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Introduction 

  Management of data locality and data movement is essential in 
attaining high performance. 

  However, the subtleties of multicore architectures, deep memory 
hierarchies, networks, and the randomness of batch job scheduling 
makes attaining high-performance on large-scale distributed 
memory applications is increasingly challenging. 

  In this talk, we examine techniques to mitigate these challenges and 
attain high performance on a plasma physics simulation. 
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LBMHD 

  Lattice Boltzmann Magnetohydrodynamics (CFD+Maxwell’s Equations) 
  Plasma turbulence simulation via Lattice Boltzmann Method (~structured 

grid) for simulating astrophysical phenomena and fusion devices 
  Three macroscopic quantities: 

  Density 
  Momentum (vector) 
  Magnetic Field (vector) 

  LBM requires two velocity distributions: 
  momentum distribution (27 scalar components) 
  magnetic distribution (15 Cartesian vector components) 

  Overall, that represents a storage requirement of 158 doubles per point. 

momentum distribution 
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LBMHD 

  Code Structure: 
  we base our code on the 2005 Gordon Bell nominated implementation. 
  time evolution through a series of collision( ) and stream( ) functions 
  collision( ) evolves the state of the simulation 
  stream( ) exchanges ghost zones among processes. 
  When parallelized, stream( ) should constitute ~10% of the runtime. 

  Notes on collision( ) : 
  For each lattice update, we must read 73 doubles, perform about 1300 

flops, and update 79 doubles (1216 bytes of data movement) 
  Just over 1.0 flop per byte (ideal architecture) 
  Suggests LBMHD is memory-bound on most architectures. 
  Structure-of-arrays layout (component’s are separated) ensures that 

cache capacity requirements are independent of problem size 
  However, TLB capacity requirement increases to >150 entries (similarly, 

HW prefetchers must deal with 150 streams) 
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LBMHD Sequential Challenges 

  stencil-like code is sensitive to bandwidth and data movement.  
(maximize bandwidth, minimize superfluous data movement) 

  To attain good bandwidth on processors with HW prefetching, we 
must express a high-degree of sequential locality. 
 i.e. access all addresses f[i]…f[i+k] for a moderately large k.  

  Code demands maintaining a cache working set of >80 doubles per 
lattice update (simpler stencils require a working set of 3 doubles) 

  Working set scales linearly with sequential locality. 
  For every element of sequential access, we must maintain a working 

set of >640 bytes !!!   (thus, to express one page of sequential 
locality, we must maintain a working set of over 2.5MB per thread) 

  Clearly, we must trade sequential locality for temporal locality 

6 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

LBMHD Parallel Challenges 

  Each process maintains a 1 element (79 doubles) deep ghost zone 
around its subdomain. 

  On each time step, a subset of these values (24 doubles) must be 
communicated for each face of the subdomain. 

  For small problems per process (e.g. 24x32x48), each process must 
communicate at least 6% of its data. 

  Given network bandwidth per core is typically far less than DRAM 
bandwidth per core, this poor surface:volume ratio cam impede 
performance. 

  Moreover, network bandwidth can vary depending on the locations 
of the communicating pairs. 

  We must explore approaches to parallelization and 
decomposition that mitigate these effects 
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Supercomputing Platforms 
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Supercomputing Platforms 

  We examine performance on three machines:  the Cray XT4 
(Franklin), the Cray XE6 (Hopper), and the IBM BGP (Intrepid)  
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Experimental Methodology 

  Memory Usage: We will explore three different (per node) problem 
sizes: 963, 1443, and 2403.  These correspond to using (at least) 
1GB, 4GB, and 16GB of DRAM. 

  Programming Models:  We explore the flat MPI, MPI+OpenMP, 
and MPI+Pthreads programming models.  OpenMP/Pthread 
comparisons are used to quantify the performance impact from 
increased productivity. 

  Scale:  We auto-tune at relatively small scale (64 nodes = 1536 
cores on Hopper), then evaluate at scale (2K nodes = 49152 cores 
on Hopper) 

  Note, in every configuration, we always use every core on a node.  
That is, as we increase the number of threads per process, we 
proportionally reduce the number of processes per node. 
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Sequential Optimizations 

  Virtual Vectors:  Treat the cache hierarchy as a virtual vector 
register file with a parameterized vector lenght.  This parameter 
allows one to trade sequential locality for temporal locality. 

  Unrolling/Reordering/SIMDization: restructure the operations on 
virtual vectors to facilitate code generation.  Use SIMD intrinsics to 
map operations on virtual vectors directly to SIMD instructions.  
Large parameter space for balancing RF locality and L1 BW 

  SW Prefetching:  Memory access pattern is complicated by short 
stanzas.  Use SW prefetching intrinsics to hide memory latency.  
Tuning prefetch distance trades temporal/sequential locality 

  BGP-specific: restructure code to cope with L1 quirks (half 
bandwidth, write-through) and insert XL/C-specific pragmas (aligned 
and disjoint) 
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Optimizations for Parallelism 

21 

“Flat MPI” 
4 Processes per node 

(no threading) 

“Hybrid” 
2 Processes per node,  
2 threads per process 

“Hybrid” 
1 Processes per node,  
4 threads per process 

process  0 
process  1 

process  2 
process  3 

thread 0 

thread 1 

thread 0 

thread 1 

thread 0 

thread 1 

thread 0 

thread 1 

thread 0 

thread 1 

thread 2 

thread 3 

thread 0 

thread 1 

p
ro

c
e
s
s
 0

 

p
ro

c
e
s
s
 1

 

p
ro

c
e
s
s
 2

 

p
ro

c
e
s
s
 3

 

process 0 

process 1 

process 2 

process 3 

p
ro

c
e
s
s
 0

 

p
ro

c
e
s
s
 1

 

process 
0 

process 
2 

process 
1 

process 
3 

p
ro

c
e
s
s
 0

 

p
ro

c
e
s
s
 1

 

process 0 

process 1 

p
ro

c
e
s
s
 0

 

process 0 

process 1 

process 3 

p
ro

c
e
s
s
 3

 

p
ro

c
e
s
s
 0

 
p
ro

c
e
s
s
 1

 

  Affinity:  we use aprun options 
coupled with first touch initialization 
to optimize for NUMA on Hopper.  
Similar technology was applied for 
Intel clusters. 

  MPI/Thread Decomposition: We 
explore all possible decompositions 
of the cubical per node grid among 
processes and threads.  Threading 
is only in the z-dimension. 

  Optimization of stream( ): we 
explored sending individual 
velocities and entire faces.  We 
also thread buffer packing.  MPI 
decomposition also affects time 
spent accessing various faces. 
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Hierarchical Auto-tuning 

  Prior work (IPDPS’08) examined 
auto-tuning LBMHD on a single 
node (ignoring time spent in MPI) 

  To avoid a combinatorial explosion, 
we auto-tune the parallel 
(distributed) application in a two-
stage fashion using 64 nodes. 
  Stage 1: explore sequential 

optimizations on the 4GB problem. 
  Stage 2: explore MPI and thread 

decomposition for each problem 
size.   

  Once the optimal parameters are 
determined, we can run problems 
at scale. 
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Hierarchical Auto-tuning 

  Best VL was 256 elements on the 
Opterons (fitting in the L2 was 
more important than page stanzas) 

  Best VL was 128 elements on the 
BGP (clearly fitting in the L1 did not 
provide sufficient sequential 
locality) 

  The Cray machines appear to be 
much more sensitive to MPI and 
thread decomposition (threading 
provided a 30% performance 
boost over flat MPI) 

  Although OpenMP is NUMA-aware, 
it did not scale perfectly across 
multiple sockets (pthreads did).   
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Performance at Scale 

  Using the best configurations from 
our hierarchical auto-tuning, we 
evaluate performance per core 
using 2K nodes on each platform 
for each problem size. 

  Note, due to limited memory per 
node, not all machines can run all 
problem configurations. 

  Assuming we are bandwidth-
limited, all machines should 
attain approximately 2GFlop/s. 
(Roofline limit) 

  Clearly, reference flat MPI (which 
obviates NUMA) performance is far 
below our expectations. 
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Performance at Scale 

  Auto-tuning the sequential 
implementation in a portable C 
fashion shows only moderate 
boosts to performance.  

  Clearly, we are well below the 
performance bound. 
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Performance at Scale 

  However, auto-tuning the 
sequential implementation with 
ISA-specific optimizations shows a 
huge boost on all architectures. 

  Some of this benefit comes from 
SIMDization/prefetching, but on 
Franklin, a large benefit comes 
from cache bypass instructions. 
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Performance at Scale 

  Threading showed no benefit on 
Intrepid. 

  We observe that performance on 
Franklin is approaching the 
2GFlop/s performance bound. 

  In fact, when examining collision( ), 
we observe that Franklin attains 
94% of its STREAM bandwidth. 

  Overall, we see a performance 
boost of 1.6-3.4x over reference. 

  On Hopper, the threading boosts 
performance by 11-26% depending 
on problem size. 

  Why does the benefit of 
threading vary so greatly ? 
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Memory and Communication 

  For the largest problem per node, 
we examine how optimization 
reduces time spent in collision( ) 
(computation) and stream( ) 
(communication). 

  Clearly, sequential auto-tuning 
can dramatically reduce runtime, 
but the time spent in 
communication remains constant. 

  Similarly, threading reduces the 
time spent in communication as 
it replaces explicit messaging with 
coherent shared memory 
accesses. 
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Memory and Communication 

  However, when we consider the 
smallest (1GB) problem, we see 
the time spent in stream( ) is 
significant.  Note, this is an artifact 
of Hopper’s greatly increase node 
performance. 

  After sequential optimization on 
Hopper, more than 55% of the 
time is spent in communication. 

  This does not bode well for future 
GPUs or accelerators on this class 
of computation as they only 
address computation performance 
(yellow bars) and lack enough 
memory to amortize 
communication (red bars) 
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Energy Efficiency 

  Increasingly, energy is the great 
equalizer among HPC systems.   

  Thus, rather than comparing 
performance per node or 
performance per core, we consider 
energy efficiency (performance per 
Watt). 

  Surprisingly, despite the 
differences in age and process 
technology, all three systems 
deliver similar energy 
efficiencies for this application. 

  The energy efficiency of the 
Opteron-based system only 
improved by 33% in 2 years. 
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Conclusions 

  Used LBMHD as a testbed to evaluate, analyze, and optimize 
performance on BGP, XT4, and XE6. 

  We employed a two-stage approach to auto-tuning and delivered a 
1.6-3.4x speedup on a variety of supercomputers/problem sizes. 

  We observe a similar improvement in energy efficiency observing 
that after optimization, all machines delivered similar energy 
efficiencies. 

  We observe that threading (either OpenMP or pthreads) 
improves performance over flat MPI with pthreads making better 
use of NUMA architectures. 

  Unfortunately, performance on small problems is hampered by finite 
network bandwidth.   Accelerator’s sacrifice of capacity to 
maximize bandwidth exacerbates the problem. 
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Future Work 

  We used an application-specific solution to maximize performance. 

  We will continue to investigate OpenMP issues on NUMA archs. 
  Just as advances in in-core performance will outstrip DRAM 

bandwidth, DRAM bandwidth will outstrip network bandwidth.  This 
will put a great emphasis on communication hiding techniques 
and on-sided PGAS-like communication.  

  In the future, we can use Active Harmony to generalize the search 
process and DSL’s/source-to-source tools to facilitate code 
generation. 

  Although we showed significant performance gains, in the future, we 
must ensure these translate to superior ( O(N) ) algorithms. 
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