
LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Extracting Ultra-Scale Lattice Boltzmann
Performance via Hierarchical and

Distributed Auto-Tuning

Samuel Williams, Leonid Oliker
Jonathan Carter, John Shalf

1

 Lawrence Berkeley National Laboratory

SWWilliams@lbl.gov

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Introduction

  Management of data locality and data movement is essential in
attaining high performance.

  However, the subtleties of multicore architectures, deep memory
hierarchies, networks, and the randomness of batch job scheduling
makes attaining high-performance on large-scale distributed
memory applications is increasingly challenging.

  In this talk, we examine techniques to mitigate these challenges and
attain high performance on a plasma physics simulation.

2

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

3

LBMHD

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 4

LBMHD

  Lattice Boltzmann Magnetohydrodynamics (CFD+Maxwell’s Equations)
  Plasma turbulence simulation via Lattice Boltzmann Method (~structured

grid) for simulating astrophysical phenomena and fusion devices
  Three macroscopic quantities:

  Density
  Momentum (vector)
  Magnetic Field (vector)

  LBM requires two velocity distributions:
  momentum distribution (27 scalar components)
  magnetic distribution (15 Cartesian vector components)

  Overall, that represents a storage requirement of 158 doubles per point.

momentum distribution

14

4

13

16

5

8

9

21

12

+Y

2

25

1

3

24

23

22

26

0

18

6

17

19

7

10

11

20

15
+Z

+X

magnetic distribution

14

13

16

21

12

25

24

23

22

26

18

17

19

20

15

+Y

+Z

+X

macroscopic variables

+Y

+Z

+X

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 5

LBMHD

  Code Structure:
  we base our code on the 2005 Gordon Bell nominated implementation.
  time evolution through a series of collision() and stream() functions
  collision() evolves the state of the simulation
  stream() exchanges ghost zones among processes.
  When parallelized, stream() should constitute ~10% of the runtime.

  Notes on collision() :
  For each lattice update, we must read 73 doubles, perform about 1300

flops, and update 79 doubles (1216 bytes of data movement)
  Just over 1.0 flop per byte (ideal architecture)
  Suggests LBMHD is memory-bound on most architectures.
  Structure-of-arrays layout (component’s are separated) ensures that

cache capacity requirements are independent of problem size
  However, TLB capacity requirement increases to >150 entries (similarly,

HW prefetchers must deal with 150 streams)

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

LBMHD Sequential Challenges

  stencil-like code is sensitive to bandwidth and data movement.
(maximize bandwidth, minimize superfluous data movement)

  To attain good bandwidth on processors with HW prefetching, we
must express a high-degree of sequential locality.
 i.e. access all addresses f[i]…f[i+k] for a moderately large k.

  Code demands maintaining a cache working set of >80 doubles per
lattice update (simpler stencils require a working set of 3 doubles)

  Working set scales linearly with sequential locality.
  For every element of sequential access, we must maintain a working

set of >640 bytes !!! (thus, to express one page of sequential
locality, we must maintain a working set of over 2.5MB per thread)

  Clearly, we must trade sequential locality for temporal locality

6

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

LBMHD Parallel Challenges

  Each process maintains a 1 element (79 doubles) deep ghost zone
around its subdomain.

  On each time step, a subset of these values (24 doubles) must be
communicated for each face of the subdomain.

  For small problems per process (e.g. 24x32x48), each process must
communicate at least 6% of its data.

  Given network bandwidth per core is typically far less than DRAM
bandwidth per core, this poor surface:volume ratio cam impede
performance.

  Moreover, network bandwidth can vary depending on the locations
of the communicating pairs.

  We must explore approaches to parallelization and
decomposition that mitigate these effects

7

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Supercomputing Platforms

8

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Supercomputing Platforms

  We examine performance on three machines: the Cray XT4
(Franklin), the Cray XE6 (Hopper), and the IBM BGP (Intrepid)

9

Intrepid Hopper Franklin

1 chips per node 4 1

4 cores per chip 6 4
Custom
3D Torus Interconnect Gemini

3D Torus
SeaStar2
3D Torus

3.4 Gflop/s per core 8.4 9.2

2.07 DRAM GB/s per core 2.05 2.1

7.7W Node power per core1 19W 30W

32KB Private cache per core 64+512KB 64+512KB

2MB LLC cache per core 1MB 512KB

1Based on top500

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Supercomputing Platforms

  We examine performance on three machines: the Cray XT4
(Franklin), the Cray XE6 (Hopper), and the IBM BGP (Intrepid)

10

Intrepid Hopper Franklin

1 chips per node 4 1

4 cores per chip 6 4
Custom
3D Torus Interconnect Gemini

3D Torus
SeaStar2
3D Torus

3.4 Gflop/s per core 8.4 9.2

2.07 DRAM GB/s per core 2.05 2.1

7.7W Node power per core1 19W 30W

32KB Private cache per core 64+512KB 64+512KB

2MB LLC cache per core 1MB 512KB

1Based on top500

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Supercomputing Platforms

  We examine performance on three machines: the Cray XT4
(Franklin), the Cray XE6 (Hopper), and the IBM BGP (Intrepid)

11

Intrepid Hopper Franklin

1 chips per node 4 1

4 cores per chip 6 4
Custom
3D Torus Interconnect Gemini

3D Torus
SeaStar2
3D Torus

3.4 Gflop/s per core 8.4 9.2

2.07 DRAM GB/s per core 2.05 2.1

7.7W Node power per core1 19W 30W

32KB Private cache per core 64+512KB 64+512KB

2MB LLC cache per core 1MB 512KB

1Based on top500

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Supercomputing Platforms

  We examine performance on three machines: the Cray XT4
(Franklin), the Cray XE6 (Hopper), and the IBM BGP (Intrepid)

12

Intrepid Hopper Franklin

1 chips per node 4 1

4 cores per chip 6 4
Custom
3D Torus Interconnect Gemini

3D Torus
SeaStar2
3D Torus

3.4 Gflop/s per core 8.4 9.2

2.07 DRAM GB/s per core 2.05 2.1

7.7W Node power per core1 19W 30W

32KB Private cache per core 64+512KB 64+512KB

2MB LLC cache per core 1MB 512KB

1Based on top500

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Supercomputing Platforms

  We examine performance on three machines: the Cray XT4
(Franklin), the Cray XE6 (Hopper), and the IBM BGP (Intrepid)

13

Intrepid Hopper Franklin

1 chips per node 4 1

4 cores per chip 6 4
Custom
3D Torus Interconnect Gemini

3D Torus
SeaStar2
3D Torus

3.4 Gflop/s per core 8.4 9.2

2.07 DRAM GB/s per core 2.05 2.1

7.7W Node power per core1 19W 30W

32KB Private cache per core 64+512KB 64+512KB

2MB LLC cache per core 1MB 512KB

1Based on top500

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Supercomputing Platforms

  We examine performance on three machines: the Cray XT4
(Franklin), the Cray XE6 (Hopper), and the IBM BGP (Intrepid)

14

Intrepid Hopper Franklin

1 chips per node 4 1

4 cores per chip 6 4
Custom
3D Torus Interconnect Gemini

3D Torus
SeaStar2
3D Torus

3.4 Gflop/s per core 8.4 9.2

2.07 DRAM GB/s per core 2.05 2.1

7.7W Node power per core1 19W 30W

32KB Private cache per core 64+512KB 64+512KB

2MB LLC cache per core 1MB 512KB

1Based on top500

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Supercomputing Platforms

  We examine performance on three machines: the Cray XT4
(Franklin), the Cray XE6 (Hopper), and the IBM BGP (Intrepid)

15

Intrepid Hopper Franklin

1 chips per node 4 1

4 cores per chip 6 4
Custom
3D Torus Interconnect Gemini

3D Torus
SeaStar2
3D Torus

3.4 Gflop/s per core 8.4 9.2

2.07 DRAM GB/s per core 2.05 2.1

7.7W Node power per core1 19W 30W

32KB Private cache per core 64+512KB 64+512KB

2MB LLC cache per core 1MB 512KB

1Based on top500

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Supercomputing Platforms

  We examine performance on three machines: the Cray XT4
(Franklin), the Cray XE6 (Hopper), and the IBM BGP (Intrepid)

16

Intrepid Hopper Franklin

1 chips per node 4 1

4 cores per chip 6 4
Custom
3D Torus Interconnect Gemini

3D Torus
SeaStar2
3D Torus

3.4 Gflop/s per core 8.4 9.2

2.07 DRAM GB/s per core 2.05 2.1

7.7W Node power per core1 19W 30W

32KB Private cache per core 64+512KB 64+512KB

2MB LLC cache per core 1MB 512KB

1Based on top500

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Experimental Methodology

17

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Experimental Methodology

  Memory Usage: We will explore three different (per node) problem
sizes: 963, 1443, and 2403. These correspond to using (at least)
1GB, 4GB, and 16GB of DRAM.

  Programming Models: We explore the flat MPI, MPI+OpenMP,
and MPI+Pthreads programming models. OpenMP/Pthread
comparisons are used to quantify the performance impact from
increased productivity.

  Scale: We auto-tune at relatively small scale (64 nodes = 1536
cores on Hopper), then evaluate at scale (2K nodes = 49152 cores
on Hopper)

  Note, in every configuration, we always use every core on a node.
That is, as we increase the number of threads per process, we
proportionally reduce the number of processes per node.

18

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Performance Optimization

19

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Sequential Optimizations

  Virtual Vectors: Treat the cache hierarchy as a virtual vector
register file with a parameterized vector lenght. This parameter
allows one to trade sequential locality for temporal locality.

  Unrolling/Reordering/SIMDization: restructure the operations on
virtual vectors to facilitate code generation. Use SIMD intrinsics to
map operations on virtual vectors directly to SIMD instructions.
Large parameter space for balancing RF locality and L1 BW

  SW Prefetching: Memory access pattern is complicated by short
stanzas. Use SW prefetching intrinsics to hide memory latency.
Tuning prefetch distance trades temporal/sequential locality

  BGP-specific: restructure code to cope with L1 quirks (half
bandwidth, write-through) and insert XL/C-specific pragmas (aligned
and disjoint)

20

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Optimizations for Parallelism

21

“Flat MPI”
4 Processes per node

(no threading)

“Hybrid”
2 Processes per node,
2 threads per process

“Hybrid”
1 Processes per node,
4 threads per process

process 0
process 1

process 2
process 3

thread 0

thread 1

thread 0

thread 1

thread 0

thread 1

thread 0

thread 1

thread 0

thread 1

thread 2

thread 3

thread 0

thread 1

p
ro

c
e
s
s
 0

p
ro

c
e
s
s
 1

p
ro

c
e
s
s
 2

p
ro

c
e
s
s
 3

process 0

process 1

process 2

process 3

p
ro

c
e
s
s
 0

p
ro

c
e
s
s
 1

process
0

process
2

process
1

process
3

p
ro

c
e
s
s
 0

p
ro

c
e
s
s
 1

process 0

process 1

p
ro

c
e
s
s
 0

process 0

process 1

process 3

p
ro

c
e
s
s
 3

p
ro

c
e
s
s
 0

p
ro

c
e
s
s
 1

  Affinity: we use aprun options
coupled with first touch initialization
to optimize for NUMA on Hopper.
Similar technology was applied for
Intel clusters.

  MPI/Thread Decomposition: We
explore all possible decompositions
of the cubical per node grid among
processes and threads. Threading
is only in the z-dimension.

  Optimization of stream(): we
explored sending individual
velocities and entire faces. We
also thread buffer packing. MPI
decomposition also affects time
spent accessing various faces.

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Hierarchical Auto-tuning

22

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Hierarchical Auto-tuning

  Prior work (IPDPS’08) examined
auto-tuning LBMHD on a single
node (ignoring time spent in MPI)

  To avoid a combinatorial explosion,
we auto-tune the parallel
(distributed) application in a two-
stage fashion using 64 nodes.
  Stage 1: explore sequential

optimizations on the 4GB problem.
  Stage 2: explore MPI and thread

decomposition for each problem
size.

  Once the optimal parameters are
determined, we can run problems
at scale.

23

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

G
F

lo
p

/s
 p

e
r

C
o

re

Flat MPI MPI+OpenMP MPI+Pthreads

Intrepid Franklin Hopper
1

G
B

1
G

B

4
G

B

1
G

B

4
G

B

1
6

G
B

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Hierarchical Auto-tuning

  Best VL was 256 elements on the
Opterons (fitting in the L2 was
more important than page stanzas)

  Best VL was 128 elements on the
BGP (clearly fitting in the L1 did not
provide sufficient sequential
locality)

  The Cray machines appear to be
much more sensitive to MPI and
thread decomposition (threading
provided a 30% performance
boost over flat MPI)

  Although OpenMP is NUMA-aware,
it did not scale perfectly across
multiple sockets (pthreads did).

24

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

G
F

lo
p

/s
 p

e
r

C
o

re

Flat MPI MPI+OpenMP MPI+Pthreads

Intrepid Franklin Hopper
1

G
B

1
G

B

4
G

B

1
G

B

4
G

B

1
6

G
B

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Results at Scale

25

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Performance at Scale

  Using the best configurations from
our hierarchical auto-tuning, we
evaluate performance per core
using 2K nodes on each platform
for each problem size.

  Note, due to limited memory per
node, not all machines can run all
problem configurations.

  Assuming we are bandwidth-
limited, all machines should
attain approximately 2GFlop/s.
(Roofline limit)

  Clearly, reference flat MPI (which
obviates NUMA) performance is far
below our expectations.

26

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

1
G

B

1
G

B

4
G

B

1
G

B

4
G

B

1
6
G

B

Intrepid Franklin Hopper

G
F

lo
p

/s
 p

e
r

C
o

re

reference

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Performance at Scale

  Auto-tuning the sequential
implementation in a portable C
fashion shows only moderate
boosts to performance.

  Clearly, we are well below the
performance bound.

27

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

1
G

B

1
G

B

4
G

B

1
G

B

4
G

B

1
6
G

B

Intrepid Franklin Hopper

G
F

lo
p

/s
 p

e
r

C
o

re

auto-tuned (portable C)

reference

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Performance at Scale

  However, auto-tuning the
sequential implementation with
ISA-specific optimizations shows a
huge boost on all architectures.

  Some of this benefit comes from
SIMDization/prefetching, but on
Franklin, a large benefit comes
from cache bypass instructions.

28

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

1
G

B

1
G

B

4
G

B

1
G

B

4
G

B

1
6
G

B

Intrepid Franklin Hopper

G
F

lo
p

/s
 p

e
r

C
o

re

auto-tuned (ISA-specific)

auto-tuned (portable C)

reference

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Performance at Scale

  Threading showed no benefit on
Intrepid.

  We observe that performance on
Franklin is approaching the
2GFlop/s performance bound.

  In fact, when examining collision(),
we observe that Franklin attains
94% of its STREAM bandwidth.

  Overall, we see a performance
boost of 1.6-3.4x over reference.

  On Hopper, the threading boosts
performance by 11-26% depending
on problem size.

  Why does the benefit of
threading vary so greatly ?

29

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Memory and Communication

  For the largest problem per node,
we examine how optimization
reduces time spent in collision()
(computation) and stream()
(communication).

  Clearly, sequential auto-tuning
can dramatically reduce runtime,
but the time spent in
communication remains constant.

  Similarly, threading reduces the
time spent in communication as
it replaces explicit messaging with
coherent shared memory
accesses.

30

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
fe

re
n
c
e

O
p
ti
m

iz
e
d

T
h
re

a
d
e
d

R
e
fe

re
n
c
e

O
p
ti
m

iz
e
d

T
h
re

a
d
e
d

R
e
fe

re
n
c
e

O
p
ti
m

iz
e
d

T
h
re

a
d
e
d

Intrepid (1GB) Franklin (4GB) Hopper (16GB)

T
im

e
 R

e
la

ti
v

e
 t

o
 R

e
fe

r
e

n
c

e
 collision()

stream()

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Memory and Communication

  However, when we consider the
smallest (1GB) problem, we see
the time spent in stream() is
significant. Note, this is an artifact
of Hopper’s greatly increase node
performance.

  After sequential optimization on
Hopper, more than 55% of the
time is spent in communication.

  This does not bode well for future
GPUs or accelerators on this class
of computation as they only
address computation performance
(yellow bars) and lack enough
memory to amortize
communication (red bars)

31

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
fe

re
n
c
e

O
p
ti
m

iz
e
d

T
h
re

a
d
e
d

R
e
fe

re
n
c
e

O
p
ti
m

iz
e
d

T
h
re

a
d
e
d

R
e
fe

re
n
c
e

O
p
ti
m

iz
e
d

T
h
re

a
d
e
d

Intrepid (1GB) Franklin (1GB) Hopper (1GB)

T
im

e
 R

e
la

ti
v

e
 t

o
 R

e
fe

r
e

n
c

e
 collision()

stream()

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Energy Efficiency

  Increasingly, energy is the great
equalizer among HPC systems.

  Thus, rather than comparing
performance per node or
performance per core, we consider
energy efficiency (performance per
Watt).

  Surprisingly, despite the
differences in age and process
technology, all three systems
deliver similar energy
efficiencies for this application.

  The energy efficiency of the
Opteron-based system only
improved by 33% in 2 years.

32

0

10

20

30

40

50

60

70

80

90

100

1
G

B

1
G

B

4
G

B

1
G

B

4
G

B

1
6
G

B

Intrepid Franklin Hopper

M
F

lo
p

/s
 p

e
r

W
a
tt

reference

0

10

20

30

40

50

60

70

80

90

100

1
G

B

1
G

B

4
G

B

1
G

B

4
G

B

1
6
G

B

Intrepid Franklin Hopper

M
F

lo
p

/s
 p

e
r

W
a
tt

fully optimized

reference

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Conclusions

33

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Conclusions

  Used LBMHD as a testbed to evaluate, analyze, and optimize
performance on BGP, XT4, and XE6.

  We employed a two-stage approach to auto-tuning and delivered a
1.6-3.4x speedup on a variety of supercomputers/problem sizes.

  We observe a similar improvement in energy efficiency observing
that after optimization, all machines delivered similar energy
efficiencies.

  We observe that threading (either OpenMP or pthreads)
improves performance over flat MPI with pthreads making better
use of NUMA architectures.

  Unfortunately, performance on small problems is hampered by finite
network bandwidth. Accelerator’s sacrifice of capacity to
maximize bandwidth exacerbates the problem.

34

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Future Work

  We used an application-specific solution to maximize performance.

  We will continue to investigate OpenMP issues on NUMA archs.
  Just as advances in in-core performance will outstrip DRAM

bandwidth, DRAM bandwidth will outstrip network bandwidth. This
will put a great emphasis on communication hiding techniques
and on-sided PGAS-like communication.

  In the future, we can use Active Harmony to generalize the search
process and DSL’s/source-to-source tools to facilitate code
generation.

  Although we showed significant performance gains, in the future, we
must ensure these translate to superior (O(N)) algorithms.

35

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 36

Acknowledgements

  All authors from Lawrence Berkeley National Laboratory were
supported by the DOE Office of Advanced Scientific Computing
Research under contract number DE-AC02-05CH11231.

  This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which is
supported by the Office of Science of the U.S. Department of
Energy under contract DE-AC02-06CH11357.

  George Vahala and his research group provided the original
(FORTRAN) version of the LBMHD code.

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Questions?

37

