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High-energy X-ray Scattering

• X-ray scattering to measure structural properties of materials, and
• Characterize macromolecules and nano-particle systems at micro and nano-scales.

• probing the electronic structure of matter,
• semiconductors,
• 3D-biological imaging,
• protein crystallography,
• chemical reaction dynamics,
• biological process dynamics,
• optics,
• ... and so on.

• Broad variety of applications. E.g.:
• Materials: Design of energy efficient devices like solar cells, high-density storage media
• Medicine: Design of synthetic enzymes, drugs and bio-membranes.
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High-energy X-ray Scattering

Examples:

• Small-angle X-ray Scattering (SAXS)
• Grazing Incidence SAXS (GISAXS).
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Outline

1 Computational problems in nanostructure prediction.
• Scattering pattern simulations.
• Inverse modeling or fitting.

2 Motivations and the need of HPC.

3 X-ray scattering simulations.

4 Performance results.

5 Nanostructure prediction with inverse modeling.
• With Reverse Monte Carlo simulations.
• With Particle Swarm Optimization.

6 Conclusions and ending notes.
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Computational Problems in Structure Prediction
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Computational Problems in Structure Prediction
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Need for High-Performance Computing

Data generation and processing gap:

• High measurement rates of current state-of-the-art light beam detectors.

• Wait for days for analyzing data with previous softwares.

• Extremely inefficient utilization of facilities due to mismatch.

• Example: 100 MB raw data per second. Up to 12 TB per week.
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Need for High-Performance Computing

High computational and accuracy requirements:

• Errors are proportional to the resolutions of various computational discretization.

• Higher resolutions require higher computational power.
• Example:

• O(107) to O(1014) kernel computations for one simulation.
• O(102) experiments per material sample.
• O(102) to O(103) forward simulations for inverse modeling per scattering pattern.
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Need for High-Performance Computing

Science Gap:

• Beam-line scientists lack access to high-performance algorithms and codes.

• In-house developed codes limited in compute capabilities and performance.

• Also, they are extremely slow – wait for days and weeks to obtain basic results.
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Fortunately ...

• Involved computations have high degree of parallelism.

• Largely independent computations.

• Perfect for "GPUization".
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Forward Simulations: Computing Scattered Light Intensities

Given:
1 a sample structure model, and

2 experimental configuration,
simulate experiments and generate scattering patterns.

Based on Distorted Wave Born Approximation (DWBA) theory.
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Forward Simulations: Computing Scattered Light Intensities

Q-grid: a 3D region grid in inverse space where scattered light intensities
are to be computed.

Intensity: is computed at each q-point~q in the Q-grid.
At a point~q, it is proportional to square of the sum of
Form Factors at~q, due to all structures in the sample:

I(~q) ∝

∣∣∣∣∣
S∑

s=1

F(~q)

∣∣∣∣∣
2

x

z

y

q-point
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Forward Simulations: Computing Form Factors

• Form Factor at~q is an integral over shape surface.

F(~q) = − i
|q|2

∫
S(~r)

ei~qr·~rqn(~r)d2~r

• Approximated as summation over a discretized surface:

F(~q) ≈ − i
|q|2

t∑
k=1

ei~q·~rk qn,kσk

• Complex number computations.

• Analytical Form Factors for simple shapes.
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Forward Simulation Problem

Input: 3 arrays, qx, qy, qz of lengths nx, ny, nz, resp., representing a Q-grid of
resolution n = nx × ny × nz, and
Numeric: An array defining the triangulated shape surface as a set of t
triangles.

Output: A 3-D matrix M of size nx × ny × nz, where each entry
M(i, j, k) = F(qi, qj, qk) = F(~qi,j,k).
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Forward Simulations: Analytic Computation Examples
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Forward Simulations: Numeric Computation Examples

Rectangular Grating with
Undercut

Organic Photovoltaics
(OPV)

Real Sample Model Scattering Pattern
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HipGISAXS: An Open-Source High-Performance GISAXS Data Analysis Software

• http://portal.nersc.gov/project/als/hipgisaxs.

• Solves many limitations of previous codes.

• Implements new flexible algorithms to handle
• any complex morphology,
• multi-layered structures, and
• all sample rotation directions and beam angles.

• Implements parallelization methods:
• Deliver high-performance on massively parallel state-of-the-art supercomputers and clusters of

multi-core CPUs, Nvidia GPUs, Intel MICs.
• Bring forward simulation time down to milliseconds and seconds.

• Implements optimization algorithms for inverse modeling.

• Written in C++ with MPI, OpenMP and NVIDIA CUDA.
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HipGISAXS Forward Simulation Performance

• GPU Cluster: "Titan". Up to 8,192 nodes.
• NVIDIA Tesla K20X Kepler GPUs,

• 6 GB device memory,

• 1.15 GHz CUDA core clock,

• AMD Opteron Interlagos 16 core CPU,

• 32 GB main memory,

• Aries interconnects.

• Single precision complex number computations.
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Strong Scaling with Number of Nodes

• GPU cluster (Titan): One MPI process per node. 16 OpenMP threads on host.

• Compared with CPU clusters (Hopper and Edison) and cluster of Intel MICs (Stampede).

• Q-grid size = 8M q-points. Shape definition = 7.6M triangles.
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Reconstructing Nano-particle Systems with Reverse Monte Carlo Simulations
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Reconstructing Nano-particle Systems with Reverse Monte Carlo Simulations

Actual Pattern

Initial Model

Computed Model

asarje@lbl.gov Lawrence Berkeley National Laboratory



Introduction Motivation GISAXS Forward Simulations Inverse Modeling Conclusions

Strong and Weak Scaling of HipRMC

Titan
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Reconstructing Nano-Structures with Particle Swarm Optimization

• Stochastic method.

• Multiple agents, “particle swarm”, perform search for optimal points in the parameter search
space.

• Agent velocities influenced by history of traveled paths.

vi = ωvi + φbrb(bi − xi) + φgrg(bg − xi)

pi = pi + vi.

• Inherently suited for coarse parallelism.
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Fitting GISAXS Data with PSO

• Fitting a case with just 2 parameters.

100 Agents 1000 Agents
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Fitting GISAXS Data with PSO

• Fitting a case with 8 parameters.
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Fitting GISAXS Data with PSO

• Fitting a case with 12 parameters. Normalized error ≈ 10−3.
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End Notes: An Ongoing Work ...

• It has already brought down data analysis time from days and weeks to minutes and seconds.

• HipGISAXS is being used at many light-sources world-wide.
• Incorporate more and better optimization algorithms for inverse modeling:

• Derivative-based optimization algorithms do not perform well on GISAXS data.
• Derivative-free methods, such as the trust-region based POUNDers, from the TAO optimization

package, are included in HipGISAXS.

• Use machine learning techniques for better feature detection and structural classification.

• Build a pipeline for real-time data processing with dedicated supercomputers using
HipGISAXS.

• and much more ...
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Work in collaboration with ...

• Xiaoye S. Li, Computational Research Division, Berkeley Lab.

• Slim Chourou, Computational Research Division, Berkeley Lab.

• Alexander Hexemer, Advanced Light Source, Berkeley Lab.
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Thank you!
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