
Thread-Level Parallelization and Optimization

of NWChem for the Intel MIC Architecture

Hongzhang Shan, Samuel Williams, Wibe de Jong, Leonid Oliker

Computational Research Division
Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 94720

{hshan, swwilliams, wadejong, loliker}@lbl.gov

October 2014

Disclaimer

This document was prepared as an account of work sponsored by the United States Government. While
this document is believed to contain correct information, neither the United States Government nor
any agency thereof, nor The Regents of the University of California, nor any of their employees, makes
any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or any agency
thereof, or The Regents of the University of California. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency thereof
or The Regents of the University of California.

Copyright Notice

This manuscript has been authored by an author at Lawrence Berkeley National Laboratory under
Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy. The U.S. Government
retains, and the publisher, by accepting the article for publication, acknowledges, that the U.S. Gov-
ernment retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for U.S. Government purposes.

Abstract

In the multicore era it was possible to exploit the increase in on-chip parallelism by simply run-
ning multiple MPI processes per chip. Unfortunately, manycore processors’ greatly increased thread-
and data-level parallelism coupled with a reduced memory capacity demand an altogether different
approach. In this paper we explore augmenting two NWChem modules, triples correction of the
CCSD(T) and Fock matrix construction, with OpenMP in order that they might run efficiently on fu-
ture manycore architectures. As the next NERSC machine will be a self-hosted Intel MIC (Xeon Phi)
based supercomputer, we leverage an existing MIC testbed at NERSC to evaluate our experiments.
In order to proxy the fact that future MIC machines will not have a host processor, we run all of our
experiments in native mode. We found that while straightforward application of OpenMP to the
deep loop nests associated with the tensor contractions of CCSD(T) was sufficient in attaining high
performance, significant effort was required to safely and efficiently thread the TEXAS integral pack-
age when constructing the Fock matrix. Ultimately, our new MPI+OpenMP hybrid implementations
attain up to 65× better performance for the triples part of the CCSD(T) due in large part to the fact
that the limited on-card memory limits the existing MPI implementation to a single process per card.
Additionally, we obtain up to 1.6× better performance on Fock matrix constructions when compared
with the best MPI implementations running multiple processes per card.

1 Introduction

Over the course of the last decade, multicore architectures emerged as the standard for all major
HPC computing platforms. Today, manycore and accelerated architecture offer substantially higher
performance and may eclipse multicore as the basis for HPC. Unfortunately, both manycore and ac-
celerated architectures demand extreme thread- and data-level parallelism to attain high performance.
As existing compilers and runtime systems lack the maturity to automatically extract these forms of
parallelism from existing applications, users must express these forms of parallelism explicitly (e.g.
OpenMP pragmas and intrinsics) in their codes. To maximize performance, users must consider load
balancing, task granularity, software overhead, and many other performance factors. Thus, for many
large-scale applications, efficiently exploiting manycore and accelerated architectures can be challeng-
ing.

NWChem [25] is a comprehensive open source computational chemistry package for solving chal-
lenging chemical and biological problems using large scale ab initio molecular simulations. It has been
widely used all over the world to solve a wide range of complex scientific problems. NWChem pro-
vides many methods for computing the properties of molecular and periodic systems using standard
quantum mechanical descriptions of the electronic wave function or density.

In this work, we focus on two frequently used NWChem modules — CCSD(T) and Fock matrix
construction. In these modules, multicore parallelism is only exploited using MPI; there is no explicit
thread-level parallelism. As such, on manycore platforms, the current performance is severely limited
as it is often not able to make full use of all the available computing resources due to the constraints
of limited memory. Our approach uses OpenMP to express thread-level parallelism for these two
modules. In order to proxy the future NERSC-8 supercomputer Cori [4] which is based on a future
Intel manycore MIC architecture [16], we use the NERSC testbed Babbage and run in native mode.
In native mode, one programs the MIC as if it were a self-hosted processor with 60 cores each with 4
hardware thread contexts (240 threads total). Thus, the host is unused, host memory is unavailable,
and there are no PCIe transfers.

The principle contributions of this work include:

1. Quantifying the impact of limited application parallelism when running on manycore architec-
tures in the context of two different NWChem modules.

2. Evaluating several threading and parallelization techniques that allow one to exploit the full 240
hardware thread contexts on MIC. Previously, CCSD(T) could only exploit a single MPI process
per MIC while the Fock matrix construction could only exploit up to 60 MPI processes per MIC.

3. With further optimization, our hybrid MPI+OpenMP codes attain net speedups of 65× and
1.6× relative to the original MPI implementations for the triples part of the CCSD(T) and Fock
matrix construction, respectively.

The rest of the paper is organized as follows. After discussing some related work, we describe
our evaluation platform and experimental setup. We then proceed to describe the algorithmic details,
threading approaches, and other optimizations for the triples part of the CCSD(T) and Fock matrix
construction modules in Sections 4 and 5 respectively. Finally, we summarize our results and outline
some future work.

2 Related Work

The performance of NWChem has been extensively studied on a variety of compute architectures.
However, few of them focus on the thread-level parallelism issue on manycore architectures as we do.

1

In our previous work, we studied how to optimize the performance of the Fock matrix construction
on the Intel MIC architecture [22]. That approach was restricted to a flat MPI implementation and
focused on improving load balancing and data-level parallelism. A resultant observation was that due
to memory constraints, we were not able to run more than 60 MPI processes per MIC card. Although
tailoring the code to reduce the memory requirements allowed up to 120 MPI processes, the approach
was not a general solution and was not repeated here. Apra et al. studied CCSD(T) performance on
the Intel MIC architecture for a large-scale application [1]. In their study, the Intel MIC cards are used
in offload mode and not in native mode as we do. As such, their work would not be a good proxy for
the NERSC8 Cori supercomputer. Nevertheless, we found that similar optimizations could be applied
in both native and offload mode. Ma et al. studied CCSD(T) performance on several GPU platforms
using hybrid CPU-GPU execution [14, 15]. Ghosh et al. studied the communication performance for
TCE [9]. Ozog et al. explored a set of static and dynamic scheduling algorithms for block-sparse
tensor contractions within the NWChem computational chemistry code [18].

Liu et al. developed a new scalable parallel algorithm for Fock matrix construction. Their focus was
on large heterogeneous clusters [27]. Foster et al. presented scalable algorithms for distributing and
constructing the Fock matrix in SCF problems on several massively parallel processing platforms [7].
Tilson et al. compared the performance of TEXAS integral package with the McMurchie-Davidson
implementation on the IBM SP, Kendall Square KSR-2, Cray T3D, Cray T3E, and Intel Touchstone
Delta systems [24].

With respect to OpenMP performance on the Intel MIC, Carmer et al. evaluated the overhead
of OpenMP programming using a couple of simple benchmarks [6], while Schmidl et al. studied the
OpenMP performance using kernels and applications and found that porting OpenMP codes to the
Intel MIC needs performance tuning [21].

3 Experimental Setup

Babbage is an Intel MIC testbed at NERSC [2,16] with 45 compute nodes connected by an Infiniband
network. Each node contains two Intel Xeon (host) processors and two MIC (Xeon Phi) cards. Each
MIC card contains 60 cores running at 1.05 GHz and 8 GB GDDR memory. Although the theoretical
memory bandwidth is 352GB/s, it is nearly impossible to exceed about 170 GB/s using the STREAM
benchmark [23]. Each core includes a 32KB L1 cache, a 512KB L2 cache, a 8-way SIMD vector
processing unit, supports 4 hardware threads, and provides a peak performance of about 16.8 GFlop/s
(1 TFlop/s per chip). Unfortunately, the core can only issue up to two instructions per cycle and then
only if there are at least two threads per core. In order to proxy the NERSC8 Cori supercomputer [4],
we run in native mode. As such, the Xeon cores and PCIe are unused and do not affect performance.
In all experiments, we use the Intel Fortran 64 Compiler XE version 14.0.1 and use balanced affinity
as it delivered the best performance.

In the paper, we use CCSD(T) and the Fock matrix construction modules as the basis for our
evaluation. The input file for CCSD(T) is tce ccsd2 t cl2o.nw which can located in the NWChem
distributed package. However, we changed the tile size from 15 to 24 to improve performance and
the basis set from cc-pvdz to aug-cc-pvdz which is augmented with added diffuse functions. For
Fock matrix construction, we use the same input file (c20h42.nw) as our previous study [22]. This
benchmark is designed to measure the performance of the Hartree-Fock calculations on a single node
with a reasonable runtime for tuning purposes.

2

4 Coupled Cluster Triples Algorithm in CCSD(T)

CCSD(T) is often called the gold standard of computational chemistry [19,20]. It is one method in the
Coupled Cluster (CC) family. The coupled cluster methods are widely used in quantum chemistry as a
post-Hartree-Fock ab initio quantum chemistry method due to their high accuracy and polynomial time
and space complexity [5]. They perform extremely well for the molecular systems as they accurately
describe electron correlation part of the interactions.

In this section, we will focus on the triples algorithm in CCSD(T), which is the most computa-
tionally expensive component of the calculation. We will discuss the algorithm and then will discuss
our approach to OpenMP parallelization and performance optimization.

Algorithm 4.1 CCSD(T) Triples Algorithm

1: for p4 = 1 to nvab do . nvab: number of unoccupied titles
2: for p5 = p4 to nvab do
3: for p6 = p5 to nvab do
4: for h1 = 1 to noab do . noab: number of occupied titles
5: for h2 = h1 to noab do
6: for h3 = h2 to noab do
7: A: allocate space for d singles, d doubles (6D tensors)
8: B: call ccsd t doubles l(d doubles,p4,p5,p6,h1,h2,h3)
9: C: call ccsd t singles l(d singles,p4,p5,p6,h1,h2,h3)

10: D: Sum d singles and d doubles into energy1 and energy2
11: end for
12: end for
13: end for
14: end for
15: end for
16: end for

4.1 Algorithm

The dominant computations in the CCSD(T) algorithm are double-precision tensor contractions. Ten-
sor contractions are generalized multidimensional matrix-matrix multiplications. The typical tensor
contractions involved in the triples part of the CCSD(T) algorithm can be represented by the following
equations that generate a six-dimensional tensor from either the contraction of a two-dimensional and
four-dimensional tensor or two four-dimensional tensors shown in Equations 1 and 2. Eventually, the
6D tensors are reduced into a single number. In the triples algorithm, there are 9 tensor contractions
that are similar to Equation 1 and 18 like Equation 2.

T (p4, p5, p6, h1, h2, h3) =T1(p4, h1) ∗ T2(p5, p6, h3, h2) (1)

T (p4, p5, p6, h1, h2, h3) =T2(p4, p7, h1, h2) ∗ V 2(p5, p6, h3, p7) (2)

The multidimensional arrays that represent a tensor (typically 200-2000 for each dimension) are
stored in a tiled fashion to enable the distribution of the work over many processors and to limit local
memory usage on each processor. The size of the tile will depend on available memory and typically
ranges from 10 to 40. We use 24 in our experiments. In practice, tensor operations are often dominated
by index permutation and generalized matrix-matrix multiplication.

3

The pseudocode for the triples algorithm is shown in Algorithm 4.1. Lines 1-6 loop through all the
occupied and unoccupied tiles. The loop body contains four major steps labeled A-D. Step A allocates
the temporary buffers for the 6D tensors of Equations 1 and 2. The upper memory requirement for
each 6D tensor is tilesize6 doubles (roughly 1.46GB using our tile size of 24). Step B fetches the
two 4D tensors in Equation 2 from the tile domain space and computes the 6D tensor d doubles.
Similarly, Step C fetches the 2D and 4D tensors in Equation 1 and computes the 6D tensor d singles.
Finally, Step D sums the two 6D tensors with the appropriate scaling factors and increments the global
variables energy1 and energy2.

Algorithm 4.2 Nested Loop to Compute 6D Tensor (exemplar from Step B)

1: !$OMP Parallel do private(p4,p5,p6,p7,h1,h2,h3), collapse(3)
2: for p5 = 1 to p5d do
3: for p6 = 1 to p6d do
4: for p4 = 1 to p4d do
5: for h1 = 1 to h1d do
6: for h3 = 1 to p3d do
7: for h2 = 1 to p2d do
8: for p7 = 1 to p7d do
9: triplesx(h2,h3,h1,p4,p6,p5) +=

10: t2sub(p7,p4,h1,h2)*v2sub(p7,h3,p6,p5)
11: end for
12: end for
13: end for
14: end for
15: end for
16: end for
17: end for

4.2 Baseline OpenMP Parallelization and Performance

The high memory requirements of this method often preclude running more than one process per MIC
processor. We are thus highly motivated to thread the code to maximize performance. As the tensor
contractions can dominate the run time, we focus our initial effort there.

The computation of the 6D tensors in steps B and C of Algorithm 4.1 includes two major substeps:
getting the lower dimensional tensors with proper order and computing the 6D tensors. Computing
the 6D tensors is implemented using a deep loop nest. Based on type of contraction, there are 9
different loop structures in ccsd t singles l and 18 in ccsd t doubles l (27 total). Algorithm 4.2 shows
an example contraction from ccsd t doubles l, where h1, h2, and h3 are the occupied spin-orbital
indices and p4, p5, p6, and p7 are the unoccupied spin-orbital indices. The two 4D tensors t2sub and
v2sub are sub-blocks of cluster amplitude and two-electron tensors, respectively. The 6D tensor triples
(another name for d doubles) is the projections of the tiles.

The most straightforward approach to threading Algorithm 4.2 is to simply add an !$OMP parallel
do directive to the outermost loop. We use the collapse clause to increase the total number of loop
iterations threaded at a time — an essential step as the small value of p5d would otherwise lead to
underutilization of the 240 threads on MIC. This directive was applied to all 27 nested loops.

The summation of step D of Algorithm 4.1 is shown in Algorithm 4.3. Unfortunately, the variable i
impeded the compiler from correctly threading this loop nest. As such, we rewrote the loop nest to be

4

Algorithm 4.3 Original 6D Tensor Sum Implementation (Step D)

1: i = 0
2: for p4 = 1 to range p4 do
3: d4 = array(offset p4 + p4)
4: for p5 = 1 to range p5 do
5: d5 = array(offset p5 + p5)
6: for p6 = 1 to range p6 do
7: d6 = array(offset p6 + p6)
8: for h1 = 1 to range h1 do
9: d1 = array(offset h1 + h1)

10: for h2 = 1 to range h2 do
11: d2 = array(offset h2 + h2)
12: for h3 = 1 to range h3 do
13: d3 = array(offset h3 + h3)
14: d = 1.0 / ((d1+d2+d3) - (d4+d5+d6))
15: energy1 += factor*d*d doubles(i)*d doubles(i)
16: energy2 += factor*d*d doubles(i)*(d doubles(i)+d singles(i))
17: i = i + 1
18: end for
19: end for
20: end for
21: end for
22: end for
23: end for

5

thread-safe (Algorithm 4.4). In addition to the OpenMP parallelization, we optimize the performance
further by extracting the common variable “factor” in Lines 15-16 of Algorithm 4.3 out of the loops
and multiply it only once after the whole computation as in Lines 28-29 of Algorithm 4.4.

Algorithm 4.4 OpenMP Parallelized 6D Tensor Sum Implementation (Step 6D)

1: e1= e2 = 0.0
2: !$OMP Parallel do private(p4,p5,p6,h,h2,h3), collapse(3)
3: private(d4,d5,d6,d1,d2,d3,d, e1, e2, offset,nom, i) reduction(+:e1, e2)
4: for p4 = 1 to range p4 do
5: for p5 = 1 to range p5 do
6: for p6 = 1 to range p6 do
7: d4 = array(offset p4 + p4)
8: d5 = array(offset p5 + p5)
9: d6 = array(offset p6 + p6)

10: offset = p6-1+range p6*(p5-1+range p5*(p4-1))
11: for h1 = 1 to range h1 do
12: for h2 = 1 to range h2 do
13: for h3 = 1 to range h3 do
14: d1 = array(offset h1 + h1)
15: d2 = array(offset h2 + h2)
16: d3 = array(offset h3 + h3)
17: d = 1.0 / ((d1+d2+d3) - (d4+d5+d6))
18: i = h3-1+range h3*(h2-1+range h2*(h1-1+range h1*offset))
19: e1 = e1+d*d doubles(i)*d doubles(i)
20: e2 = e2+d*d doubles(i)*(d doubles(i)+d singles(i))
21: end for
22: end for
23: end for
24: end for
25: end for
26: end for
27: !$OMP end parallel do
28: energy1 = energy1 + e1 * factor
29: energy2 = energy2 + e2 * factor

Figure 1 displays the scalability of the initial (unoptimized) OpenMP performance. There is one
thread per core from 1-60 threads, two at 120, three at 180, and four at 240 threads. The reduction in
total run time scales almost linearly up to 16 OpenMP threads. The line labeled Loop Nests represents
the total time spent across the 27 deep loop nests plus the summation loop. These operations scale
well to 120 threads beyond which the benefits of HyperThreading are asymptotic. Conversely, the
time spent fetching the lower dimensional tensors (GetBlock) shows no improvement as it was not
initially threaded. Unfortunately, it appears that HyperThreading elsewhere has a deleterious effect
on this routine. As such, the baseline implementation attains its best performance with 120 threads.

4.3 Performance and Further Optimization

To further improve the code performance, we implemented the following optimizations listed below.
Please note, optimizations 3-6 have been previously implemented by researchers in [1]. However,

6

311

96
215

10

100

1000

10000

1 2 4 8 16 32 60 120 180 240

R
un

 T
im

e
(s

ec
on

ds
)

OMP_NUM_THREADS

Baseline OpenMP

Total Time
Time in Loop Nests
Time in GetBlock

Figure 1: Baseline OpenMP CCSD(T) run time. There is one thread per core through 60 cores.
For 120-240 threads, HyperThreading is exploited. Observe the effects of the GetBlock sequential
bottleneck. Labels record time in seconds.

there are a couple of differences. First, in their study, the Intel MIC nodes are used in offload mode
as computing accelerators while in our study they are programmed in native mode. Second, they
only apply the optimizations to the tensor contractions in ccsd t doubles l while we apply them to
the tensor contractions in ccsd t singles l as well. Finally, we also parallelize the sum section. The
resultant optimized nested loop implementation for Algorithm 4.2 is shown in Algorithm 4.5.

1. Parallelize tce sort: To reduce memory consumption, the 2D and 4D tensors are divided into
tiles and stored in a complex hash space [3, 9]. Once fetched, their indices need to be permuted
to proper order by calling function tce sort. We apply the OpenMP parallel do directive to
parallelize this sorting process. This sorting time is included in the GetBlock time.

2. Optimize get block ind: Using optimized nested loops to replace generalized sorting function
tce sortacc. For some cases, we simplify the loop body statement from : sorted(i) = sorted(i) +
unsorted(j) to sorted(i) = unsorted(j) to avoid reading array sorted.

3. Reorder the indices for 2D and 4D tensors: As shown in Algorithm 4.2, the index order of the
tensor t2sub is p7, p4, h1, h2, while the nested loop is ordered as p7, h2, h1, p4 from inner to
outsider. The different index and loop order will cause noncontiguous data access, resulted in
lower memory performance. To improve the data locality, we permute the index for tensor t2sub
so that the index order becomes the same as they appear in the nested loops.

4. Merge adjacent loop indices to increase the number of iterations.

5. Align the array data to 64 bytes.

6. Exploit OpenMP loop control directives.

7

Algorithm 4.5 Optimized Nested Loops to Compute 6D Tensor (exemplar from Step B)

1: !$OMP Parallel do private(p6p5,p7,h1p4,h2,h3), collapse(2)
2: for p6p5 = 1 to p6d ∗ p5d do
3: for h1p4 = 1 to h1d ∗ p4d do
4: for h3 = 1 to p3d do
5: for h2 = 1 to p2d do
6: for p7 = 1 to p7d do
7: !DIR$ ASSUME ALIGNED triplesx: 64
8: !DIR$ ASSUME ALIGNED t2sub: 64
9: !DIR$ ASSUME ALIGNED v2sub: 64

10: !DIR$ LOOP COUNT AVG=24
11: triplesx(h2,h3,h1p4,p6p5) +=
12: t2sub(p7,h2,h1p4)*v2sub(p7,h3,p6p5)
13: end for
14: end for
15: end for
16: end for
17: end for

124
62

62

10

100

1000

10000

1 2 4 8 16 32 60 120 180 240

R
un

 T
im

e
(s

ec
on

ds
)

OMP_NUM_THREADS

Optimized OpenMP

Total Time
Time in Loop Nests
Time in GetBlock

Figure 2: Optimized OpenMP CCSD(T) run time. The performance for the nested loops has been
significantly improved. The GetBlock sequential bottleneck is mitigated so long as there is only one
thread per core. Overall, we achieve a 2.5× speedup. Labels record time in seconds.

Figure 2 presents the resultant benefit of our optimizations. Compared with the baseline OpenMP
implementation of Figure 1, the Loop Nests performance has been improved about 1.54× while the
GetBlock time has been improved up to 4.5×. The overall performance has been improved by 2.5×.
Compared to the original flat MPI implementation that due to limited memory could only run one
process per card, we have improved performance by 65×. Unfortunately, further performance gains

8

are impeded by the GetBlock bottleneck which is related with Global Array [8]. And optimization of
the Global Array implementation is beyond the scope of this paper.

5 Fock Matrix Construction

Our second benchmark for evaluating performance on MIC is the Fock matrix construction and the
associated TEXAS integral package. The Fock matrix construction is the core computational operation
of the widely used Hartree-Fock (HF) method [10–12] which is a fundamental approach for solving the
Schrödinger’s equation in quantum computing and is often used as the starting point for the accurate
but more time consuming electronic correlation methods such as the coupled cluster approach we
described in Section 4. Efficient parallelization of the Fock matrix construction can be much more
challenging than optimizing CCSD(T). To that end, we will begin by discussing the algorithm and its
challenges and then explore three different approaches to exploiting thread-level parallelism on MIC.

5.1 Algorithm

In the HF algorithm, the Fock matrix (F) must be repeatedly constructed. The Fock matrix is a
square N ×N matrix where N is the number of the basis functions used to describe the system. Each
element ij is updated using the following equation [7]:

Fij = hij +
N∑
k=1

N∑
l=1

Dkl((ij|kl)−
1

2
(ik|jl)) (3)

where h is one-electron Hamiltonian, D is the one-particle density matrix, and (ij|kl) is a six dimen-
sional integral, called a two-electron repulsion integral (ERI). As each element of the N × N Fock
matrix requires one calculate O(N2) two-electron integrals, the naive time required for these integrals
is computationally prohibitive. However, by applying some screening for small values as well as ex-
ploiting molecular and permutation symmetry, the total complexity can be reduced to between O(N2)
and O(N3).

Algorithm 5.1 Fock Matrix Construction — Original Implementation

1: current task id = 0
2: my task = global task counter(task block size)
3: for ijkl = 2 ∗ ntype to 2 step −1 do
4: for ij = min(ntype, ijkl − 1) to max(1, ijkl − ntype) step −1 do
5: kl = ijkl − ij
6: if (my task .eq. current task id) then
7: prepare quartet list for integral calculations(ij,kl,qlist, pinfo, plist, ...)
8: calculate integrals using TEXAS package(qlist,results,scratch)
9: update Fock matrix using integral results(fock,results)

10: my task=global task counter(task block size)
11: end if
12: current task id = current task id + 1
13: end for
14: end for

In NWChem [25], the Fock matrix construction uses the TEXAS integral package for the two-
electron integrals. The 70-thousand line TEXAS integral package [26] computes quadruple integrals

9

in blocks (chunks). Although computing the large number of integrals makes Fock matrix construction
numerically very expensive, each computation is independent. Unfortunately, as any screening and
symmetry are intertwined with the integral calculations, the actual time to compute an ERI may
differ several orders of magnitude. Worse, varying angular momentums of the corresponding basis
functions can further exacerbate the variability. To cope with this execution variability, NWChem
uses a shared global task counter (essentially an efficient task queue) to dynamically load balance
work among processes. In order to minimize network pressure on the global task counter, tasks are
doled out in blocks.

Algorithm 5.1 presents the pseudocode for the Fock matrix construction. The variable ntype is
the number of blocks of pairs of shells ij. Lines 3-5 loop through all pairs of blocks in an order
that guarantees that shells with higher angular momentum will be visited first. Line 7 constructs the
quartet list using the pairs from blocks ij and kl based on the pair information stored in array pinfo,
plist and other data structures. Once the quartet list qlist has been created, the TEXAS integral
package is invoked to perform the integrals using the Obara-Saika (OS) method [13, 17, 26] with the
results stored into the array results. For efficiency, integrals with similar characteristics are computed
together in order to maximize sharing and reuse of temporary data. As each integral may affect a
number of Fock matrix elements related by values of i, j, k, and l, the update on Line 9 is a potential
impediment to straightforward threading.

5.2 OpenMP Parallelization and Optimization

As the optimal approach to OpenMP parallelization depends heavily on algorithm and architecture,
we explored three different approaches to exploiting thread-level parallelism on MIC. These approaches
span a spectrum that trades programability for performance through massive thread-level parallelism.
The first approach directly parallelizes the computational loops with OpenMP directives. The second
approach parallelizes the code in a coarse-grained manner so that each OpenMP thread will essen-
tially perform the same work as an additional MPI process would have. Unfortunately, significant
programming effort is required to make the code thread safe. Finally, we use the OpenMP task model
to overcome this overhead and inefficiency.

5.2.1 Approach #1: OpenMP Parallelization of the TEXAS integral routines:

In our previous study, we identified the top ten subroutines in the TEXAS integral package that
accounted for about 75% of the Fock matrix construction time [22]. Although these routines are
deep loop nests reminiscent of those in CCSD(T), they are much more complex and irregular in code
structures and data access patterns. The first attempt at threading these routines involved placing
c$OMP parallel do or c$OMP do directives on these loops where appropriate. As the c$OMP parallel
do directive has slightly more overhead than c$OMP do directive, we aggregate parallel regions and
use multiple c$OMP do directives.

5.2.2 Approach #2: OpenMP Parallelization at the Fock Matrix Construction Level:

In contrast to Approach #1 in which OpenMP is used to thread the loop nests within the individual
routines of the TEXAS integral package, Approach #2 attempts to replicate the task parallelism of the
MPI ranks of the Fock matrix construction routine using threads. Although structurally similar, this
approach has the advantage that it should use significantly less memory than simply adding more MPI
processes on a chip. Moreover, unlike Approach #1, the coarse-grained parallelism employed by this
approach (one thread per task) minimizes any OpenMP overheads for the TEXAS integral package.
To affect this approach, one must address three challenges — ensuring the TEXAS integral package

10

Algorithm 5.2 Fock Matrix Construction — OpenMP Implementation

1: c$OMP parallel private(mytid, current task id, my task, ijkl, ij, kl, qlist, results, scratch, ...)
2: c$OMP shared(pinto, plist, ...)
3: c$OMP reduction (+: fock)
4: current task id = 0
5: c$OMP critical
6: mytid = omp get thread num()
7: c$OMP end critical
8: my task = global task counter(task block size)
9: for ijkl = 2 ∗ ntype to 2 step −1 do

10: for ij = min(ntype, ijkl − 1) to max(1, ijkl − ntype) step −1 do
11: kl = ijkl − ij
12: if (my task .eq. current task id) then
13: prepare quartet list for integral calculations(ij,kl,qlist, pinfo, plist, ...)
14: calculate integrals using TEXAS package(qlist,results,scratch)
15: update Fock matrix using integral results(fock,results)
16: c$OMP critical
17: my task=global task counter(task block size)
18: c$OMP end critical
19: end if
20: current task id = current task id + 1
21: end for
22: end for
23: c$OMP end parallel

11

is thread-safe, extending the existing process-based dynamic load balancing to OpenMP threads, and
ensuring the Fock matrix can be efficiently updated. The resultant OpenMP implementation of the
new dynamic load balancing algorithm is shown in Algorithm 5.2.

The TEXAS integral package is a 20-year old legacy fortran code which makes extensive use of
common blocks to pass variables. In order to ensure this code is thread-safe, one must declare OpenMP
attributes (e.g. shared or threadprivate) for every variable in every common blocks. If a common block
appears in multiple subroutines, the variable attributes should be defined for every occurrence. In some
cases, this necessitated partitioning a common block. For example, the common block pnl002 includes
four variables. Among them, ncshell, ncfunct, nblock2 should be defined as shared and integ n0 should
be separated from the original common block and defined as threadprivate. The corresponding codes
have been shown below.

Original:
common /pnl002/ ncshell,ncfunct,nblock2,integ_n0

OpenMP:
common /pnl002/ ncshell,ncfunct,nblock2
common /pnl0022/ integ_n0
c$OMP threadprivate(/pnl0022/)

Approach #2 still depends on the use of the global task counter to provide dynamic load
balancing among OpenMP threads. As this call necessitates MPI communication by multiple threads,
MPI must be initialized at at least the MPI THREAD SERIALIZED level and the function must be
called from within an OpenMP Critical section.

With multiple threads independently calculating ERI’s, there is the possibility that two threads
will simultaneously attempt to update the same Fock matrix element. In the MPI implementation, this
data hazard is avoided by creating independent copies of the Fock matrix. Although using an OpenMP
critical section or atomic updates could address this data hazard, the performance penalties are severe.
Although OpenMP locks (e.g. one per row of the Fock matrix) seemed to be an attractive solution,
the overhead coupled with the sheer number of updates per ERI resulted in impaired performance.
Ultimately, the best solution was to mimic the MPI implementation at the OpenMP level. That
is, each thread receives a copy of the Fock matrix. These copies are reduced to the master using a
reduction(+:fock) clause.

5.2.3 Approach #3: Using OpenMP Task Directives in Fock Matrix Construction:

The third approach to exploiting OpenMP in the Fock matrix construction is to use the OpenMP task
model to dynamically assign work to threads. Algorithm 5.3 illustrates our implementation. The code
begins by creating an OpenMP parallel region with per-thread copies of the Fock matrix (myfock),
which is allocated in advance and initialized to 0. The master thread then traverses the loop iteration
space spawning OpenMP tasks that calculate ERIs and update the copy of the Fock matrix. Observe
that only one thread will call global task counter thereby minimizing contention. After all tasks
have been completed, a reduction is performed to fold the per-thread copies of the Fock matrix into
the master copy. NWChem manages memory itself using a preallocate stack and we leverage this
functionality, guarded with an OpenMP atomic directive, to allocate the thread-private variables like
qlist and scratch. Restoration of this stack is easily facilitated upon completion of all tasks.

12

Algorithm 5.3 Fock Matrix Construction — OpenMP Task Implementation

1: c$OMP parallel
2: myfock() = 0
3: c$OMP master
4: current task id = 0
5: mytid = omp get thread num()
6: my task = global task counter(task block size)
7: for ijkl = 2 ∗ ntype to 2 step −1 do
8: for ij = min(ntype, ijkl − 1) to max(1, ijkl − ntype) step −1 do
9: kl = ijkl − ij

10: if (my task .eq. current task id) then
11: c$OMP task firstprivate(ij,kl) default(shared)
12: create task(ij,kl, ...)
13: c$OMP end task
14: my task=global task counter(task block size)
15: end if
16: current task id = current task id + 1
17: end for
18: end for
19: c$OMP end master
20: c$OMP taskwait
21: c$OMP end parallel
22: Perform Reduction on myfock to Fock matrix
23:

24: subroutine create task(ij,kl, ...)
25: prepare quartet list for integral calculations(ij,kl,qlist, pinfo, plist, ...)
26: calculate integrals using TEXAS package(qlist,results,scratch)
27: update Fock matrix using integral results(myfock,results)
28: end subroutine

13

1	

10	

100	

er
int
sp
	

sss
sm
	

de
stb
ul	

ob
as
ai	

tra
c1
2	

xw
pq
	

as
se
m	

pr
e4
n	

wt
2w
t1
	

am
sh
f	

To
tal
	

Ru
nn

in
g	
Ti
m
es
	 (s
)	

Pure	 MPI	 OMP=1	 OMP=2	 OMP=3	 OMP=4	

Figure 3: The total time spent in each of the top ten subroutines in the TEXAS integral package
(and the total running time) using Approach #1 (loop-level threading) as a function of the number of
OpenMP threads per process. In all cases, there are 60 MPI processes. Note, Pure MPI is not the same
as MPI with one thread per process as the latter incurs wasted overhead for each omp parallel
region.

5.3 Performance Comparison and Tuning

Using Approach #1 (threading the loops), Fig. 3 presents the total execution time for each of the
ten most important subroutines of the TEXAS integral package as well as the total running times
(total) under five different parallelization strategies — flat MPI with 60 processes, and the hybrid
implementation with 60 processes using 1, 2, 3, or 4 threads per process (HyperThreading on a core).
Note, although hybrid with 60 processes and 1 thread per process expresses no more parallelism than
flat MPI, it does incur additional overhead for each OpenMP parallel region. The 60 process limit is
an artifact of the high memory requirements per process and the limited memory per MIC card. As
one can see, although the benefit of threading varies significantly from loop to loop, the net benefit
using this style of OpenMP parallelization is minimal.

There are several reasons why the fine-grained approach to OpenMP parallelization provided less
of a benefit than it did for CCSD(T). First, each OpenMP parallel region requires some overhead.
Thus, with one OpenMP thread per process, there is only additional overhead with no parallelization
benefit. Second, the total time spent in these routines is much less than the time spent in the similar
CCSD(T) operations. As such, even with multiple threads per process, it is difficult to amortize the
initial overhead. Third, the number of iterations for each loop is relatively small. When combined
with the fact that data dependencies across loops prevent collapsing the nested loops, we find it is
difficult to efficiently thread and vectorize the routines. Finally, the data access pattern is much less
regular than the loop nests in CCSD(T). This prevents easy vectorization and may incur much more
cache coherency transactions.

Fig. 4 compares the scalability of all three OpenMP approaches to the flat MPI implementation.
Note, the flat MPI implementation and Approach #1 both use 60 processes while the latter uses 1,
2, 3, or 4 threads per process. Approach #2 and #3 use 1 process of between 1 and 240 threads. All

14

72

71

183

54

10

100

1000

10000

1 2 4 8 16 32 60 120 180 240

To
ta

l R
un

 T
im

e
 (s

ec
on

ds
)

Total Hardware Thread Concurrency

Fock Matrix Construction Time

Flat MPI
OpenMP #1 (loop-level)
OpenMP #2 (module-level)
OpenMP #3 (Tasks)

Figure 4: The performance and scalability of the hybrid MPI+OpenMP Approaches #1, #2, #3
compared with original flat MPI implementation. The flat MPI implementation is limited to 60
processes, while the OpenMP implementations can use all 240 hardware thread contexts. While
approach #1 uses 60 MPI processes with 1,2,3, or 4 OpenMP threads per MPI process, both Approach
#2 and #3 use 1 MPI process with up to 240 OpenMP threads.

implementations scale well to 8 cores. Unfortunately, at that point, Approach #2 (parallelization at
the module-level) saturates. However, beyond 60 threads, it exploits HyperThreadding and can see
some benefit as it fully exploits each MIC core. This strange performance is due to several factors.
Although, the OpenMP critical section that safe guards task dissemination causes some serialization
overhead but not significant. Moreover, the total time spent in the TEXAS package to compute the
quadruple integrals is similar to the flat MPI cases. Nevertheless, most of the additional time is spent
in the preparation stage and is likely due to inefficiencies in the OpenMP run time’s management and
reduction of the long list of potentially large private variables.

As noted, Approach #1 (threading the loop nests) uses flat MPI through 60 cores and then switches
to OpenMP. As such, its performance tracks the flat MPI implementation perfectly to that point. By
using three threads per process, it delivers a little over 1% better performance than flat MPI — hardly
ideal use of a manycore processor.

Unlike Approach #2, Approach #3 (OpenMP Tasks) continues to scale from 8 through 60 cores
and tracks the flat MPI performance perfectly. Beyond 60 cores, exploiting HyperThreading through
the OpenMP task model allows NWChem to make full use of the MIC processor. Unlike Approach #2,
the ERI preparation time has been greatly reduced and is no longer an impediment. Ultimately, with
1 process of 180 threads, the OpenMP task implementation outperforms the flat MPI implementation
by 1.33×.

Thus far, when using the OpenMP task model, we have always fixed the number of MPI processes
at 1 and simply varied the number of OpenMP threads. In order to find the globally optimal balance
between threads and processes, we benchmark all combinations. Fig. 5 presents the resultant per-
formance. In all cases, we have fixed the total concurrency to 60, 120, 180, or 240 hardware thread
contexts (i.e. 60 cores with 1, 2, 3, or 4 threads per core). We observe that the best performance
can be obtained using all 240 thread contexts configured as 4 processes each of 60 threads. Moreover,

15

Figure 5: Performance of the OpenMP task implementation as a function of the number of threads
and processes. Note, in all cases, we have fixed the total concurrency to 60, 120, 180, or 240 hardware
thread contexts (i.e. 60 cores with 1, 2, 3, or 4 threads per core). The best performance is obtained
with 4 MPI processes of 60 threads and is 1.64× faster than the original flat MPI implementation.

this process of tuning the balance of threads and processes provided a 22% improvement over the
fully threaded (1 process of 240 threads) configuration and 1.64× faster than the original flat MPI
implementation.

6 Summary and Future Work

Unlike multicore architectures which one could exploit by simply running multiple processes per chip,
manycore architectures require a concerted effort to restructure legacy codes to exploit the massive
degree of thread-level parallelism. In this paper, we investigated how to restructure two NWChem
modules, the triples part of the CCSD(T) and Fock matrix construction, using portable OpenMP
directives in order to exploit the full capability of the Intel MIC architecture. For the triples part of the
CCSD(T), this process is relatively straightforward. One can apply the OpenMP directives directly
to each tensor contraction. This approach is far superior to the existing flat MPI implementation
which was constrained to a single process as it delivers 65× the performance. Conversely, attempting
a similar approach for the calculation of the electron repulsive integrals used to construct the Fock
matrix provides no benefit. Ultimately, applying thread-parallelism in a coarse-grained approach
provided a more efficient use of hardware. However, the specifics on how to realize coarse-grained
parallelism with an inherent lack of thread safety within the module, the presence of high temporary
data requirements, and data hazards that impede threading are subtle. Ultimately, we found that

16

use of the OpenMP task model provided a succinct, portable, high-performance solution that allowed
the Fock matrix construction routines to exploit the full hardware capability of the MIC processor
and delivered a 1.6× speedup over the existing flat MPI implementation. Future work will continue
to the process of threading other NWChem packages with OpenMP. Unfortunately, this process of
restructuring the code to be thread-friendly was particularly time-consuming and error-prone. Looking
forward, tools to remedy this portability gap for legacy codes are essential.

Acknowledgements

Hongzhang Shan, Sam Williams, and Lenny Oliker were supported by the Office of Advanced Scientific
Computing Research in the Department of Energy Office of Science under contract number DE-AC02-
05CH11231. Wibe de Jong was supported by Intel as part of its Parallel Computing Centers effort.
This research used resources of the National Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. This work is supported by Intel as part of its Parallel Computing Centers
effort.

References

[1] E. Apra, M. Klemm, and K. Kowalski. Efficient Implementation of Many-body Quantum Chem-
ical Methods on the Intel Xeon Phi Coprocessor. The International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, 2014.

[2] Babbage Testbed. https://www.nersc.gov/users/computational-systems/
testbeds/babbage/.

[3] G. BAUMGARTNER, A. AUER, D. E. BERNHOLDT, A. BIBIREATA, V. CHOPPELLA,
D. COCIORVA, X. GAO, R. J. HARRISON, S. HIRATA, S. KRISHNAMOORTHY, S. KRISH-
NAN, C. LAM, Q. LU, M. NOOIJEN, R. M. PITZER, J. RAMANUJAM, P. SADAYAPPAN,
and A. SIBIRYAKOV. Synthesis of High-Performance Parallel Programs for a Class of Ab Initio
Quantum Chemistry Models. Proceedings of the IEEE, 93:276–292, February 2005.

[4] Cori Cray XC30. https://www.nersc.gov/users/computational-systems/
nersc-8-system-cori//.

[5] Coupled cluster method. http://en.wikipedia.org/wiki/Coupled_cluster.

[6] T. Cramer, D. Schmidl, M. Klemm, and D. A. Mey. OpenMP Programming on Intel Xeon Phi
Coprocessors: An Early Performance Comparison. In Proceedings of the Many-core Applications
Research Community (MARC) Symposium at RWTH Aachen University, November 2012.

[7] I. Foster, J. Tilson, A. Wagner, R. Shepard, R. Harrison, R. Kendall, and R. Littlefield. Toward
High-Performance Computational Chemistry: I. Scalable Fock Matrix Construction Algorithms.
Journal of Computational Chemistry, 17:109–123, 1996.

[8] Global Arrays Toolkit. http://www.emsl.pnl.gov/docs/global/.

[9] P. Ghosh, J. F. Hammond, S. Ghosh, and B. Chapman. Performance analysis of the NWChem
TCE for different communication patterns. 4th International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS13), 2013.

17

[10] P. M. W. Gill. Molecular Integrals Over Gaussian Basis Functions. Advances in Quantum Chem-
istry, 25:141–205, 1994.

[11] R. Harrison, M. Guest, R. Kendall, M. S. D. Bernholdt, A. Wong, J. Anchell, A. Hess, R. Little-
field, G. Fann, J. Nieplocha, G. Thomas, D. Elwood, J. Tilson, R. Shepard, A. Wagner, I. Foster,
E. Lusk, and R. Stevens. Toward high-performance computational chemistry: II. a scalable
self-consistent field program. Journal of Computational Chemistry, 17:124–132, 1996.

[12] T. Helgaker, J. Olsen, and P. Jorgensen. Molecular Eletronic-Structure Theory. Wiley, www.
wiley.com, 2013.

[13] R. Lindh, U. Ryu, and B. Liu. The Reduced Multiplication Scheme of the Rys Quadrature and
New Recurrence Relations for Auxiliary Function Based Two Electron Integral Evaluation. The
Journal of Chemical Physics, 95:5889 – 5892, 1991.

[14] W. Ma, S. Krishnamoorthy, O. Villa, and K. Kowalski. GPU-based implementations of the non-
iterative regularized-CCSD(T) corrections: applications to strongly correlated systems. Journal
of Chemical Theory and Computation 7(5):1316-1328. doi:10.1021/ct1007247.

[15] W. Ma, S. Krishnamoorthy, O. Villa, K. Kowalski, and G. Agrawal. Optimizing Tensor Con-
traction Expressions for Hybrid CPU-GPU Execution. Cluster Computing (2013) 16(1):131-155.
doi:10.1007/s10586-011-0179-2, 2013.

[16] The Intel MIC. http://www.intel.com/content/www/us/
en/architecture-and-technology/many-integrated-core/
intel-many-integrated-core-architecture.html.

[17] S. Obara and A. Saika. Efficient Recursive Computation of Molecular Integrals Over Cartesian
Gaussian Functions. The Journal of Chemical Physics, 84:3963 – 3975, 1986.

[18] D. Ozog, S. Shende, A. Malony, J. R. Hammond, J. Dinan, and P. Balaji. Inspector-Executor
Load Balancing Algorithms for Block-Sparse Tensor Contractions. In Proceedings of the 27th
international ACM conference on International conference on supercomputing, May 2013.

[19] G. D. purvis III and R. J. Bartlett. A full coupled?cluster singles and doubles model: The
inclusion of disconnected triples. J. Chem. Phys., 76:1910–1918, February 1982.

[20] J. Rezac, L. Simova, and P. Hobza. CCSD[T] Describes Noncovalent Interactions Better than the
CCSD(T), CCSD(TQ), and CCSDT Methods. J. Chem. Theory Comput., 9:364–369, 2013.

[21] D. Schmidl, T. Cramer, S. Wienke, C. Terboven, and M. S. Muller. Assessing the performance
of OpenMP programs on the intel xeon phi. In Proceeding Euro-Par’13 Proceedings of the 19th
international conference on Parallel Processing, 2013.

[22] H. Shan, B. Austin, W. D. Jong, L. Oliker, N. Wright, and E. Apra. Performance Tuning of
Fock Matrix and Two-Electron Integral Calculations for NWChem on Leading HPC Platforms.
4th International Workshop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS13), 2013.

[23] STREAM benchmark. http://www.cs.virginia.edu/stream/ref.html.

18

[24] J. L. Tilson, M. Minkoff, A. F. Wagner, R. Shepard, P. Sutton, R. J. Harrison, R. A. Kendall,
and A. T. Wong. High-Performance Computational Chemistry: Hartree-Fock Electronic Struc-
ture Calculations on Massively Parallel Processors. International Journal of High Performance
Computing Applications, 13:291–306, 1999.

[25] M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. van Dam, D. Wang, J. Nieplocha,
E. Apra, T. Windus, and W. de Jong. Nwchem: a comprehensive and scalable open-source solution
for large scale molecular simulations. Computer Physics Communications, 181:1477–1489, 2010.

[26] K. Wolinski, J. F. Hinton, and P. Pulay. Efficient Implementation of the Gauge-Independent
Atomic Orbital Method for NMR Chemical Shift Calculations . Jounal of the American Chemical
Society, 112:8251 – 8260, 1990.

[27] X.Liu, A. Patel, and E. Chow. A New Scalable Parallel Algorithm for Fock Matrix Construction.
IEEE International Parallel & Distributed Processing Symposium 2014 (IPDPS14), 2014.

19

