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Abstract

Today’s scientific and business applications generate
massive data sets that need to be transferred to re-
mote sites for sharing, processing, and long term stor-
age. Because of increasing data volumes and enhance-
ment in current network technology that provide on-
demand high-speed data access between collaborating in-
stitutions, data handling and scheduling problems have
reached a new scale. In this paper, we present a new data
scheduling model with advance resource provisioning, in
which data movement operations are defined with earli-
est start and latest completion times. We analyze time-
dependent resource assignment problem, and propose a
new methodology to improve the current systems by al-
lowing researchers and higher-level meta-schedulers to
use data-placement as-a-service, so they can plan ahead
and submit transfer requests in advance. In general,
scheduling with time and resource conflicts is NP-hard.
We introduce an efficient algorithm to organize multiple
requests on the fly, while satisfying users’ time and re-
source constraints. We successfully tested our algorithm
in a simple benchmark simulator that we have devel-
oped, and demonstrated its performance with initial test
results.
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1 Introduction

Scientific and business applications require geographi-
cally distributed resources to satisfy their large compute
and storage requirements. In addition to increasing data
volumes and computational needs, many science projects
require cooperative work. For example, in climate re-
search, many researchers around the world work together
to model complex natural ecosystems [20, 21]. Collab-
oration between multiple institutions requires complex
middleware to orchestrate the use of storage and net-
work resources, and to manage end-to-end processing of
data.

In the age of high-bandwidth networks [11, 10, 15],
challenges facing large-scale data transfer is a reality.
One of the open problems is the dearth of robust, eco-
nomic data scheduling models for time-sensitive data
movements in future research infrastructures. Current
data scheduling systems [31, 32] manage data transfer
jobs by trying to optimize for performance and resource
utilization. However, they do not take time constraints
into account when running scheduling algorithms.

Many scientific analysis programs need recurrent and
time sensitive movement of large-scale datasets. Current
network technology provides on-demand high-speed data
access between collaborating institutions [3]. Users are
able to reserve a specific amount of the available band-
width for predictable performance and timely comple-
tion of data transfer operations. As a result, we need
novel mechanisms to organize advance reservation re-
quests intelligently. A data movement operation is also
affected by client/server side performance (such as mem-
ory, CPU, storage bottlenecks). In addition to reserva-
tion of network bandwidth for desired transfer through-
put, we also necessitate provisioning of server capacity
before initiating a data movement operation.

Delivering data placement (moving data between col-
laborating parties) as-a-service where users can sched-
ule their request in advance is highly desirable. In a
data placement request, users provide the total volume
of data needs to be transferred between source and des-
tination points. In addition to resource constraints, each
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data transfer job includes time constraints in which users
state the earliest start time and latest completion time.
Earliest start time specifies when the source data set will
be ready to start transferring data. Latest completion
time specifies a desired deadline to complete the transfer
operation.

In our previous research, we presented a bulk data
scheduling model with advance reservation and provi-
sioning [9]. In this model, users can plan ahead and
reserve time in advance for their data movement opera-
tions. The data scheduler interacts with the data trans-
fer nodes to provision server capacity, and network reser-
vation systems [3, 25, 12] to allocate network bandwidth
for guaranteed completion of data movement operations.
In this paper, we extend the methodology introduced in
[9] with detailed analysis and experimental results. In
general, the number of reservation options, to allocate
server and network capacity in a given time interval,
is exponential, so the scheduling problem is NP-hard.
Therefore, we propose an efficient heuristic for scheduling
data placement operations with advance reservation. We
successfully tested our algorithm in a simple benchmark
simulator that we have developed, and demonstrated its
performance with initial test results. Performance mea-
surements confirm that the proposed algorithm is effi-
cient and scalable.

2 Motivating Remarks

A very simple use case can be explained as follows. Con-
sider a scientific application that generates very large
amount of simulation data using supercomputing re-
sources. The generated data needs to be analyzed for
validation and verification by collaborating researchers.
In most cases, post-processing of the data is performed
by a different team located in a remote site [14]. In ad-
dition to running the simulation program that generated
the data, verification and validation steps also necessi-
tate allocation of many compute hours and reservation
of fast temporary storage space, in order to locally pro-
cess and run analysis programs. The data analysis phase
will be waiting for the generated data to arrive. If data
transfer completes later than the expected time, allo-
cated resources will stay idle. Therefore, advance plan-
ning for timely completion of data movement operations
is crucial, in order to utilize allocation of resources effi-
ciently.

Today’s best-effort networks give equal priority to all
data flows and do not distinguish high-priority and time
sensitive data movement operations with the rest of com-
peting data flows in the network. In order to support
Quality of Service (QoS) requirements of data-intensive
scientific applications, next generation research networks
such as Internet2 [2] and ESnet (Energy Sciences Net-
work) [1] provide bandwidth guaranteed on-demand data
access between collaboration sites. Network reservation

systems such as ESnet’s OSCARS enable necessary in-
frastructure to allocate bandwidth in advance. A specific
amount of the available bandwidth between two sites is
reserved for a given duration [3, 13], in order to guarantee
completion of time sensitive data movement operations.
Advance bandwidth allocation helps satisfy QoS require-
ments, enables predictable performance, and helps make
accurate planning for allocation of resources.

There are several studies concentrating on data man-
agement in scientific applications [6, 7, 42]; however,
most of the existing systems fail to address issues such
as scheduling according to given user requirements, time
constraints, and priorities. In current systems [31, 14],
a data transfer request is managed by a scheduler with-
out time constraints. The data transfer request is put in
a queue to be scheduled after completing currently run-
ning operations. This request may be delayed because
of prior long-running jobs, or it can be postponed by the
scheduler to operate other short jobs.

In our proposed model, data scheduler confirms re-
quests after checking availability of resources and other
submitted tasks in the given time frame. It considers fu-
ture time windows and examines available capacity both
in network and server resources to make a new reserva-
tion that satisfies the requirements of a submitted trans-
fer job. Once a job is accepted, a temporary reservation
is made. While scheduling new jobs, we may also need
to change the temporary reservations that belongs to the
jobs that are accepted but not started yet. In that case,
we release previously allocated resources to make new
reservations if possible, if there is available slot to move
the job start time backwards. Conversely, data transfer
jobs can be moved forward if there is enough time before
its completion deadline. Data scheduler should operate
in an opportunistic manner to maximize the number of
jobs accepted. On the other hand, it should first take
into consideration of the jobs for which it has already
confirmed to satisfy their deadlines. Therefore, we make
changes to the reservations of previously accepted jobs
only if we guarantee completion within the given time
constraints.

3 Problem Definition

We define the overall topology as a time-dependent di-
rected graph G(V,E, T ), with a node set V of n data
transfer nodes, and an edge set E ⊆ V ×V with m edges,
where ek : (vi, vj) represents a connection from node vi to
node vj . For every connection between two nodes, there
is a function of link capacity ueij (t) and ueji(t) where t
is a variable in time domain T . In addition to that, every
node has separate upload and download capacities, uviout
and u

vj
in respectively.

We have a dynamic network environment in which
edge capacities may vary over time. The connection be-
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tween two end-points may span over multiple routers in
the network, as can be seen in Figure 1. Searching avail-
able network bandwidth between end-points and finding
possible network reservation options are studied in [13].
In this study, we specifically focus only on the total avail-
able bandwidth between end-points. eij represents the
virtual connection from vi to vj . ueij (t) represents the
time-dependent available bandwidth information from
vi to vj . On-demand reservation systems such as OS-
CARS are able to make bandwidth reservations between
two edge-routers [3, 13]. In our scheduling model, data
scheduler interacts directly with a network reservation
manager and queries available bandwidth information
between two end-points.

Figure 1: Connection between two data nodes

We consider data transfer nodes (DTNs) [4] as special-
ized machine(s), with back-end storage servers and high-
speed data transfer protocols, connected to the outside
network with high-bandwidth interconnects. We assume
that we know the maximum upload and download ca-
pacities in each data transfer node.

A data transfer job is defined as Ji =
(vsi , v

d
i ,Mi, t

E
i , t

L
i ), where Mi is the amount of data to

be transferred from source vsi to destination node vdi
within the time period of [tEi , t

L
i ]. tEi represents the

earliest possible time when this data will be ready to
start the transfer operation. tLi represents the latest
completion time the transfer operation needs to be
finished. Data scheduler makes decisions according
to the time constraints. It does not admit a job if it
foresees that it is not possible to finish the transfer of
the requested data before the given deadline.

If a submitted job is admitted, we set up a reservation
for this job and allocate resources for a specific time pe-
riod. A reservation is defined as Ri = (vsi , v

d
i , µi, t

s
i , t

e
i ),

where µi amount of bandwidth is reserved from source
vsi to vdi between start time tsi and end time tei . A reser-
vation request is only confirmed if there exits enough
capacity satisfying the allocation of µi bandwidth in the
given time period, between tsi and tei . The total allocated
bandwidth over link eij should be less than the capacity
ueij (t) of the link for every instance of t in [tsi , t

e
i ]. Simi-

larly, the total in-coming bandwidth allocation should be

less than u
vd
i

in , and total out-going bandwidth allocation

should be less than u
vs
i

out, in the time period of [tsi , t
e
i ].

We consider non-preemptive operations where data
transfer start at tsi and continues till tei using µi band-
width from resources along the end-to-end route; con-
suming upload capacity of data transfer node vdi , band-
width of link eij , and download capacity of vsi . The
duration of the time period and the reserved bandwidth
should be enough to satisfy transferring the requested
amount of data. We simply say Mi = µi × di, where di
is the total time between tsi and tei . Therefore, it should
satisfy the requested bandwidth during the entire period
of time from start to end of this transfer. We can sim-
plify the problem as finding a contiguous set of time slots
such that a fixed amount of bandwidth can be allocated
to satisfy the data transfer request.

Data transfer scheduler checks other jobs in the sys-
tem and considers both time and resource conflicts. In
order to admit a job, it has to confirm the availability
of bandwidth between end-points and upload/download
capacities in data transfer nodes, within the given time
constraints. If a job has been admitted, an initial deci-
sion is made on when this job will start/end. In addition
to the period of time reserved, temporary resource (net-
work bandwidth and server capacity) reservations are
also created in advance. If the scheduler cannot find
a suitable time slot, it can also shift other jobs that had
already have a reservation in the given time period, with-
out breaking any deadline requirements of previously ad-
mitted jobs.

An important constraint is to reserve a contiguous
time slot for each job. A data transfer operation starts
with fixed transfer rate and maintains this until the en-
tire data has completely transferred. Current network
reservations systems provide guaranteed bandwidth for a
contiguous period of time between two endpoints [3, 12].
In order to benefit from on-demand bandwidth alloca-
tion systems and provide predictable guaranteed perfor-
mance, we also enforce this constraint in our scheduling
model.

The scheduler has two main objectives. First, it en-
sures that no other admitted job will be postponed be-
cause of accepting a new job. In addition to this fairness
objective, it also tries to maximize the number of admit-
ted jobs by moving reserved slots appropriately. It tries
to create suitable periods of time to accept jobs by re-
solving time and resource conflicts. On the other hand, it
also selects time slots that gives earliest completion time
with minimum interference with other admitted jobs in
the system.

4 Time and Resource Conflicts

We define a sample network with three data transfer
nodes connected to each other over a network, given in
Figure 2. Each node has particular upload and down-
load capacities. Maximum upload and download rates
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define the limit in server site; such that, total transfer
throughput is also constrained by the capacity of data
transfer nodes. Each job has a volume of data need to
be transferred, and a specific period of time job need to
be completed - earliest start time tE , and latest comple-
tion time tL.

Figure 2: Sample Problem Definition

Figure 3: Node and Link - Resource Constraints

We are bounded by edge capacity as well as node ca-
pacities. Figure 3 shows the resource conflicts in this
simple example. If we have a transfer request from node
n1 to n2 running at the same with another request from
node n3 to n2, the total bandwidth allocation given to
both should not exceed the capacity of node n2.

Figure 4: Time Steps and Search Interval

Earliest start time and latest completion time of each
job defines its search interval. We focus on the search
interval to find a proper allocation for the given request.
Figure 4 shows time steps which are calculated according
to time constraints of jobs. We divide the search interval
into time steps to analyze the time-dependent topology
graph. Available network and server capacities are fixed
in each time step. A time step shows the longest dura-
tion of time in which we have a stable network topology

[13]. A time window is a sequence of time steps. We
traverse time windows in a specific order, as shown in
Figure 5. First we try to find an allocation which has
shortest duration of time; or simply say which includes
less time steps. Besides, we want to find an allocation
with earliest completion; so, we traverse first time win-
dows which end earlier.

Figure 5: Minimum Capacity required for each Time
Window

Figure 5 shows how several time windows are elimi-
nated in the search interval. Further, it also illustrates
the resource constraints specific to each time windows.
For example, if we want to assign job J1 to time win-
dow tw6, we need at least a capacity of 120 allocated
over the link from n1 to n2, which provides maximum of
200 capacity. However, we would first consider tw3 and
tw5 if there is more capacity available since those time
windows consist of less time steps (shorter duration).

Figure 6: Time and Resource Conflicts

Figure 6 provides a table of possible assignment op-
tions that need to be considered with resource con-
straints given in Figure 7. In Figure 8, we present how
solution space is analyzed in this sample problem. We
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show the conflicts, and explain that search space is ex-
ponential. We have three possible assignment option for
J1, two for J2, and four for J3. Overall, we may need to
consider 3 × 2 × 4 choices in order to make a selection.
Each assignment might affect other options, but there
is no direct correlation between them. In other words,
our problem complexity increases exponentially when we
have time constraints and resource constraints together.

Figure 7: Resource Conflicts

Figure 8: Assigning Jobs to Time Windows

For example, if we select tw8 for J2, we could assign
J3 into time window tw13. tw8 includes ts3 and ts4, a
period of time between t4 and t9. The minimum capacity
we can use in this time window for job J2 is 240, but we
can finish by t8 if use 300. In such a case, we would
not be able to assign J3 into tw13 since there will be no
capacity left at node n3.

We can use unsplittable flow problem to model and
clarify our problem domain. The unsplittable flow prob-
lem [30] is an interesting dilemma in algorithm research.
The unsplittable flow problem is NP-hard, and only poly-
nomial approximation algorithms are given as a solution

[8, 16, 29, 28, 18]. Interestingly, even for very special
cases (i.e. planar graphs), the problem is still NP-hard.
To the best of our knowledge, only polynomial approx-
imation algorithms have been proposed in literature as
discussed above, and there is no constant factor approx-
imation algorithm known to solve the unsplittable flow
problem.

There are many studies in the literature investigation
approximation algorithms for scheduling; [26] and [24]
are some of them which show benefits in designing greedy
algorithms with priorities. The number of possible op-
tions increases exponentially in worst case. A common
approach is to set priorities for the possible options that
need to be examined. We rate each option based on the
priority or the cost/desire we assign, and we select the
best to reduce the search space. Note that very sim-
ple but effective greedy approaches like best-fit, first-
come, and earliest-deadline, use some preference/criteria
to make a choice among multiple options. Deciding on
a good selection criteria plays an important role in de-
signing polynomial greedy heuristics for near optimum
scheduling results.

5 Online Scheduling

We propose an online scheduler that makes decision
when a new job is submitted. Our approach is to de-
sign an effective methodology that is easy to implement
and deploy in practice. Algorithm 1 gives a simple greedy
heuristic. The problem in Algorithm 1 is that data trans-
fer operations are scheduled in submission order. In or-
der to maximize the number of jobs admitted, we in-
troduce Algorithm 2. Inspired from Gale-Shapley stable
marriage problem [41] and N-queen [39] algorithm, we
developed an efficient methodology to organize multiple
requests on the fly, while satisfying users’ time and re-
source constraints. When a new job request cannot find a
suitable time slot to make a reservation, it competes with
previously admitted jobs to move their reserved slots and
open a proper reservation time for itself.

The outline of our scheduling methodology is as fol-
lows. When a new request arrives, we first evaluate its
time and resource constraints, and we try to find a reser-
vation satisfying given criteria. We search through possi-
ble time windows and make a reservation with the prefer-
ence of selecting the one which gives earliest completion
and shortest transfer duration. If there is no contigu-
ous period of time with enough resource capacity in the
given search interval between tE and tL, we start explor-
ing possible options to move previously made reserva-
tions to open a contiguous time slot that could satisfy
the resource requirements of the new job request.

In this phase, we search over time windows for the
new request, and look for jobs with less preference value
in the time window we are traversing. If there are jobs
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Input: A set of admitted jobs (already in the system)
and their active advance reservations

Input: A new job Ji with earliest start tE , latest
completion tL, volume M , source vs and
destination vd

Get a set of time steps in the search interval
[tE − tL] :{ts1, ts2, . . . , tsn};
for i = 1 to n do

for j = i to 1 do
Get time window twj−i which contains all time
steps between tsj and tsi;

Check available capacity for vs, vd, and vs → vd

link in time window twj−i;
if the given criteria can fit into the time window
twj−i = tsj . . . tsi then

Make allocation and admit the job;

Return: No reservation found;
Algorithm 1: Scheduling Algorithm: select the time
window that gives earliest completion with shortest
duration.

which have less preference, we select the job with mini-
mum preference. We move out this job and take over its
time allocation to make a temporary reservation for the
new request. The job which recently moved out from its
allocated time space starts competing with other jobs to
find a new slot. This recursive operation continues until
no reservation left to shift out in worst-case. Algorithm 2
gives a glimpse of the methodology used to search and
find reservations.

5.1 Evaluation

For each new job, we divide the search interval into time
steps. The search interval [tE , tL] of a job is the time pe-
riod between earliest start time tE and latest completion
time tL in which the data need to be transmitted. A time
step represents the longest duration of time in which we
have a stable status in terms of available capacities.

If there are r committed reservations falling into the
period, there can be maximum 2r+1 different time steps
in the worst-case. If s is the total number of time steps,
there are (s × (s + 1))/2 time windows since time win-
dows are subsequent combinations of time steps. We
search through these time windows in a sequential order
to check whether we can satisfy the requested allocation
in that time window. Overall, the worst-case complex-
ity is bounded by O(r2). Time steps are associated with
reservations and the total number linearly scales with
the number of reservations in the system. Therefore,
worst-case complexity for Algorithm 1 is O(n2).

A new data transfer request is only admitted only if
we could allocate time and resource capacity in advance,
without breaking the constraints of previously admitted
jobs. In Algorithm 2, if we can still find a space for all
previously admitted jobs, we admit the new request and

Input: A set of admitted jobs (already in the system)
and their active advance reservations
(Reservation Set)

Input: A new job Ji with earliest start tE , latest
completion tL, volume M , source vs and
destination vd

Search all time windows between tE and tL ;
if A suitable time window satisfying resource
constraints found then

Make allocation and admit the job;
else

for All time windows that could satisfy the new
request do

For each time window tw, search if there is a job
with less preference;
Exclude jobs which are flagged; already started
request are also omitted ;
if There is a job Jk with less preference then

if We can make a reservation for Ji by
displacing Jk then

Displace Jk and make a reservation for
Ji;
Jk and Ji are flagged ;
Run Algorithm 2 for Jk to find a new
reservation;

if All jobs in the system (including Ji) are
scheduled then

Admit the new job Ji;
Accept the new allocation (job-to-resource
mapping) by committing the final Reservation
Set;

else
Reject the new job;
Rollover to the initial state (job-to-resource
mapping);

Algorithm 2: Scheduling Algorithm: displace
previously admitted jobs if necessary, to open space for
the new request.

make the temporarily reservations permanent. Other-
wise, we roll back all temporary reservations and return
back to the previous state. We try and execute the same
search procedure for other possible time windows that
this new request can fit. If we succeed in none of them,
we reject the new request.

Assume that there are already n admitted jobs in the
system. When we receive the (n+1)th job, and we could
not confirm a reservation just by looking time windows it
can span over. In that case, we try to displace other jobs
to open space for this recent request. We sequentially
traverse time windows that can satisfy given criteria, and
we try to find a job with less preference with an allocation
in the time window we are considering. As it has been
described above, this recursive process will end when we
cannot replace a previously admitted job. Therefore,
there can be maximum n tries. Thus, total complexity is
bounded by number of jobs and number of time windows,
O(n×s2). Therefore, worst case complexity of Algorithm
2 is O(n3).
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6 Preference Metric

Since previously admitted jobs will not be rejected in
order to allocate resources for a new request, we guaran-
tee that scheduler will eventually generate correct results
satisfying user’s given constraints. Even if we assign ran-
dom ranks to each transfer request, the algorithm in gen-
eral will conclude with a scheduling decision. However,
we would like to have a good selection criteria in order
to have an efficient algorithm. Therefore, we define the
following preference metrics.

• P1: [tL− tei ]/[tL− tE ]. The first metric defines time
left to complete the job before its deadline, propor-
tional to the duration of the search interval between
earliest start time tE and latest completion time tL.
A job that has lower P1 value has higher preference.

• P2: tsnumJi
/tstotalJi

, where tsnum is the total number
of time steps in the current time window assigned
to the job that we are examining, and tstotal is the
total number of time steps that this job could use
to make a reservation. We prefer to assign a job
to a time window that consists of less time steps.
Therefore, we favor a job which spans over more
time steps, compared to the total number of time
steps it can cover. A job with a higher P2 value has
more chance to have its transfer overlapping with
other transfer operations. Thus, a job with high P2

value has higher preference.

• P3: twid/twnum, where twid is the index (according
to the search order given in Figure 5) of the current
assigned time window, and twnum is the total num-
ber of possible time windows associated with this
job. For a recently arrived job, twid represents the
current time window we are evaluating. A job with
higher P3 value is more close to its deadline; so, it
has higher preference.

• P4: [tL − tsi ]/[t
L − tE ]. The last metric is related to

the start time. A job that has started earlier, rela-
tive to its search interval ([tE , tL]) has lower prefer-
ence. We favor the jobs that has higher P4 value.

For P2, P3, and P4, higher value means higher pref-
erence. Those jobs with lower preference are likely to
be displaced to open up space for the jobs with higher
preference values. For P1, higher value means more time
to deadline, so it means less preference.

We have implemented Algorithm 1 and Algorithm 2,
and developed a simple simulator that generates random
topologies. In order to test the performance of the given
metrics under heavy system load, we generated random
jobs with a search interval (time period between lat-
est completion time and earliest start time) limited to a

Table 1: Test results for 500 nodes
nj: number of submitted jobs, nr: number of rejected jobs,
ni: iteration count, t: elapsed time in millisecs

Set 1 Set 2
nj nr ni t nj nr ni t

Alg1 500 343 500 4 500 282 500 5
1000 710 1000 18 1000 648 1000 22
1500 1112 1500 42 1500 1038 1500 52
2000 1528 2000 78 2000 1469 2000 96
2500 1951 2500 127 2500 1895 2500 157

Alg2 500 341 509 5 500 280 523 7
P1 1000 699 1069 28 1000 638 1091 34

1500 1108 1568 61 1500 1021 1682 84
2000 1520 2248 130 2000 1448 2590 195
2500 1936 2903 233 2500 1869 3250 333

Alg2 500 341 504 5 500 278 517 7
P2 1000 702 1055 27 1000 641 1065 33

1500 1108 1562 61 1500 1023 1660 82
2000 1518 2216 128 2000 1449 2569 195
2500 1936 2882 233 2500 1870 3217 324

Alg2 500 341 504 5 500 278 519 7
P3 1000 702 1054 28 1000 641 1070 33

1500 1108 1562 61 1500 1023 1661 82
2000 1518 2219 128 2000 1449 2549 192
2500 1936 2884 233 2500 1870 3214 324

Alg2 500 342 503 5 500 281 514 7
P4 1000 709 1011 25 1000 648 1020 30

1500 1109 1530 59 1500 1031 1553 74
2000 1524 2074 114 2000 1461 2195 156
2500 1944 2653 201 2500 1883 2719 253

Table 2: Test results for 1000 nodes
nj: number of submitted jobs, nr: number of rejected jobs,
ni: iteration count, t: elapsed time in millisecs

Set 1 Set 3
nj nr ni t nj nr ni t

Alg1 2000 1445 2000 79 2000 44 2000 312
2500 1817 2500 119 2500 98 2500 710

Alg2 2000 1427 2124 120 2000 10 2818 561
P1 2500 1803 2621 175 2500 12 3279 1532

Alg2 2000 1430 2104 118 2000 11 2814 562
P2 2500 1804 2596 174 2500 12 7556 4711

Alg2 2000 1430 2104 117 2000 10 2806 576
P3 2500 1804 2596 172 2500 12 3417 1762

Alg2 2000 1436 2047 111 2000 19 2136 428
P4 2500 1810 2538 167 2500 30 3078 1362

maximum of two days. User parameters such as data vol-
umes, source and destination data transfer nodes, earli-
est start times and latest completion times are all set ran-
domly. Available node capacities, and the network ca-
pacities connecting data nodes are also random. Default
capacity of data nodes are generated between 5Gbps and
10Gbps, available network bandwidth is between 1Gbps
minimum and 10Gbps maximum. In this experimental
setup, there are no separate upload and download ca-
pacities. A connection capacity between two nodes is
randomly generated and it is shared for each direction.

We have defined three test sets. In Set 1, data transfer
jobs are generated randomly. In Set 2, we generate data
sizes proportional to the maximum network bandwidth
connecting source and destination. Set 2 will have higher
number of accepted jobs. Set 1 and Set 2 might also
include jobs trying to allocate resources far beyond the
capacity of the network. In Set 3, we calculate the data
volume size by multiplying total duration (time between
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tE and tL) by the minimum link capacity. Set 3 will
have the highest acceptance rate.

For each job, we also generate a submission time. We
simulate a real-life scenario where data transfer opera-
tions are submitted independently. We have performed
minimum 50 test runs for each case. We took average of
the test results from measurements, and rounded them
to the nearest integer. These test are conducted on a
mid-range workstation with 2.5GHz Intel CPU and 4G
RAM. We have collected the total elapsed time along
with the number of scheduling iterations to measure the
effectiveness of Algorithm 2. A search sequence is trig-
gered in each iteration. In Algorithm 1, the iteration
count is equal to the number of jobs. In Algorithm 2,
it is higher than the number of jobs submitted since we
might displace other jobs and initiate a new search to
come up with a better scheduling decision. Table 1 and
Table 2 show our initial results.

Table 3: Test results for 100 nodes and 250 jobs
nr: number of rejected jobs, ni: iteration count, t: elapsed
time in millisecs

nr ni t

Set1 Alg1 182 250 1
Alg2 P3 172 299 2

Exponential-ALL 172 17577 283

Set2 Alg1 158 250 1
Alg2 P3 155 329 3

Exponential-ALL 155 126508 2466

According to experimental results, P2 and P3 are bet-
ter than others preference metrics in general. The num-
ber of iterations is mostly bounded by the number of
nodes - far away from the worst case scenario O(n3).
Furthermore, total time required to make scheduling de-
cisions for all jobs submitted is less than a second. The
scheduling algorithm is efficient and easily applicable to
real-life scenarios. On the other hand, we also compare
the competitiveness of the greedy heuristic. We imple-
mented a special case in which all possible assignments
are examined for best scheduling decision. The number
of reservation options increases exponentially. Therefore,
we could only test this special case for small number of
jobs. As can be seen in Table 3, Algorithm 2 with pref-
erence metric P3 gives same results in a very efficient
manner. Experimental results verify that our proposed
approach produces near optimum results.

7 Related Work

Current research networks bring the ability to provi-
sion the communication channels when the data, es-
pecially large-scale massive data, is ready to be trans-
ferred [33, 36]. On-demand bandwidth reservation is
usually supported by Multiple Protocol Label Switch-
ing (MPLS) in layer 3 [17, 22]. In layer 2, a virtual
secure circuit is setup between source and destination
with a specific bandwidth over the connection. Inter-

net 2 [2] and ESnet [1, 3] provide dynamic circuit in-
frastructure to establish on-demand guaranteed band-
width connection between two endpoints.. TeraPaths [5]
controls end-sites and allows creation of secure circuits
within the site to support guaranteed bandwidth service.
TeraPaths address reservations between the clients and
edge routers, whereas OSCARS addresses reservation be-
tween edge routers.

We have recently reported a flexible network reserva-
tion algorithm that provides alternate allocation possi-
bilities for a single job, including earliest time for com-
pletion, or shortest transfer duration - leaving the choice
to the user [13]. In this study, we try to come up with a
near optimum allocation pattern for multiple data trans-
fer jobs with advance reservation.

In a hard real-time transaction system, the scheduler
needs to guarantee the exact completion time. There is
no benefit to finish the request after the deadline. In a
soft real-time transaction system, the scheduler consid-
ers the time constraint and prioritizes the requests with
earliest deadline [37]. In our data scheduling paradigm,
we consider soft-deadline scheduling for data transfer re-
quests. tLi defines a soft-deadline for the transfer opera-
tion such that the transfer operation is not interrupted if
it cannot finish within the given deadline. We can allo-
cate the server and the network capacity; however, it is
difficult to guarantee the exact completion time due to
possible failures, system problems. A job is not admitted
if it is not possible to finish the transfer of the requested
data before the given deadline.

There are several studies summarizing theoretical
complexity of data transfer scheduling [19, 23, 40]. In
[27], authors analyze some common cases and show that
there are polynomial time solutions for some very spe-
cial types of the problem, though for the rest of the cases
the solutions are exponential. Other than that, the gen-
eral problem is proven to be NP-hard. The study given
in [27] examines several network structures such as trees,
bipartite graphs, networks with odd and even cycles, and
provides a detailed complexity analysis through relaxing
the problem by eliminating parameters such as file size
and concurrency.

Data transfer scheduling with a specific start time and
a particular deadline has been studied in [34, 38, 35].
The scheduling problem has been formulated as a multi-
commodity flow problem, and uniform time slices have
been used to model the time dependency in [35]. The ob-
jective is to maximize the total transfer throughput, and
data transfers can use varying bandwidth in every time
slice. This problem can be generalized as a concurrent
file transfer problem [38]; such that, we share the band-
width between multiple jobs and try to utilize the net-
work as much as possible. Using network flows to model
and find a solution space for combinatorial optimization
problems, is a common practice [34]. On the other hand,
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sharing bandwidth between concurrent transfers can im-
prove the total throughput but does not help satisfying
completion time of each job. Our objective is to pro-
vide allocation of scheduling time satisfying given user
constraints, not to improve only the system utilization.
We would like to emphasize that multi-commodity flow
does not apply to our case. We are dealing with network
topologies with bottleneck constraints [13].

8 Conclusion

In this study, we have analyzed time-dependent resource
assignment problem with bottleneck constraints, and
presented a detailed study of data transfer scheduling
with resource and time conflicts. Our proposed model
provides a basis for provisioning end-to-end high perfor-
mance data transfers in which users submit their jobs
with time and resource constraints. We have developed
an efficient heuristic for scheduling data placement oper-
ations with advance reservation. We have implemented
our algorithm and showed its performance with initial
test results.
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