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Background: What is HipGISAXS?

• Massively parallel High-performance GISAXS simulation code.

• GISAXS: Grazing Incidence Small-Angle X-ray Scattering.

• X-ray scattering: a tool to measure structural properties of materials;
characterize macromolecules and nano-particle systems at micro and
nano-scales.

• Expose sample to
high-energy X-rays,
producing scattering
patterns.

• Scattering patterns contain
structural information
about the sample.

Tuning HipGISAXS on Multi and Many Core Supercomputers. PMBS @ SC13 asarje @ lbl.gov
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4 Platforms’ overview.

5 Code optimization and tuning on clusters of:

• Graphics processors (GPU);
• Intel Phi coprocessors (MIC);
• Intel Sandy Bridge and AMD Magny Cours CPUs.

6 Performance analysis and comparisons.

7 Conclusions.

Tuning HipGISAXS on Multi and Many Core Supercomputers. PMBS @ SC13 asarje @ lbl.gov



Introduction HipGISAXS Implementation Overview Optimization Highlights Graphics Processors Many Integrated Cores Multicores Conclusions

HipGISAXS Kernel: Numerical Form Factor Calculations

• Q is grid of size nx × ny × nz

• Described by 3 vectors,
qα = 〈p0 · · · pnα−1〉, α ∈ {x, y, z}.

Tuning HipGISAXS on Multi and Many Core Supercomputers. PMBS @ SC13 asarje @ lbl.gov
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HipGISAXS Kernel: Numerical Form Factor Calculations

• Q is grid of size nx × ny × nz

• Described by 3 vectors,
qα = 〈p0 · · · pnα−1〉, α ∈ {x, y, z}.

• T is set of nt triangles describing
a nano-structure model.

• T = {t0 · · · tnt−1}, tk = 〈~rtk ,
~Ntk , stk〉

Tuning HipGISAXS on Multi and Many Core Supercomputers. PMBS @ SC13 asarje @ lbl.gov
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HipGISAXS Kernel: Numerical Form Factor Calculations

• Form factor computed over model surface at each q-point:

F : f (~q) = − i
|~q|2

∑
t∈T

ei~q·~rt qNt st, ∀~q ∈ Q.

• Construct matrix F of size nx × ny × nz.

• Hence, computational complexity = O(nxnynznt).

• Kernel is compute-bound.

Tuning HipGISAXS on Multi and Many Core Supercomputers. PMBS @ SC13 asarje @ lbl.gov
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Generic Parallelization of the Form Factor Kernel

Covered in previous work 1:

• “Embarrassingly parallel”.

• Tiles across multiple nodes to decompose computations.

• Hyperblocks on a node to improve memory-based performance.

• Hyperblocks also helpful with accelerators.
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1‘‘Massively Parallel X-ray Scattering Simulations”, Supercomputing, 2012.
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Motivations and Challenges

• This is a both big data and big compute problem.

• Data generation rate is continually increasing at light sources.

• Need for near real-time analysis.

• We utilize massive-parallelism to solve this.

• “Architecture-aware” algorithms and techniques necessary to extract
raw computational power.

• Efficient mapping onto the processors’ multi-level memory and
parallelism hierarchies.

• Make effective use of state-of-the-art compute facilities, reducing cost
(time and power).

Tuning HipGISAXS on Multi and Many Core Supercomputers. PMBS @ SC13 asarje @ lbl.gov
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Contributions

• Optimizations on Nvidia Fermi and Kepler graphics processors.

• Parallelization and optimization on Intel MIC architecture.

• Optimization on the AMD Magny Cours and Intel Sandy Bridge
processors.

• Implementation of auto-tuning of parallelization and optimization
parameters.

• Detailed performance analysis and comparisons.

Tuning HipGISAXS on Multi and Many Core Supercomputers. PMBS @ SC13 asarje @ lbl.gov
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Experimental Platforms

System Titan
(Cray XK7)

Stampede Hopper
(Cray XE6)

Edison-I
(Cray XC30)

Architecture GPU MIC Multicore Multicore

Processor Nvidia K20X Intel Phi SE10P AMD Magny Cours Intel Sandy Bridge

Cores 14 × 192 CUDA 60 + 1 2 × 12 2 × 8

HW
Threads/Core

1 4 1 2

Theoretical
peak

3,950 GFLOP/s 2,021 GFLOP/s 403 GFLOP/s 664 GFLOP/s

Tuning HipGISAXS on Multi and Many Core Supercomputers. PMBS @ SC13 asarje @ lbl.gov
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Performance Optimizations Highlights in HipGISAXS

• Guided by performance profiling:
Nvidia visual profiler, Intel VTune, PAPI.

• Expose more parallelism.
• Loop interchange and loop collapsing.
• New optimal CUDA thread-block

decomposition scheme on GPUs.

• Avoid memory transfers, read/writes.
• Kernel fusion. E.g. 87% improvement on GPUs.
• Use persistent buffers on MIC.
• Data reuse. E.g. input data reuse through shared memory on GPUs.

Tuning HipGISAXS on Multi and Many Core Supercomputers. PMBS @ SC13 asarje @ lbl.gov
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Performance Optimizations Highlights in HipGISAXS

• Overlap computations with memory transfers.
• k-buffering. E.g. triple-buffering > 5% better than double-buffering.

• Optimize the unavoidable memory transfers.
• Input triangles data (7 reals) padding (1 real) for better alignment (32B).
• Avoid expensive operations, like vgatherdps on MIC, by input data

reorganization. E.g. 33% improvement.

• Expose instruction level parallelism.
• Shape triangles loop unrolling. 50%

improvement on GPUs.
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Performance Optimizations Highlights in HipGISAXS
• Vectorize.

• Reorganize data to facilitate better vectorization.
• Hand vectorize and optimize complex number operations.

E.g. 22% improvement on MIC over auto-vectorization.
• E.g. use SSE2 on Magny Cours, AVX on Sandy Bridge.
• Optimize exp and sincos. E.g. 25% improvement over SVML on MIC.

• Optimize execution environment configuration.
• E.g. Thread configuration and thread affinities on MIC.
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Performance Optimizations Highlights in HipGISAXS

• Optimize parameter values. E.g. On GPUs,

• auto-tuning hyperblock size.
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• auto-tuning CUDA thread block size.
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GPU Performance: Single Node

nt |Q| M2090 GFLOP/s K20X GFLOP/s
6,600 2M 0.68 s 813.6 0.25 s 2172.2
6,600 8M 2.73 s 813.2 1.02 s 2167.2

91,753 2M 9.47 s 813.4 3.56 s 2159.1
91,753 8M 37.9 s 813.4 14.25 s 2161.5

• Achieve 813 GFLOP/s on M2090, 61.2% of the theoretical peak.

• Achieve 2,172 GFLOP/s on K20X, 55% of the theoretical peak.

Tuning HipGISAXS on Multi and Many Core Supercomputers. PMBS @ SC13 asarje @ lbl.gov
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GPU Performance: Scaling Across Multiple Nodes

Strong Scaling on Titan (7.5M input triangles)
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• Achieve 1.25 PetaFLOP/s on 8,192 nodes.

Tuning HipGISAXS on Multi and Many Core Supercomputers. PMBS @ SC13 asarje @ lbl.gov
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MIC Performance: Single Node

nt |Q| Xeon Phi GFLOP/s
6,600 2M 2.27 s 453.58
6,600 8M 8.77 s 469.67

91,753 2M 30.77 s 465.22
91,753 8M 118.49 s 483.91

7,514,364 2M 2565.18 s 456.98

• Achieve 484 GFLOP/s, about 24% of the theoretical peak.

Tuning HipGISAXS on Multi and Many Core Supercomputers. PMBS @ SC13 asarje @ lbl.gov
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MIC Performance: Scaling Across Multiple Nodes

Strong Scaling on Stampede (91.7K input triangles)
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• Achieve 0.1 PetaFLOP/s on 1,024 nodes.
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Performance on Multicores (XE6/XC30): Single Node

nt |Q| XE6 GFLOP/s XC30 GFLOP/s
6,600 2M 6.34 s 141.7 2.97 s 378.2
6,600 8M 25.28 s 142.1 11.87 s 378.3

91,753 2M 88.16 s 141.7 41.0 s 379.0
91,753 8M 352.0 s 142.0 164.1 s 380.0

• Achieve 142 GFLOP/s on XE6 node, 35.2% of the theoretical peak.

• Achieve 380 GFLOP/s on XC30 node, 57.2% of the theoretical peak.

Tuning HipGISAXS on Multi and Many Core Supercomputers. PMBS @ SC13 asarje @ lbl.gov
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Performance on Multicores (XE6/XC30): Scaling

Strong Scaling on Hopper and Edison-I (91.7K and 7.5M input triangles)
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• Achieve 0.63 PetaFLOP/s on 6,000 Hopper nodes (144,000 cores.)

• Achieve 0.19 PetaFLOP/s on 512 Edison-I nodes (8,192 cores.)
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Performance Comparisons: HipGISAXS on Single Node
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Performance Comparisons: HipGISAXS Strong Scaling
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Conclusions and Future Work

• Developing a basic code with acceptable performance is easier on
multicores like the Magny Cours and Sandy Bridge.

• But, extraction of high-performance from them is no easier than
implementations on GPUs or MIC.

• Architecture-aware implementations are inevitable for
high-performance on these platforms.

• Graphics processors in general perform higher, and have high
power-efficiency.

• Explore more architectures such as IBM BG/Q.

• Multi-level distributed memory parallel framework for simulations.

• GISAXS simulation is just one component of the under-development
HipGISAXS suite.

Tuning HipGISAXS on Multi and Many Core Supercomputers. PMBS @ SC13 asarje @ lbl.gov
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Thank you!

HipGISAXS Code and Documentation:

• http://portal.nersc.gov/project/m1285/hipgisaxs.html

• http://github.com/hipgisaxs/hipgisaxs/wiki

Additional Information:

• Massively Parallel X-ray Scattering Simulations,
Supercomputing (SC12), no. 46, pp. 46:1–46:11, 2012.

• HipGISAXS: A High Performance Computing Code for
Simulating Grazing Incidence X-Ray Scattering Data,
Journal of Applied Crystallography, vol. 46 (6), pp. 1781–1795, 2013.
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