Gyrokinetic Toroidal Simulations on Leading
Multi- and Manycore HPC Systems

Kamesh Maddurit, Khaled Z. Ibrahim?, Samuel Williams?,
Eun-Jin Im?, Stephane Ethier?, John Shalf*, Leonid Oliker*

'NERSC/CRD, Lawrence Berkeley National Laboratory, Berkeley, USA
2 Princeton Plasma Physics Laboratory, Princeton, USA
3School of Computer Science, Kookmin University, Seoul 136-702, Korea
{ KMadduri, KZIbrahim, SWWilliams, LOliker, JShalf }@Ibl.gov, eunjin.im@gmail.com, ethier@pppl.gov

ABSTRACT

The gyrokinetic Particle-in-Cell (PIC) method is a critical
computational tool enabling petascale fusion simulation re-
search. In this work, we present novel multi- and manycore-
centric optimizations to enhance performance of GTC, a
PIC-based production code for studying plasma microtur-
bulence in tokamak devices. Our optimizations encompass
all six GTC sub-routines and include multi-level particle and
grid decompositions designed to improve multi-node parallel
scaling, particle binning for improved load balance, GPU ac-
celeration of key subroutines, and memory-centric optimiza-
tions to improve single-node scaling and reduce memory uti-
lization. The new hybrid MPI-OpenMP and MPI-OpenMP-
CUDA GTC versions achieve up to a 2x speedup over the
production Fortran code on four parallel systems — clus-
ters based on the AMD Magny-Cours, Intel Nehalem-EP,
IBM BlueGene/P, and NVIDIA Fermi architectures. Fi-
nally, strong scaling experiments provide insight into par-
allel scalability, memory utilization, and programmability
trade-offs for large-scale gyrokinetic PIC simulations, while
attaining a 1.6x speedup on 49,152 XE6 cores.

Keywords

Particle-in-Cell, multicore optimization, hybrid programming

1. INTRODUCTION

The HPC community is grappling with some of the most
radical changes in computer architecture in decades due to
the multicore revolution. Chip-power limitations are driving
a rapid evolution of node architecture designs with complex
trade-offs between performance, parallelism, power, and pro-
ductivity. To quantify the strengths and weaknesses of emerg-
ing architectural solutions, it is imperative that we investi-
gate the optimization of full-scale scientific applications.

This work explores optimizations across a variety of ar-
chitectural designs for a production fusion simulation ap-
plication called Gyrokinetic Toroidal Code (GTC). Fusion,
the power source of the stars, has been the focus of active
research since the early 1950s. While progress has been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SC11, November 12-18, 2011, Seattle, Washington, USA

Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

impressive — especially for magnetic confinement devices
called tokamaks — the design of a practical power plant
remains an outstanding challenge. A key topic of current
interest is microturbulence, which is believed to be respon-
sible for the experimentally-observed leakage of energy and
particles out of the hot plasma core. GTC’s objective is to
simulate global influence of microturbulence on particle and
energy confinement. GTC utilizes the gyrokinetic Particle-
in-Cell (PIC) formalism [19] for modeling the plasma inter-
actions, and is orders-of-magnitude faster than full force sim-
ulations. However, achieving high parallel and architectural
efficiency is extremely challenging due (in part) to potential
fine-grained data hazards, irregular data accesses, and low
computational intensity of the GTC subroutines.

This is the first study that examines tuning the full GTC
production code for the multi- and manycore era, lever-
aging both homogeneous and heterogeneous computing re-
sources — as opposed to previous investigations that fo-
cused on a subset of GTC’s computational kernels in isola-
tion [21,22]. Another key contribution is the exploration of
novel optimizations in a multi-node environment, including
comparisons between flat MPI and hybrid MPI/OpenMP
programming models. To validate the impact of our work,
we explore four parallel platforms: the IBM BlueGene/P,
Cray’s Magny-Cours-based XE6, an Intel Nehalem Infini-
Band Cluster, as well as a manycore cluster based on NVIDIA
Fermi GPUs. Our optimization schemes include a broad
range of techniques including particle and grid decomposi-
tions designed to improve locality and multi-node scalability,
particle binning for improved load balance, GPU accelera-
tion of key subroutines, and memory-centric optimizations
to improve single-node performance and memory utilization.

Overall results demonstrate that our approach outper-
forms the highly-tuned reference implementation by up to
1.6 using 49,152 cores of the Magny-Cours “Hopper” sys-
tem, while reducing memory requirements by 6.5 TB (a 10%
saving). Additionally, our detailed analysis provides insight
into the trade-offs of parallel scalability, memory utilization,
and programmability on emerging computing platforms for
complex numerical simulations.

2. GTCOVERVIEW AND RELATED WORK

The six-dimensional Vlasov-Maxwell system of equations [20]
govern the behavior of particles in a plasma. The “gyroki-
netic formulation” [19] removes high-frequency particle mo-
tion effects that are not important to turbulent transport,
reducing the kinetic equation to a five-dimensional space.
In this scheme, the helical motion of a charged particle in a

2D “Poloidal Plane” * Close'upof
mgrid = total number of points Poloidal Plane

Figure 1: An illustration of GTC’s 3D toroidal grid
and the “four-point gyrokinetic averaging” scheme
employed in the charge deposition and push steps.

magnetic field is approximated with a charged ring that is
subject to electric and magnetic fields. The Particle-in-Cell
(PIC) method is a popular approach to solve the resulting
system of equations, and GTC [11,12,20] is an efficient and
highly-parallel implementation of this method.

The system geometry simulated in GTC is a torus with
an externally-imposed magnetic field (see Figure 1) charac-
teristic of fusion tokamak devices. The self-consistent elec-
trostatic field generated by the particles at each time step
is calculated by using a grid discretization, depositing the
charge of each particle on the grid, and solving Poisson’s
equation in Eulerian coordinates. The field value is then
used to advance particles in time. GTC utilizes a highly
specialized grid that follows the magnetic field lines as they
twist around the torus. This permits use of a smaller num-
ber of toroidal planes in comparison to a regular grid that
does not follow field lines, while retaining the same accuracy.

We next discuss GTC’s primary data structures, paral-
lelization methodology, and computational kernels, in order
to gain insight into performance tuning opportunities.

2.1 GTC Data Structures and Parallelization

GTC principally operates using two data representations:
those necessary for performing grid-related work, and those
that encapsulate particle coordinates in the toroidal space.
Three coordinates (shown in Figure 1) describe particle po-
sition in the torus: ¢ (zeta, the position in the toroidal di-
rection), ¥ (psi, the radial position within a poloidal plane),
and 6 (theta, the position in the poloidal direction within
a toroidal slice). The corresponding grid dimensions are
mzeta, mpsi, and mthetamaz. The average number of parti-
cles per grid cell is given by the parameter micell.

The charge density grid, representing the distribution of
charge throughout the torus, and the electrostatic field grid,
representing the variation in field strength (a Cartesian vec-
tor), are two key grid-related data structures in GTC. Note
that the field grid, a vector quantity, requires three times
the storage of the charge density grid.

The highly-tuned and parallel implementation of GTC,
which we will refer to as the reference version, uses mul-

Charge Push Shift
Flops 180msi 450ms 12ms
Particles (bytes read) 40msi 208mi 8mz + 100mis
Particles (bytes written) 140mi 72mi 100mis

Arithmetic intensity <0.56 <128 NJ/A

(flops/byte)
Grid data (bytes read) <320 <768 0
Grid data (bytes written) <256 0 0

Table 1: Characteristics of memory-intensive loops
in particle-processing GTC kernels (charge deposi-
tion, push, and shift) for a single time-step in terms
of particles (mi) or particles shifted (mis).

tiple levels of parallel decomposition. A one-dimensional
domain decomposition in the toroidal direction is employed
to partition grid-related work among multiple processors in
a distributed-memory system. GTC typically uses 64 to
128-way partitioning along the torus. In addition, particles
within each of these toroidal domains can be distributed
among multiple MPI processes for parallelizing particle-related
work. A third level of parallelism is intra-node shared mem-
ory partitioning of both particle and grid-related work, and
this is accomplished using OpenMP pragmas in GTC. The
two-level particle and grid decomposition entails inter-node
communication, as it is necessary to shift particles from one
domain to another (due to the toroidal parallelization), and
also obtain the globally-consistent states of grid data struc-
tures (due to the particle decomposition).

2.2 GTC Code Structure

The gyrokinetic PIC method involves five main operations
for each time step (the corresponding GTC routines are in-
dicated in italics): charge deposition from particles onto the
grid using the four-point gyro-averaging scheme (charge),
solving the gyrokinetic Poisson equation on the grid (pois-
son), computing the electric field on the grid (field), us-
ing the field vector and other derivatives to advance parti-
cles (push), and smoothing the charge density and potential
vectors (smooth). In addition, distributed memory paral-
lelization necessitates a sixth step, shift, to move particles
between processes or toroidal domains. In this paper, we as-
sume a collision-less system and that the only charged parti-
cles are ions (adiabatic electrons). Simulations with kinetic
electrons require additional and analogous charge, push, and
shift steps for electrons.

The parallel runtime and efficiency of GTC depends on
several factors, including the simulation settings (the num-
ber of particles per grid cell micell, the discretized grid di-
mensions, etc.), the levels of toroidal (ntoroidal) and particle
decomposition (npartdom) employed, as well as the architec-
tural features of the parallel system, described in previous
GTC performance studies on parallel systems [1,12,27].

Our work builds on the well-optimized “reference” imple-
mentation of GTC, and further improves upon it to ad-
dress the challenges of HPC systems built from multi- and
manycore processors. Thus, understanding and optimizing
the following key routines on multi- and manycore architec-
tures is imperative for achieving high performance on to-
day’s petascale machines.

Charge deposition: The charge deposition phase of GTC’s
PIC primarily operates on particle data, but involves the
complex particle-grid interpolation step. Particles, repre-
sented by a four-point approximation for a charged ring, de-

posit charge onto the grid. This requires streaming through
a large array of particles and updating locations in mem-
ory corresponding to the bounding boxes (eight grid points
each) of the four points on the particle charge ring (see
Figure 1). Each particle update may thus scatter incre-
ments to as many as 32 unique grid memory locations. In
a shared memory environment, these increments must be
either guarded with a synchronization mechanism to avoid
read-after-write data hazards or redirected to private copies
of the charge grid.

As seen in Table 1, for each particle, the reference im-
plementation of this step reads 40 bytes of particle data,
performs 180 floating point operations (flops), and updates
140 bytes of particle data — resulting in a low arithmetic in-
tensity of 0.56 flops per byte (assuming perfect grid locality
and no cache bypass).

The locality challenges associated with this kernel are de-
pendent on the variation in spatial positions of particles
within the grid. If grid locality is not achieved, then the
impact of (grid) capacity cache misses may overwhelm and
dominate the performance of this kernel; thus, our optimiza-
tions focus on maximizing locality and minimizing the im-
pact of synchronization.

In a distributed-memory parallelization, particles within
a toroidal segment may be partitioned among multiple pro-
cesses by setting npartdom greater than 1. The effect is that
each process maintains a private copy of the charge density
grid onto which it deposits charge from the particle it owns.
To merge these copies together, GTC performs an “Allre-
duce” computation, resulting in each process having a copy
of the poloidal grid with the cumulative charge densities.

Poisson/Field/Smooth: The three solve steps constitute
purely grid-related work, where the floating-point operations
and memory references scale with the number of poloidal
grid points (mgrid). Simulations typically employ high par-
ticle densities and so the time spent in grid-related work
is typically substantially lower than the particle processing
time (charge, push, and shift). Note that multi-node paral-
lelism in these steps is limited to the extent of 1D domain
decomposition (the ntoroidal setting). When npartdom is
set to a value greater than 1, each process begins with the
global copy of the charge/potential/field grid and executes
the Poisson/field /smooth routine independently. The refer-
ence GTC version thus trades redundant computation for
reduced communication and synchronization.

Push: In this phase, the electric field values at the location
of the particles is “gathered” and used for advancing them.
This step also requires streaming through the particle arrays
and reading irregular grid locations in memory (the electric
field values) corresponding to the four bounding boxes of the
four points on the ring. This can involve reading data from
up to 16 unique memory locations. Additionally, as seen in
Table 1, this kernel reads at least 208 bytes of particle data,
performs 450 flops, and updates 72 bytes for every iteration
of the particle loop. As this routine only performs a gather
operation in a shared memory environment, it is devoid of
data hazards. Moreover, since the arithmetic intensity of
this kernel is higher than charge deposition’s, it is somewhat
less complex to optimize.

Shift: GTC’s shift phase scans through the particle ar-
ray looking for particles that have moved from the local
domain (in the +zeta directions). The selected particles

are buffered, marking the resultant “holes” in the particle
array where a particle has effectively been removed, and
sending these buffers to the neighboring domains. Parti-
cles are moved only one step in zeta at once (thus per-
forming nearest-neighbor communication among processes
along the toroidal direction), and so the shift phase iterates
up to mzetamax/2 times. In the reference implementation,
holes are filled sequentially as particles are received. How-
ever, such a sequential implementation can be inefficient in
highly threaded environments (particularly GPUs). We dis-
cuss remediation strategies in Sections 4 and 5. Even when
npartdom is greater than one, processes still only communi-
cate with their two spatially neighboring processes, thereby
simplifying communication.

2.3 Related Work

PIC is a representative method from the larger class of
particle-mesh methods. In addition to plasma physics (e.g.,
GTC’s gyrokinetic PIC), particle-mesh methods find ap-
plications in astrophysics [3, 14], computational chemistry,
fluid mechanics, and biology. There are also several pop-
ular frameworks from diverse areas that express PIC com-
putations such as VPIC [5], OSIRIS [13], UPIC [9], VOR-
PAL [26], and QuickPIC [15].

Prior work on performance tuning of PIC computations
has mostly focused on application-specific domain (mesh)
decomposition and MPI-based parallelization. The ordering
of particles impacts the performance of several PIC steps, in-
cluding charge deposition and particle push. Bowers [4] and
Marin et al. [23] look at efficient particle sorting, as well
as the performance impact of sorting on execution time.
A closely-related macro-scale parallelization issue is parti-
cle load-balancing [7], and OhHelp [25] is a library for dy-
namic rebalancing of particles in large parallel PIC simula-
tions. Koniges et al. [18] report performance improvements
by overlapping computation with inter-processor communi-
cation for gyrokinetic PIC codes. The performance of the
reference GTC MPI implementation has been previously
well-studied on several large-scale parallel systems [1,12,27].
Prior research also examines expressing PIC computations
via different programming models [2, 6].

There has also been recent work on new multicore algo-
rithms and optimizations for different PIC steps. Stanchev
et al. [28] investigate GPU-centric optimization of particle-
to-grid interpolation in PIC simulations with rectilinear mesh-
es. Decyk et al. [10] present new parameterized GPU-specific
data structures for a 2D electrostatic PIC code extracted
from the UPIC framework. In our prior work on multi-
core optimizations for GTC, we introduced various grid de-
composition and synchronization strategies [22] that lead to
a significant reduction in the overall memory footprint in
comparison to the prior MPI-based GTC implementation,
for the charge and push routines. This paper extends our
prior work [21,22] by developing an integrated CPU- and
GPU-optimized version that accelerates a fully-parallel pro-
duction GTC simulation at scale.

3. EXPERIMENTAL SETUP

3.1 Evaluated Platforms

Cray XE6 “Hopper”: Hopper is a Cray XE6 massively
parallel processing (MPP) system, built from dual-socket
12-core “Magny-Cours” Opteron compute nodes. In reality,

Core IBM AMD Intel NVIDIA
Arch PPC450d Opteron Nehalem Fermi
dual-issue sprscalar sprscalar dual warp

Type in-order out-order out-order in-order
SIMD SIMD SIMD SIMT
Clock (GHz) 0.85 2.1 2.4 1.15
DP GFlop/s 3.4 8.4 9.6 73.61
$/core (KB) 32 644512 32+256B 48
Memory- HW HW HW Multi-
Parallelism Prefetch Prefetch Prefetch threading
Node Blue- Opteron Xeon Tesla
Arch Gene/P 6172 X5530 C2050
Cores/chip 4 6 42 141
Chips/node 1 4 2 1
Last $/chip 8 MB 6 MB 8 MB 768 KB
STREAMS® 8.3 GB/s 49.4 GB/s 35.2 GB/s 78.2 GB/s
DP GFlop/s 13.6 201.6 76.8 515
Memory 2 GB 32 GB 24 GB 3 GB
Power 31W3 455W?3 208W+4 390W+4
System Blue- Dirac Testbed
Arch Gene/P XE6 “Intel “Fermi
“Intrepid” “Hopper” Cluster” Cluster”
Affinity N/A aprun KMP_AFFINITY®
Compiler XL/C GNU C Intel C 4 nvce
Interconnect custom Gemini InfiniBand
3D Torus 3D Torus Fat Tree
Table 2: Overview of Evaluated Supercomputing

Platforms. !FEach shared multiprocessor (SM) is one “core”.
2Two threads per core. Power based on Top500 [29] data® and
empirical measurements®. The GPU itself is 214W. 5 Affinity
only used for full threaded experiments. $STREAM copy.

each socket (multichip module) has two dual hex-core chips,
and so a node can be viewed as a four-chip compute config-
uration with strong NUMA properties. Each Opteron chip
instantiates six super-scalar, out-of-order cores capable on
completing one (dual-slot) SIMD add and one SIMD multi-
ply per cycle. Additionally, each core has private 64 KB L1
and 512 KB L2 caches. L2 latency is small and easily hidden
via out-of-order execution. The six cores on a chip share a
6MB L3 cache and dual DDR3-1333 memory controllers ca-
pable of providing an average STREAM [24] bandwidth of
12GB/s per chip. Each pair of compute nodes shares one
Gemini network chip, which collectively form a 3D torus.

IBM BlueGene/P “Intrepid”: Intrepid is a BlueGene/P
MPP optimized for energy-efficient supercomputing. In-
stead of using superscalar and out-of-order execution, the
BlueGene Compute chip is built from four power-efficient,
PowerPC 450d, dual-issue, in-order, embedded cores. Like
the Opterons, they implement two-way SIMD instructions.
However, unlike the Opterons, they use fused-multiply add.
Each core includes a 32 KB L1, and each socket includes a
8 MB L2 cache. However, unlike the Opterons, the L1 is
write-through and the L1 miss penalty is a severe 50 cycles.
Thus, locality in the L1 is essential. The memory is low-
power DDR2-425 and provides about 8.3 GB/s. Like the
Cray machine, Intrepid compute nodes are arrayed into a
3D torus. Although BlueGene’s per-core performance is less
than half that of the Opterons, the average system power
per core is also less than half. As such, despite being three
years old, BlueGene/P continues to represent a competitive,
power-efficient design point.

Intel InfiniBand Cluster “Intel Cluster”: The Dirac
cluster at NERSC is a small GPU testbed cluster, and is
built from 50 dual-socket, quad-core 2.4 GHz Xeon X5530

compute nodes. Like the Hopper’s Opteron cores, each Ne-
halem core is a super-scalar, out-of-order core capable of
executing one SIMD add and one SIMD multiply per cycle,
but has a higher-associativity private 32 KB L1 and 256 KB
L2 cache. Moreover, each core is multithreaded. The four
cores on a chip share a 8 MB L3 cache and three DDR3-1333
memory controllers capable of providing up to 17.6 GB/s per
chip. Locally, nodes are connected via a QDR InfiniBand fat
tree network. By convention, when running CPU-only code
on the Dirac cluster, we will refer to it as the “Intel Cluster”.

GPU Accelerated Cluster “Fermi Cluster”: As men-
tioned, Dirac is a testbed for GPU technology. Currently,
one Tesla C2050 (Fermi) GPU is installed on each Dirac
node. Each C2050 includes 448 scalar “CUDA cores” run-
ning at 1.15 GHz and grouped into fourteen SIMT-based
streaming multiprocessors (SM). This provides a peak double-
precision floating-point capability of 515 GFlop/s. Each SM
includes a 64 KB SRAM that can be partitioned between
cache and “shared” memory in a 3:1 ratio. Although the
GPU has a raw pin bandwidth of 144 GB/s to its on-board
3 GB of GDDR5 DRAM, the measured STREAM TRIAD
bandwidth using the SHOC benchmark (8] is 87 GB/s, and
the measured bandwidth with ECC enabled is only 78.2 GB/s.
ECC is enabled in all our experiments. Data may be trans-
ferred to and from GPU memory via a PCle Gen2 link which
is measured to be 5.3 GB/s using SHOC on our GPU accel-
erated testbed cluster. Thus, although the GPU has more
than 6x the floating-point capability, it has only 2x the
memory bandwidth, but only ét the memory capacity of
the host. Although the small memory capacity motivates
shuflling of data to the host, the low PClIe bandwidth makes
locality on the GPU board imperative. In the end, simu-
lation size is curtailed by the small GPU memory. For our
experiments, we use the term “Fermi Cluster” to refer to het-
erogeneous CPU/GPU simulations, and differentiate Dirac
results using the GPUs from CPU-only Dirac results.

3.2 Programming Models

Our study explores three popular parallel programming
paradigms: Flat MPI, MPI/OpenMP, and MPI/OpenMP /-
CUDA. MPI has been the de facto programming model for
distributed memory applications, while the hybrid MPI/-
OpenMP models are emerging as a productive means of ex-
ploiting shared memory via threads. The hybrid nature of
the GPU-accelerated Dirac cluster necessitates the use of
a MPI/OpenMP/CUDA hybrid programming model. For
all conducted experiments, we utilize every CPU core on
a given compute node. Therefore, the number of threads
per MPI process is inversely related to the number of MPI
processes per node, so as to ensure full utilization of cores.
Furthermore, we restrict our hybrid experiments to one MPI
process per core (flat MPI), one process per chip (NUMA
node), and one process per compute node. In the case
of the Hopper XEG6, these configurations represent 24 pro-
cesses/node, 4 processes of 6 threads/node, and 1 process of
24 threads/node. GPU accelerated code requires there be
only one controlling process on the host side per GPU. The
Dirac cluster contains a single GPU per node, so only a sin-
gle process invokes the GPU accelerated code while one or
more OpenMP threads are used for host-side computations.

3.3 Simulation Configurations
The most important parameters describing a GTC simu-

Grid Size B C D
mzeta 1 1 1
mpsi 192 384 768
mthetamax 1408 2816 5632
mgrid (grid points per plane) 151161 602695 2406883
chargei grid (MB)t 2.31 9.20 36.72
evector grid (MB)T 6.92 27.59 110.18
Total Particles (micell=20) 3.02M 12.1M 48.1M
Total Particles (micell=96) 14.5M 57.9M 231M

Table 3: The GTC experimental settings. mzeta =1
implies each process operates on one poloidal plane.
fminimum per process.

lation are the dimensions of the discretized toroidal grid, the
total number of particles, and the average particle density
as measured in the ratio of particles to grid points (labeled
micell). In all our initial experiments, we set mzetamaz to
16 and mzeta to 1 (i.e., 16 poloidal planes with each process
owning one). Moreover, to allow each configuration to con-
stitute the same physical simulation (regardless of the pro-
gramming model), parallelism is oriented around the node.
Each node (irrespective of processes or threads) therefore
owns one poloidal plane and all the particles therein. Thus,
all scaling experiments in this paper are strong scaling.

In order to demonstrate the viability of our optimizations
across a wide variety of potential simulations, we explore
three different grid problem sizes, labeled B, C, D, and ex-
plore two particle densities: 20 and 96 particles per grid
point. Therefore, a “B20” problem — often used in through-
out this paper as it fits into all memory configurations —
uses the class B grid size with an average particles per grid
point count of 20 (assuming one process per node). Grid
size C corresponds to the JET tokamak, the largest device
currently in operation [17], and D to the forthcoming In-
ternational Thermonuclear Experimental Reactor (ITER):
a multi-billion dollar large-scale device intended to prove
the viability of fusion as an energy source [16].

Table 3 lists these settings, which are similar to ones used
in our prior experimental study [22], as well as GTC pro-
duction runs [12]. Note, the grid memory requirements will
scale with the number of processes per node. For the three
examined GTC problem configurations, the maximum Lar-
mor radius (a function of several GTC parameters) corre-
sponds to roughly mpsi/16. The initial Larmor radii follow
a uniform random distribution.

Figure 2 visualizes the confluence of programming model
and simulation configurations on Hopper. As mzetamax and
mzeta are 16 and 1 respectively, the torus is partitioned into
16 segments of 1 poloidal plane. To assign one of these
segments to each 24-core Hopper node, we explore three
approaches to parallelism within a node: one process per
core, one process per chip, and one process per node. This is
achieved by varying npartdom. Particles within this toroidal
segment are simply partitioned among processes on a node.

Thus, in a D96 simulation with npartdom=24, the 231M
particles on a node would be partitioned among the pro-
cesses, causing two negative effects. First, the per-process
particle density is only four particles per grid point, and sec-
ond, the charge and field grids must be replicated on a pro-
cess by process basis. As a result, compared to the 24 thread
hybrid implementation, the flat MPI implementation incurs
a 24-way replication of charge grid data. Moreover, all pro-
cesses on a node must reduce their copies of the charge grid
into one via an MPI_Allreduce, and solve Poisson’s equation

mzetamax = 16, mzeta=1 on a total of 16 Hopper nodes

zeta

P
.
|
\
\ e
\
A
g hl
4
: x 9
¥ ¥ = ” : i
® T & 2 5 2 ooy
N v /e Y
Flat MPI Hybrid Hybrid
4 processes 1 process
24
processes of 6 threads of 24 threads

each with 1 thread

npartdom = 24 npartdom =4 npartdom = 1
Figure 2: An illustration of the approaches used to
exploit parallelism on Hopper, and the node-centric
view of the replication of charge and field grids. Par-
ticles are partitioned, but never replicated.

redundantly so that each process has a copy of the resul-
tant field grid. Moving to a hybrid implementation reduces
the scale of the reduction, as well as the degree of redun-
dancy in the solve. Conversely, the particle shift phase is
done on a process-by-process basis. Shift is simplest in the
flat MPI implementation and becomes progressively more
complex and less concurrent in the hybrid version.

4. CPU OPTIMIZATIONS

The reference production GTC code was developed in For-
tran 90, and uses the MPI and OpenMP libraries for par-
allelism. Our study has rewritten the entire application in
C for several reasons. First, our new implementation pro-
vides a common low-level optimization substrate and sim-
plifies GPU exploitation. We can also leverage optimized

C/OpenMP multithreaded implementations from prior work,

developed for the particle-mesh interpolation performed in
charge and push [22]. We now discuss the details of the code
restructuring as well as CPU specific optimizations.

Code Restructuring: The new C version permits explo-
ration of several data layout alternatives, both for the par-
ticle and grid data. As charge and push typically dominate
execution time, it is important to select the particle data lay-
out that would maximize the performance of both kernels.
We therefore chose the structure-of-arrays (SOA) layout for
particle data, which necessitated moving away from the ref-
erence GTC representation (array-of-structures). The SOA
approach maximizes spatial locality on streaming accesses
and thus improves sustained bandwidth. This optimization
is employed on both CPUs and GPUs.

Additional low-level restructuring changes include flatten-
ing 2D and 3D grid arrays to 1D, zero-indexed arrays in C,
pre-allocation of memory buffers that are utilized for tempo-
rary storage in every time step, aligned memory allocation

of particle and grid arrays to facilitate SIMD intrinsics and
aligned memory references, NUMA-aware memory alloca-
tion relying on the first-touch policy, and C implementations
of Fortran 90 intrinsics such as modulo and cshift.

Our work optimizes all six GTC phases on the CPU.
Across all platforms, and on all kernels, we use OpenMP
for thread-level parallelism. The key parallelization strat-
egy and new contributions are discussed below.

Charge: Our previous single-node work [21,22] explored
optimizing GTC’s charge deposition via static replication of
grid segments grid, coupled with synchronization via locks
and atomics, and using POSIX threads for shared memory
parallelism. In addition to the original copy of the charge
grid, we create a number of static replicas. Each replica can
constitute either a full poloidal plane grid, or a small parti-
tion of it extended with a ghost zone in psi to account for the
potentially-large radius of gyrating particle. Threads may
quickly access their own replica without synchronization, or
slowly access the globally shared version with a synchroniza-
tion primitive. Thus, the size (and extra memory usage) of
the replica may be traded for increased performance.

Our optimized version leverages OpenMP to parallelize
the particle loop, and using our previous results as guid-
ance, selects the best replication and synchronization for
each underlying platform. Note that as the BlueGene/P
does not support 64-bit atomic operations, we employ the
full poloidal grid replication strategy when running hybrid
configurations (MPI/OpenMP). In case of the x86 systems,
we have an additional cache-bypass optimization. As seen in
Table 1 charge deposition involves substantial write traffic
to particle data. Given that these unit stride writes are not
accessed again until the push phase, we implement SSE in-
trinsics for streaming (cache-bypass) stores — boosting the
computational intensity of the interpolation loop to 1.0.

Poisson/Field/Smooth: The grid-related routines are
primarily comprised of unit-stride accesses to grid data struc-
tures such as the charge density, potential, and the electric
field. The main optimization for these routines is NUMA-
aware allocation of both temporary and persistent grid data
structures, in order to maximize read bandwidth for grid ac-
cesses. Additionally, we fuse OpenMP loops wherever pos-
sible to minimize parallel thread fork-join overhead.

Push: Similar to charge, we leverage parts of prior work to
implement an optimized, threaded implementation of push.
The key optimizations performed in this study is loop fu-
sion to improve the arithmetic intensity and NUMA-aware
allocation. We also improve load balancing via OpenMP’s
guided loop scheduling scheme. This increases performance
for larger cache working sets seen by particles near the outer
edge, with a reduced number of loop iterations assigned to
those threads. Load balancing is thus far more efficient than
what is possible with a flat MPI reference approach.

Shift: Recall that shift is an iterative process in which
particles move one step at a time around the torus. We op-
timize the shift phase by threading the MPI buffer-packing
and unpacking, as well as via the use of additional buffer
space at the end of the particle arrays. In practice each
thread enumerates a list of particles that must be moved,
buffer space then is allocated, threads fill in disjoint parti-
tions of the buffer, and the send is initiated. When particles
are received, they may be filled into the “holes” emptied by
departing particles. However, performing hole-filling every

step may unnecessarily increase overhead. Therefore, par-
ticle arrays are allocated with extra elements at the end of
arrays, and incoming particles may be copied in bulk into
this segment. If the buffer is exhausted, holes are filled with
particles starting from the end of the particle arrays. The
hole filling frequency can thus be a runtime parameter, and
we tune it based on the expected particle movement rate.

Radial binning: For efficient parallel execution of charge
and push, and for reducing the cache working set size of
grid accesses, we make the important assumption that parti-
cles are approximately radially-binned. This is however not
likely to be satisfied as the simulation progresses, as particles
may move in the radial direction as well as across toroidal
domains (causing holes in the particle array). Thus, we im-
plement a new multithreaded radial binning routine, as an
extension to the shift routine. Radial binning frequency is
be a parameter that can be set dynamically, and is currently
based on the number of toroidal domains and the expected
hole creation frequency.

On-the-fly auxiliary array computations: GTC re-
quires twelve double precision values per particle (96ms bytes)
to maintain the coordinates and state of each particle. This
also represents the data volume per particle, exchanged in
the shift routine. In addition, seven auxiliary arrays of size
mi words each (44mi bytes total) are maintained just to fa-
cilitate exchange of data from the disjoint charge and push
phases of the simulation. The auxiliary information, ac-
counting for particle data write traffic in charge and read
traffic in push, can be avoided if we redundantly perform
approximately 120 floating point operations per particle in
the push phase. While we implemented this optimization,
it did not lead to an overall improvement in performance
for the problem configurations and parallel systems tested in
this paper. This may however be an important optimization
for future memory- and bandwidth-constrained systems.

5. GPU ACCELERATION

To investigate the potential of manycore acceleration in
a cluster environment, we employ the Fermi GPUs in the
Dirac system. A judiciously selected subset of the compu-
tational phases were ported to the GPU. As particle arrays
can constitute the bulk of memory usage, our implemen-
tation strives to keep particles on the GPU to maximize
performance. In practice, this constrains the size of possible
problem configurations. We leverage our previous research
into tuning the charge and push phases for GPUs [21]; how-
ever, significant additional effort was required to implement
and optimize the GPU shift functionality.

Our implementation strategy requires that most auxiliary
arrays are kept in the GPU memory to communicate data
between GTC’s computational phases. For instance, the in-
dices of the electrostatic field that are computed during the
charge phase are stored for use by the push phase. To fa-
cilitate correct CPU/GPU integration, some previously de-
veloped charge and push optimizations [21], such as radial
binning and full sorting of particle updates, are no longer
applicable or have yet to be evaluated. Additionally certain
memory-intensive optimizations, such as keeping additional
particle buffer space for shifted particles, were not suitable
with the limited GPU memory capacity.

Charge: Similar to the OpenMP version, CUDA paral-
lelizes the iterations of particle arrays among thread blocks

Intrepid Hopper
2500 250 350
2250 225
300
— 2000 % 200 n
T 1750 2 175 B 250
g 1500 3 150 8 200
§ 250 5 g §12s 8 s
= £ £ 100
o 1000 —§ 5) o
E 750 = s E 75 £ 100
[%5 o F 50 =
500 & 5 25 50
=1 s
252 o o 0 0
- 3 < X 83 X 83
x X x x < < x < < x
< - < - N -~ N -~
Fortran Optimized C Fortran Optimized C

Intel Cluster

Fermi Cluster

350 PCle
300 (cudaemCpy)
w " .smooth
1%}
g200 E£g3 058 .ﬁeld
7] Lo S E QO
- 150 9o O N
€100 S50 529 .poisson
= 5922 2% 2
50 —g2° g 2 Dchar e
iz S E 9
0
- ®© © - ® © - ®© © - © © Dshiﬂ
x x - x x ~— x X - x x -
—
Fortran Optimized C Fortran C/CUDA

Figure 3: Breakdown of runtime spent in each phase for the B20 problem as a function of architecture, opti-
mization, and threading. Note, minor axis is “processesxthreads”, or equivalently, “npartdomx0OMP_NUM_THREADS”.
Additionally, observe each is plotted on a different timescale. PCle time has been removed from each kernel’s

time and tabulated in a separate bar.

with special attention paid to attain memory coalescing.
The thread blocks then perform the requisite scatter-add op-
erations to a charge grid resident in the GPU’s device mem-
ory. However, unlike the CPU implementations of charge de-
position, there is no grid replication on the GPU. Rather, the
GPU version relies solely on fast double-precision atomic in-
crement (implemented via a compare-and-swap operation).
Unfortunately, the gather/scatter nature of this kernel makes
memory coalescing of grid data all but impossible. Nev-
ertheless, we alleviate this performance impediment via a
transpose within shared memory. Thus, computation is or-
ganized so that CUDA threads access successive particles
when reading, but is reorganized so that threads work to-
gether on one charge deposition (of up to 32 neighboring
grid points) when writing. Given the limited use of shared
memory, we configure the GPU to favor the L1 cache. Note
that the GPU charge is responsible for both initializing the
charge grid and transferring it back to host memory.

We also highlight that the charge phase is also partly exe-
cuted on the CPU, thus exploring architectural heterogene-
ity. Specifically, the communication involved in reduction of
the charge density across domains and subsequent bound-
ary condition updates are managed by the CPU. The solve
routines utilize the charge density grid and produce the elec-
trostatic field vector used in the push phase.

Poisson/Field/Smooth: The three solve-related phases
are performed on the CPU as they mandate communicating
the computed values with other nodes via MPI. We predict
that migrating these computations to the GPU will likely not
substantially improve Fermi Cluster performance, as their
fraction of the runtime is small (as detailed in Section 6).

Push: For the push phase, we leverage our extensive GPU
optimizations [21]. Unfortunately, the transpose operation
that facilitated charge showed no benefit here. Our analy-
sis indicates that a simple decomposition of one particle per
CUDA thread and 64 threads per block performed well. Ad-
ditionally, conditional statements were replaced with redun-
dant computation to avoid divergent code, and some vari-
ables were judiciously placed in CUDA’s “constant” memory.
We also observe that the per-SM SRAM should be config-
ured to prefer the L1 cache (i.e., 16 KB shared + 48 KB
L1) for the larger grid size. Finally, prior to execution, push
must transfer the field grid produced by the CPU solver from
host memory to the GPU’s device memory.

Shift: The shift phase is far more challenging to implement

on the GPU. First, the GPU must enumerate a list of all par-
ticles currently residing in device memory whose toroidal co-
ordinate is now outside of the GPU’s domain and pack them
into special buffers. Although a sequential implementation
of such an operation is straightforward, a GPU implemen-
tation must express massive parallelism. To that end, each
thread block maintains small shared buffers that are filled
as it traverses its subset of the particle array. Particles are
sorted into three buffers for left shift, right shift and keep
buffer. Whenever the local buffer is exhausted, the thread
block atomically reserve a space in a pre-allocated global
buffer and copy data from the local buffer to the global one.
Packed particles are also flushed over the original particle
array, thus clustering particle holes towards the end of each
thread block assignment. The use of atomics causes partial
shuffling of the particle that fortunately does not affect the
correctness of the implementation.

The array of structure that benefited the charge and push
routines proved problematic here. Reducing the number of
memory transfers, from 24 to 2 in our case, required using
the array of structures organization. Consequently data is
transposed while flush to the global buffer. This organi-
zation also helps in facilitating the messaging mechanism.
The global buffer is copied back to the host where the nor-
mal iterative shift algorithm is executed. Upon completion,
the host then transfers a list of incoming particles to the
GPU, where unpacking involves filing clustered holes in the
particle arrays and transposing the data back to the GPU
data structure of arrays layout. Maximizing parallelism and
attaining good memory coalescing, not to mention correct-
ness in the presence of “Heisenbugs”, made porting this ker-
nel extremely challenging yet mandatory, to avoid expensive
transfer of particle arrays to the CPU.

6. RESULTS AND ANALYSIS

In this section, we present the performance of GTC using
16 nodes on all platforms, where the underlying problem
(simulation) remains constant. Our optimizations explore
the balance between threads and processes via the npart-
dom (particle decomposition) configuration parameter. Ad-
ditionally we present large-scale simulations to understand
strong-scaling behavior at high concurrency.

6.1 Optimization and Threading

To highlight the benefits of our optimizations as well as the
trade-offs of using multiple threads per process, we examine

BGP XE6 Intel Fermi
Kernel Intrepid Hopper Cluster Cluster

push 1.93x 1.12x 1.31x 0.95x%

shift 2.03x 0.89x 1.04x 0.40x

charge 0.79x 1.43x% 2.26x 1.73%

poisson 0.70X% 1.53x 1.67x 2.52%

field 3.52x 2.43 % 2.54 % 3.10x

smooth 9.09x 2.76 x 3.17x 13.8%

overall speedup 1.22x 1.35x 1.77x 1.34x

Table 4: Speedup of B20 problem by kernel (best
threaded C vs. best threaded Fortran). Note, base-
line for the Fermi Cluster is the best Fortran imple-
mentation on the Intel Cluster.

the B20 problem in detail. Figure 3 shows the time spent in
each phase for 200 time steps of the simulation, as a func-
tion of machine, optimization (major axis), and threading
(minor axis). The three threading configurations per plat-
form include the flat MP (one MPI process per core), MPI/-
OpenMP (one MPI process per chip), and MPI/OpenMP
(one MPI process per compute node) — for both the refer-
ence Fortran GTC as well as our optimized C version. As
Intrepid has only one chip per node, both hybrid implemen-
tations represent identical configurations. Moreover, as all
simulations use every core on a node, changes in threads per
process are realized by decreasing npartdom.

Results demonstrate a dramatic increase in performance
when threading is used. This benefit primarily arises from
retasking cores from performing redundant solves (Poisson/-
field /smooth) to collaborating on one solve per node. Inter-
estingly, it appears that the Fortran version on Hopper does
not effectively exploit the NUMA nature of the compute
nodes. As such, when using 24 threads per process on Hop-
per, there is a marked degradation in Fortran performance
in push, charge, and Poisson. Conversely, our optimized
implementation delivers moderate improvements in charge
(obviates the intra-node reduction) and solve (trading re-
dundancy for collaboration), but a slight decrease in push
performance. These effects are present, but less dramatic
on the Intel cluster. Finally, the benefit of threading on In-
trepid is more basic. This problem size per node cannot be
run using the flat MPI programming model as it runs out
of memory. This highlights the importance of moving to a
threaded model, allowing us to exploit shared memory and
avoid redundant poloidal replicas in the solver routines. We
also note that on all platforms, our optimized implementa-
tion attains best performance with one process per node.

Figure 3 also relates the relative contribution to runtime
for each GTC computational component for a given archi-
tecture and threading configuration. Results show that the
threading and optimization choice can have a profound im-
pact on the relative time in each routine. Generally, as the
number of threads increase, there is an improvement in the
solver routines (due to reduced redundancy) as well as the
shift routine (particles need not be shifted if they remain
on the node). However, in the reference Fortran implemen-
tation, threading has a minimal impact on charge or push
performance. As such, the fraction of time spent in charge
and push can become dramatic, exceeding 33% of the best
runtime on the x86 machines and constituting a combined
93% of the runtime on Intrepid. Future work will address the
performance of these phases though a variety of auto-tuning
techniques (unrolling, explicit SIMDization, etc.).

Results also show that, contrary to conventional wisdom,
PCle overhead does not substantially impede GPU perfor-
mance. Rather the challenges of data locality and fine-
grained synchronization in the push and particularly the
charge routines result in slower GPU execution times com-
pared with the Intel CPU Cluster. Unfortunately, the extra
GPU memory bandwidth cannot make up for its inability
to form a large working set in its relatively small L2 cache.
Migrating the solver computations to the GPU would have
a negligible impact on performance as it constitutes a small
fraction of the runtime.

Table 4 details the B20 performance benefits of our op-
timized approach compared with the fastest reference im-
plementation on a kernel-by-kernel basis. For our x86 opti-
mizations, the complex charge routine delivers more than a
2x speedup due to our locality-aware, low-synchronization
particle-grid interpolation approach. Unfortunately, the lack
of 64-bit atomic operations prevents us from leveraging those
techniques to improve Intrepid charge performance (an in-
efficient replicate/reduce approach [22] is realized through
OpenMP). The benefits observed in the three grid-related
routines is even more dramatic, partially due to the attained
peak performance with one process per node (thus all the
on-node parallelism is tasked for one solve). Interestingly,
BlueGene/P speedups vary wildly — a testament to the dif-
ferences between XLF and XLC compilers, as well as the
lack of ISA-specific BlueGene optimizations in our current
implementation. Our shift routine also includes time for ra-
dial binning, which is performed every four time steps for
this configuration. Hence we do not achieve a substantial
speedup over the Fortran version on the x86 platforms.

Finally, Table 4 shows that the GPU implementation ben-
efited from speedups on the solver phases (as particles are
not flushing the grid points from the caches. The good
speedup on charge (relative to reference Fortran) coupled
with the lack of any improvement in push performance —
due to GPU’s difficulties in addressing the irregular data
patterns — resulted in the overall optimized C/CUDA im-
plementation achieving only a 34% improvement relative to
the reference Fortran/OpenMP code.

6.2 Performance and Energy Comparison

Figure 4(left) summarizes our optimization impact (com-
pared with the fastest reference implementation), as well as
the relative per-node performance across all architectures
(normalized to the BlueGene/P reference version). Results
show the significant speedup of a Hopper node compared
with the commodity Intel cluster, GPU-accelerated Fermi
Cluster, and low-power BlueGene/P node, attaining a 1.5,
2.0x, and 25.5X% performance advantage (respectively). On
a per-core level, the Nehalem achieves the highest speed, ex-
ceeding the performance of the PPC450 and Opteron by fac-
tors of 8.6x and 2.0x. Overall, through our optimizations,
we attain significant application-level speedups of 1.22x,
1.35x%, 1.77x, and 1.34x on Intrepid, Hopper, the Intel
Cluster, and the Fermi Cluster respectively, compared to
the fastest (previously optimized) Fortran version.

We now turn to Figure 4(right) that shows the energy effi-
ciency trade-offs (derived from empirical measurements and
the November 2010 Top500 [29] data, see Table 2) between
our evaluated architectures — an increasingly critical met-
ric in supercomputing design. Although all machines deliv-
ered similar energy efficiencies before optimization, our x86-

35 B Optimized 26 B Optimized
o B Reference 24 B Reference
Q
m 30
8
[

2 25
=]
©
[
o 20 -
S
-]
-4
® 15 1
%
[
g
S 10 -
£
S
£ 5
o 1.22x

0

BGP XE6 Intel Fermi BGP XE6 Intel Fermi
Intrepid Hopper Cluster Cluster Intrepid Hopper Cluster Cluster

Figure 4: Performance and energy efficiency (nor-
malized BGP = 1.0) before and after optimization
for B20. Baseline for the GPU is fastest Fortran
version on the Intel Cluster. Speedups through op-
timization are labeled. Power based on Top500 [29]
and empirical measurements (see Table 2).

specific optimizations resulted in the Intel cluster and Hop-
per attaining an efficiency advantage of approximately 1.8x
and 1.7x compared with BlueGene/P and the Fermi cluster.
Nonetheless, there is clear value in the BlueGene method-
ology, as it has taken commodity processors three years to
surpass it in terms of energy efficiency. It is also important
to highlight that the Fermi cluster delivered lower energy
efficiency than the Intel cluster due to its higher power and
lower performance on these demanding irregular computa-
tions.

6.3 Memory Savings

Computer architecture design is seeing memory capacity
per node growing slower than peak performance. Thus, re-
ducing memory usage is a success metric on par with per-
formance. Using the threading paradigm (in either C or
Fortran), reduces the processes per node, and thus the total
number of field grid copies per node. These savings in mem-
ory scale with the number of cores and problem size. For
example, the class B problem on Intrepid memory require-
ments are only reduced by 21 MB, while the D size config-
uration on Hopper results in significant saving of 2.5 GB.
Additionally, in our optimized version, threads share one
copy of the grid and partitions a second (unlike the refer-
ence Fortran, where each thread creates a redundant charge
grid copy), resulting in an additional 800 MB of savings for
the class D Hopper problem. Overall, our approach saves
330 MB, 3.3 GB, and about 1 GB for Intrepid, Hopper,
and the Intel Cluster respectively, corresponding to 16%,
4%, and 1% of each node’s DRAM. These memory sav-
ing will have increasingly important impact on forthcoming
platforms that are expected to contain higher core counts
with reduced memory capacities.

6.4 Perturbations to Problem Configurations

Having examined B20 in detail, we now explore a range of
configurations to understand our optimization impact across
a wide range of problems. Figure 5 provides insight into how

BGP Intrepid XE6 Hopper Intel cluster GPU cluster
35X

Out of Out of
§ C 4 Out of memory | 18.2X -415.1X memory ~12.5X memory 25X
2 15X
OB 425.5X 417.2X 21.2X| 413.0X 14.2X sx

0 .
micell

Figure 5: Heatmaps showing per-node performance
(particles pushed per second per time step) as a
function of system and problem configuration. All
numbers are normalized to B20 Intrepid perfor-
mance (for mzeta = 16).

performance varies as a function of problem configuration
and architecture. The vertical axis corresponds to the grid
size. Whereas the class B grid is relatively small (2.3 MB
per component) and could likely fit in cache, the class C grid
is larger (9.2 MB per component) and will challenge the 6-
8 MB cache subsystems used on each CPU. The horizontal
axis of Figure 5, micell, denotes the average number of par-
ticles per grid point (particle density). Increasing micell has
two effects that are expected to increase performance. First,
because the computational complexity of charge, push, and
shift phases vary linearly with micell, the time spent in those
routines increases relative to the time spent in the solver
routines (whose computational complexity depends on mze-
tamaz). Additionally, a larger micell increases the temporal
locality seen by the charge and push phases.

Given that the total memory required for a simulation
grows linearly with grid size and particle density, it is not
surprising that at 16 nodes all but the B20 problem was too
large for Intrepid and the C96 was too large for the Fermi
and Intel Clusters. The only way to run larger problems is
to use multiple nodes per plane. Broadly speaking, on the
x86 machines, increasing the grid size and the correspond-
ing working set results in a performance degradation. Con-
versely, an increase in particle density (increased locality,
decreased solve time), causes a performance improvement.

6.5 Large Scale runs

Ultimately, ultra-scale simulations must focus on large
grid sizes with high particle densities. To understand the
potential scaling impediments, we examine the ITER-scale
D96 problem with ntoroidal=64 on the Cray XE6 Hopper.
Compared to the B20 problem in the previous subsection,
the size of the grid per node is increased by a factor of
16 x, while simultaneously the particle density is increased
by almost a factor of 5x. Our experiments scale the num-
ber of nodes from 256 to 2048 (6144 to 49,152 cores) in a
strong scaling regime by increasing npartdom from 4 to 32.
Thus, at 256 nodes, each node uses a field grid of 110 MB to
push 58 million particles. As we increase concurrency, the
field grid remains constant, but the number of particles per
node drops to about 7 million. All experiments leverage our
fastest optimized hybrid implementation on Hopper.

Figure 6(left) shows that performance increases by a fac-
tor 4.1x (relative to the 6144-core reference point), attaining
a 1.6x overall improvement compared with the fastest ref-
erence implementation on 49,152 cores. Note, however, that
parallel and energy efficiency (red line) achieves only 51%,
mostly due to the increasing fraction of time spent in the
solver routines, clearly visible in Figure 6(right). In reality,

10 110%
- 100%
- 90%
- 80%
- 70%
- 60%
- 50%
- 40%
- 30%
- 20%
- 10%
1 <& - T T 0%
6144 12288 24576 49152
Cores

Normalized Performance
Efficiency

—o—Performance ----Perfect —@—Efficiency

100%
90%
80%
70%
60%
50%
40%
30%
20%

% Time

10%

0%
6144 12288 24576 49152
Cores

Bpush Bshift Ocharge Bpoisson Wfield ®smooth

Figure 6: Strong-scaling results on Hopper using the D96 problem. (left) performance and efficiency as a
function of concurrency, normalized to 6144 cores. (right) the breakdown of runtime among phases.

the actual solve times remain almost constant, but the time
spent in push, shift, and charge decrease by up to 11.5x.
Mitigating the solver scaling impediment requires either par-
allelization of the 2D solvers across npartdom, something
more advanced implementations of gyrokinetic simulations
already implement with PETSc, or increasing the particle
density proportionally with npartdom via weak scaling sim-
ulations. Nonetheless, the unique characteristics of particle
distributions within a poloidal plane allowed push to attain
super-linear scaling, while shift and charge improved by 4.3
and 5.1X respectively.

7. CONCLUSIONS

In this work, we explore the impact of multicore-specific
optimizations on a production gyrokinetic fusion application
previously tuned for single core parallel systems. The global
capability of the GTC code is unique in that it allows re-
searchers to study the scaling of turbulence with the size of
the tokamak and to systematically analyze important global
dynamics. Our work explores novel multi- and manycore
centric optimization schemes for this complex PIC-based
code, including multi-level particle and grid decomposition
to alleviate the effects of irregular data accesses and fine-
grained hazards, increasing computational intensity through
optimizations such as loop fusion, and optimizing multiple
diverse numerical kernels in a large-scale application. Re-
sults across a diverse set of parallel systems demonstrate
that our threading strategy is essential for reducing memory
requirements, while simultaneously improving performance
by 1.22x, 1.35%, and 1.77x, and 1.34x on BlueGene/P, the
Cray XE6, an Intel Cluster, and a Fermi Cluster (respec-
tively). Additionally our methodology extends the poten-
tial concurrency of these simulations, allowing the potential
ultra-scale experiments of ITER-sized fusion devices.

The B20 problem provided insights into the scalability and
performance optimization challenges (CPU and GPU) facing
GTC simulations. For example, our memory-efficient opti-
mizations on CPUs improved performance by up to 1.77x
while reducing memory usage substantially. Proper use of
threading placed simulations in the ideal regime where they
are limited by the performance of on-node charge and push

calculations. Despite our highly-optimized GPU charge and
push routines, we observe that GTC’s data locality and fine-
grained data synchronization challenges are at odds with the
underlying GPU architecture’s synchronization granularity
and small cache sizes — thus mitigating the GPU’s poten-
tial. The result is that GPU-accelerated GTC was substan-
tially slower than optimized CPU implementation.

In terms of programming productivity, porting GTC to
the GPU-accelerated Dirac cluster proved taxing given the
need not only to implement architecture-specific transforma-
tions but also to create new, massively-parallel implementa-
tions of the shift phase. The lack of mature development and
debug support tools for hybrid codes on large-scale systems
impeded the productivity of this process.

To evaluate our methodology at scale, we explored strong-
scaling D96 experiments on Hopper using up to 49,152 cores,
and showed that our optimization scheme achieves a 1.6x
speedup over the fastest reference version, while reducing
memory requirements by 6.5 TB (a 10% savings). Results
show that in the strong scaling regime, the time spent in
solver remains roughly constant, while charge/push/shift ex-
hibit parallel scalability. Thus, the redundancy in the solver
(performing the same calculation (npartdom times) impedes
scalability and efficiency, motivating exploration of solver
parallelization schemes that will be the subject of future
work. Additionally, future work will address the limited
DRAM capacity of next-generation system via radial parti-
tioning techniques that lower memory requirements.

Finally, results also highlight that raw performance per
node is not necessarily the only relevant metric. We ob-
serve that Hopper and the Intel Cluster deliver the highest
overall energy efficiency, while surprisingly, the BlueGene
and Fermi Cluster delivered lower energy efficiency — in
the case of Fermi consuming more power and delivering less
performance than the Intel Cluster. As energy and power
will ultimately constrain future machine scale, it is impera-
tive that we understand the interactions between program,
architecture, and energy efficiency today. Thus it is critical
for the computational community to study diverse archi-
tectural comparisons on optimized complex applications, as
presented here.

8.

ACKNOWLEDGMENTS

All authors from Lawrence Berkeley National Laboratory
were supported by the DOE Office of Advanced Scientific
Computing Research under contract number DE-AC02-05-

CH11231.

Dr. Ethier is supported by the DOE contract

DE-AC02-09CH11466. Eun-Jin Im was supported by Basic
Science Research program through the National Research
Foundation of Korea (NRF), funded by the Ministry of Ed-
ucation, Science and Technology under grant number 2011-
0005992. This research used resources of the Argonne Lead-
ership Computing Facility at Argonne National Laboratory,
which is supported by the Office of Science of the U.S. De-
partment of Energy under contract DE-AC02-06CH11357.

9.
1]

[10]

[11]

[12]

REFERENCES

M. Adams, S. Ethier, and N. Wichmann. Performance
of particle in cell methods on highly concurrent
computational architectures. Journal of Physics:
Conference Series, 78:012001 (10pp), 2007.

E. Akarsu, K. Dincer, T. Haupt, and G. Fox.
Particle-in-cell simulation codes in High Performance
Fortran. In Proc. ACM/IEEE Conference on
Supercomputing (SC’96), page 38, Nov. 1996.

E. Bertschinger and J. Gelb. Cosmological N-body
simulations. Computers in Physics, 5:164 — 175, 1991.
K. Bowers. Accelerating a particle-in-cell simulation
using a hybrid counting sort. Journal of
Computational Physics, 173(2):393-411, 2001.

K. Bowers, B. Albright, B. Bergen, L. Yin, K. Barker,
and D. Kerbyson. 0.374 Pflop/s trillion-particle kinetic
modeling of laser plasma interaction on Roadrunner.
In Proc. 2008 ACM/IEEE Conf. on Supercomputing,
pages 1-11, Austin, TX, Nov. 2008. IEEE Press.

S. Briguglio, B. M. G. Fogaccia, and G. Vlad.
Hierarchical MPI+OpenMP implementation of
parallel PIC applications on clusters of Symmetric
MultiProcessors. In Proc. Recent Advances in Parallel
Virtual Machine and Message Passing Interface (Euro
PVM/MPI), pages 180-187, Sep—Oct 1996.

E. Carmona and L. Chandler. On parallel PIC
versatility and the structure of parallel PIC
approaches. Concurrency: Practice and FExperience,
9(12):1377-1405, 1998.

A. Danalis, G. Marin, C. McCurdy, J. Meredith,

P. Roth, K. Spafford, V. Tipparaju, and J. Vetter.
The scalable heterogeneous computing (SHOC)
benchmark suite. In Proc. 8rd Workshop on
General-Purpose Computation on Graphics Processing
Units (GPGPU ’10), pages 63-74. ACM, 2010.

V. K. Decyk. UPIC: A framework for massively
parallel particle-in-cell codes. Computer Physics
Communications, 177(1-2):95-97, 2007.

V. K. Decyk and T. V. Singh. Adaptable
particle-in-cell algorithms for graphical processing
units. Computer Physics Communications,
182(3):641-648, 2011.

S. Ethier, W. Tang, and Z. Lin. Gyrokinetic
particle-in-cell simulations of plasma microturbulence
on advanced computing platforms. Journal of Physics:
Conference Series, 16:1-15, 2005.

S. Ethier, W. Tang, R. Walkup, and L. Oliker.
Large-scale gyrokinetic particle simulation of

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

23]

24]

(25]

[26]

27]

(28]

microturbulence in magnetically confined fusion
plasmas. IBM Journal of Research and Development,
52(1-2):105-115, 2008.

R. Fonseca et al. OSIRIS: A three-dimensional, fully
relativistic particle in cell code for modeling plasma
based accelerators. In Proc. Int’l. Conference on
Computational Science (ICCS ’02), pages 342-351,
Apr. 2002.

R. Hockney and J. Eastwood. Computer simulation
using particles. Taylor & Francis, Inc., Bristol, PA,
USA, 1988.

C. Huang et al. QUICKPIC: A highly efficient
particle-in-cell code for modeling wakefield
acceleration in plasmas. Journal of Computational
Physics, 217(2):658-679, 2006.

The ITER project. http://www.iter.org/.

JET, the Joint European Torus.
http://www.jet.efda.org/jet/, last accessed Apr
2011.

A. Koniges et al. Application acceleration on current
and future Cray platforms. In Proc. Cray User Group
Meeting, May 2009.

W. Lee. Gyrokinetic particle simulation model.
Journal of Computational Physics, 72(1):243-269,
1987.

Z. Lin, T. Hahm, W. Lee, W. Tang, and R. White.
Turbulent transport reduction by zonal flows:
Massively parallel simulations. Science,
281(5384):1835-1837, 1998.

K. Madduri, E. J. Im, K. Ibrahim, S. Williams,

S. Ethier, and L. Oliker. Gyrokinetic particle-in-cell
optimization on emerging multi- and manycore
platforms. Parallel Computing, 2011. in press,
http://dx.doi.org/10.1016/j.parco.2011.02.001.
K. Madduri, S. Williams, S. Ethier, L. Oliker, J. Shalf,
E. Strohmaier, and K. Yelick. Memory-efficient
optimization of gyrokinetic particle-to-grid
interpolation for multicore processors. In Proc.
ACM/IEEFE Conf. on Supercomputing (SC 2009),
pages 48:1-48:12, Nov. 2009.

G. Marin, G. Jin, and J. Mellor-Crummey. Managing
locality in grand challenge applications: a case study
of the gyrokinetic toroidal code. Journal of Physics:
Conference Series, 125:012087 (6pp), 2008.

J. D. McCalpin. STREAM: Sustainable Memory
Bandwidth in High Performance Computers.
http://www.cs.virginia.edu/stream/.

H. Nakashima, Y. Miyake, H. Usui, and Y. Omura.
OhHelp: a scalable domain-decomposing dynamic load
balancing for particle-in-cell simulations. In Proc. 23rd
International Conference on Supercomputing (ICS
’09), pages 90-99, June 2009.

C. Nieter and J. Cary. VORPAL: a versatile plasma
simulation code. Journal of Computational Physics,
196(2):448-473, 2004.

L. Oliker, A. Canning, J. Carter, J. Shalf, and

S. Ethier. Scientific computations on modern parallel
vector systems. In Proc. 2004 ACM/IEEE Conf. on
Supercomputing, page 10, Pittsburgh, PA, Nov. 2004.
IEEE Computer Society.

G. Stantchev, W. Dorland, and N. Gumerov. Fast

http://www.iter.org/
http://www.jet.efda.org/jet/
http://dx.doi.org/10.1016/j.parco.2011.02.001
http://www.cs.virginia.edu/stream/

parallel particle-to-grid interpolation for plasma PIC
simulations on the GPU. Journal of Parallel and
Distributed Computing, 68(10):1339-1349, 2008.

[29] Top500 Supercomputer Sites.
http://www.top500.o0rg.

http://www.top500.org

	1 Introduction
	2 GTC Overview and Related Work
	2.1 GTC Data Structures and Parallelization
	2.2 GTC Code Structure
	2.3 Related Work

	3 Experimental Setup
	3.1 Evaluated Platforms
	3.2 Programming Models
	3.3 Simulation Configurations

	4 CPU Optimizations
	5 GPU Acceleration
	6 Results and Analysis
	6.1 Optimization and Threading
	6.2 Performance and Energy Comparison
	6.3 Memory Savings
	6.4 Perturbations to Problem Configurations
	6.5 Large Scale runs

	7 Conclusions
	8 Acknowledgments
	9 References

