB 

6MB L3 per chip - 20MB 

1Evaluation card is not necessarily reflective of production card specifications 

MPI+OMP Programming Model OpenMP MPI+OMP 

2 SIMD-width (DP) 8 4 
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Single Node Results 
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  We normalize performance (higher 
is better) to that of a full XE6 
(Opteron) node. 
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Baseline OpenMP Performance 

  Using native mode on KNC, we 
can run exactly the same OpenMP 
source code on all three platforms 
(huge productivity win) 
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Baseline OpenMP 

  out-of-the-box KNC performance 
was less than expected. 

  Recall, each loop is no more than 
64 iterations (box, i, j, k) and the 
latter decrease exponentially. 

  Baseline code applies a single 
#pragma omp parallel for  

 to either the box- or k-loop. 
  Perfectly acceptable for 8 threads. 
  Disastrous approach when there 

are 240. (73% of the cores on 
KNC were idle). 
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Nested OpenMP Performance 

  Remedy is to apply parallelism 
hierarchically: 
  some number of threads per box 
  multiple concurrent boxes 

  The optimal ratio varies as one 
descends through the v-cycle. 

  Optimal values were determined 
empirically (auto-tuning) 

  Realized within a single OpenMP 
parallel region with no other 
optimizations. 

  Theoretically, KNC should be twice 
as fast as SNBe (2x the bandwidth) 
  lack of SIMD 
  lack of SW prefetching 
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Breakdown of Time on SNBe 
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smooth 

residual 

643 323 163 83 43 Total 

63.5% 8.7% 0.4% 0.1% 0.1% 72.8% 

1.1% 1.1% 0.0% 0.0% 0.0% 9.0% 

1.2% 0.1% 0.0% 0.0% 0.0% 1.3% 

1.8% 0.2% 0.0% 0.0% 0.0% 2.0% 

10.7% 2.1% 0.4% 0.2% 0.5% 14.0% 

85.1% 12.2% 0.9% 0.3% 0.6% 

restriction 

interpolation 

communication 

Total 

Level in the v-cycle 

operation 

  An examination of time in conjunction with a performance bound will 
tell us where to focus our efforts… 
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  We’re doing the best the SNBe architecture allows. 
  Only option is to change the algorithm. 

  If we construct a Roofline model for the solver… 
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Communication-Aggregation 

  The basic algorithm demands we nominally perform one operation 
on each box, then communicate (exchange data on/off nodes). 
  destroys any ability to exploit on-chip locality (reuse) 
  incurs repeated overheads 
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for(all sweeps){ 
  for(all boxes){ 
    // exchange boundary 
  } 
  for(all boxes){ 
    // apply operator 
  } 
} 

for(all boxes){ 
  // exchange deep boundary 
} 
for(all boxes){ 
  for(all sweeps){ 
    // apply operator 
  } 
} 

  Leverage the well-known technique of using deeper ghost zones 
and performing redundant work. 
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DRAM Communication-Avoiding 

  In theory, a 4-deep ghost zone allows for up to a 
3.1x speedup on smooth on the finest (643) grids. 

  However, in a naïve implementation, one updates a 
color on the whole grid before the next 
  First (red) sweep is very slow 

 (reading data from DRAM) 
  Next 3 sweeps are fast (reading from LLC) 

 These amortize the first iteration 
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DRAM Communication-Avoiding 

  A better solution is to apply it in a wavefront. 
  prefetches (reads) the next plane from DRAM 
  Sequentially apply the GSRB relax to the next four 

planes (red/black/red/black) 
  Decoupling communication and computation hides 

the slow DRAM access. 

  In theory, a 4-deep ghost zone allows for up to a 
3.1x speedup on smooth on the finest (643) grids. 

  However, in a naïve implementation, one updates a 
color on the whole grid before the next 
  First (red) sweep is very slow 

 (reading data from DRAM) 
  Next 3 sweeps are fast (reading from LLC) 

 These amortize the first iteration 
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DRAM Communication-Avoiding 

  A better solution is to apply it in a wavefront. 
  prefetches (reads) the next plane from DRAM 
  Sequentially apply the GSRB relax to the next four 

planes (red/black/red/black) 
  Decoupling communication and computation hides 

the slow DRAM access. 

  In theory, a 4-deep ghost zone allows for up to a 
3.1x speedup on smooth on the finest (643) grids. 

  However, in a naïve implementation, one updates a 
color on the whole grid before the next 
  First (red) sweep is very slow 

 (reading data from DRAM) 
  Next 3 sweeps are fast (reading from LLC) 

 These amortize the first iteration 

  Even faster if we thread the wavefront with OpenMP 
  requires cache coherency and fine-grained synchronization 

 (had to write a custom pairwise barrier for performance) 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

Optimization and Auto-tuning 

  Explicit SIMDization (via intrinsics) 
  wrote a Perl script to generate the inner AVX and SSE stencil kernels 

(including SW prefetching).  Auto-tuned to find best version. 
  SIMDize GSRB via predication (e.g. blendvpd) 

 i.e. all lanes within a SIMD register perform stencils on consecutive 
elements, but a merge restores the elements not to be modified. 

  Fusion of residual and restriction. 
  The residual is immediately restricted (becoming the new RHS) 
  Eliminates the write and re-reading of the residual 

  2MB pages on KNC 

  For background papers on auto-tuning, see 
 http://crd.lbl.gov/about/staff/cds/ftg/samuel-williams 
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Communication-Avoiding, 
Fully-Optimized 

  We observe a substantial speedup 
in overall solver time when both 
communication-avoiding AND low-
level optimizations are used…  
  1.5x on SNBe 
  1.7x on KNC 

  speedup for smooth()… 
  2.1x on SNBe (out of 3.1x) 
  2.2x on KNC 

  Challenged by large D$ working 
set comparable to the L2$ 

  Challenged by memory access 
pattern in smooth (few KB stanza) 
  66% of STREAM on SNBe 
  56% of STREAM on KNC 
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GPU Implementations 

  In the time since the paper submission, we’ve created a 
highly-optimized CUDA implementation… 
  parameterized 2D and 1D(=perfect memory coalescing) thread 

block conceptualizations 
  tuned over subset of several million optimization combinations 

  Single-node experiments evaluated using an NVIDIA 
M2090 (Fermi) GPU with ECC enabled. 

  Machine has a streaming bandwidth of ~120GB/s. 

29 
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GPU Comparison 
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Comm. Avoiding 
Opt. CUDA (1D) 
Optimized CUDA 
Nested OpenMP 
Baseline OpenMP 

  M2090 is slightly faster than the 2P 
SNBe on the baseline algorithm 
  M2090 has more bandwidth 
  SNBe likely moves less data 

  The portable, nested OpenMP 
implementation running on KNC is 
faster than heavily-optimized CUDA 
on Fermi. 

  The combined benefits of processor 
(KNC), communication-avoiding, 
 and optimization resulted in a 3.5x 
speedup on the solver time. 
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Communication-Avoiding on GPUs 

  We have implemented several communication-avoiding versions for 
the GPU. 

  However, they demand we either… 
  have thread blocks perform a great deal of redundant work within a 

subdomain (bound by SM capabilities) 
  use enormous thread blocks (5K threads and 1.5MB of registers) 
  abandon CUDA ethos and use persistent threads, fine-grained 

synchronization, and communication through the L2 
  In reality… 

  The former has yet to result in better performance than the non-
communication-avoiding implementation 

  The second is a non-starter (we can’t change architecture or CUDA), 
however, the hope is Kepler will mitigate some issues.  

  We have not explored the third. 
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Summary 
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Summary 

  Geometric multigrid solvers for 2nd order operators are 
heavily bound by data movement 

  To improve performance, one must embrace: 
  Faster algorithms that move less data 
  Architectures and DRAM technologies that move data faster 

  We quantified the benefits of: 
  communication-avoiding to address the former 
  Use of the Intel® Xeon PhiTM and NVIDIA GPUs to address the 

latter. 
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Summary 

  Xeon PhiTM’s use of a coherent cache allows for a simpler 
(conventional OpenMP) implementations that can minimize data 
movement whilst exploiting superior GDDR bandwidths 

  CUDA/GPUs can constrain one’s ability to minimize data movement. 

  Manual expression of data parallelism (SIMDization) and data 
movement (SW prefetching) remained essential on all CPUs. 
  The GPU’s SIMT architecture allows one to rewrite code once (in 

CUDA), and then exploit increased parallelism in future GPUs 
  CPUs must make similar advances in languages/models/compilers. 
  OpenMP needs better constructs/runtimes for hierarchical parallelism 

  Even when provided with the opportunity for communication-
avoiding (deep ghost zones), compilers utterly fail to exploit it. 
  manually implementing a wavefront is painful and error prone 
  need compilers/DSLs/tools to step up 
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Future Work 

  Continued optimization and convergence of CPU, KNC, GPU and 
(eventually) BGQ implementations 

  Distributed studies of KNC and GPUs 
  KNC and GPU were single node/card studies 
  MPI performance can become critical on coarse grids 

  High-order relaxation schemes 
  require same deep ghost zones (no more communication) 
  one high arithmetic intensity stencil (instead of multiple passes) 
  no redundant work 

  Communication-avoiding bottom solvers 
  scalable, fast bottom solvers demand an altogether different set of 

optimizations from the v-cycle 
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Time per Level 

  Optimized KNC was 
fastest at the finest 
levels. 

  Eventually, there is a 
crossover, and 
unoptimized (no CA) 
was fastest at the 
bottom (all subdomains 
fit in LLC) 
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Weak Scaling of the V-cycle 

  2563 (64 x 643 subdomains) per NUMA node 
  1 ‘threaded process’ = 1 chip 
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Evaluation Platforms 

  … 
  NVIDIA M2090 (“Fermi”) 

41 

Opteron KNC1 SNBe 

4 chips per node 1 2 

6 cores (threads) per chip 60 (240) 8 

201.6 DP GFlop/s per node 1248 332.8 

49.4 STREAM GB/s per node 150 70 

64+512KB cache per core 32+512KB 32+256KB 

6MB LLC per chip - 20MB 

1Evaluation card is not necessarily reflective of production card specifications 

MPI+OMP Programming Model OpenMP MPI+OMP 

2 SIMD-width (DP) 8 4 

Fermi2 

1 

16 

665 

120 

192KB 

768KB 

CUDA 

32 

2We consider 1 SM as the equivalent of 1 CPU core 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

1D CUDA Thread Blocks 

  Within a block, there are… 
  Threads that will 

perform the stencil 
  Threads to hold the 

halo (within the plane) 
  Threads to guarantee 

coalescing 
  Thread block streams thru 

the k-dimension 
  Can tune for any # of 

threads (restricted to 
multiples of 16 or 32) 

  Optimal # of threads/block 
were 480, 512, or 992 


